tensor.py 68.1 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18 19 20
import numpy
import warnings

Y
Yu Yang 已提交
21
from ..layer_helper import LayerHelper
22
from ..param_attr import ParamAttr
23
from ..initializer import Initializer
24
from ..framework import _current_expected_place, convert_np_dtype_to_dtype_, _non_static_mode, _varbase_creator, device_guard, _in_legacy_dygraph, in_dygraph_mode, _get_paddle_place
X
xuwei06 已提交
25
from ..framework import Variable
26
from ..initializer import Constant
27
from ..core import VarDesc
28
from .. import core
29
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
30
from . import utils
31
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from paddle.utils import deprecated
33

34
from .utils import check_shape
W
wanghuancoder 已提交
35
from paddle import _C_ops
Y
Yu Yang 已提交
36 37

__all__ = [
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
64 65 66
]


X
xuwei06 已提交
67
def create_tensor(dtype, name=None, persistable=False):
68
    """
W
wangchaochaohu 已提交
69
    Create a variable, which will hold a Tensor with data type dtype.
70 71

    Args:
W
wangchaochaohu 已提交
72 73 74 75
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
76
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
77
            default value is False.
78 79

    Returns:
W
wangchaochaohu 已提交
80
        Variable: The tensor to be created according to dtype.
81 82 83 84

    Examples:
        .. code-block:: python

85
          import paddle.fluid as fluid
86 87
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
88 89 90 91
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
92
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
93 94
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
95 96


97 98
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
99
                     name=None,
100 101 102 103
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
104
	:api_attr: Static Graph
S
swtkiwi 已提交
105

106
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
107 108 109 110 111
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

112 113 114 115 116 117 118
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
119 120 121
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
122
        default_initializer (Initializer, optional): Initializer for the parameter
123 124

    Returns:
125
        The created parameter.
Y
yuyang18 已提交
126 127

    Examples:
128 129
        .. code-block:: python

130 131 132
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
133
    """
134 135
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
136 137 138
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
139 140 141 142 143 144 145 146 147

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
148
    helper = LayerHelper("create_parameter", **locals())
149
    if attr is None:
X
xuwei06 已提交
150
        attr = ParamAttr(name=name)
151 152
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
153 154 155
                                   default_initializer)


156 157 158 159 160 161 162
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
163
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
164

165
    Parameters:
166
        shape (list[int]|tuple[int]): Shape of the variable
167
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
168
                      variable will be filled with it.
169 170
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
171
                           Default: False
172
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
173
                         Default: False
174 175
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
176 177

    Returns:
178
        Variable: The created Variable
F
fengjiayi 已提交
179 180 181 182

    Examples:
        .. code-block:: python

183 184 185
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
186
                                           persistable=True, force_cpu=True, name='new_var')
187
    """
188 189 190
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
191 192 193
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
194 195

    check_dtype(dtype, 'dtype', [
196 197 198 199 200 201 202 203 204 205
        'bool',
        'float16',
        'float32',
        'float64',
        'int8',
        'int16',
        'int32',
        'int64',
        'uint8',
        'uint16',
206 207
    ], 'create_global_var')

Q
Qiao Longfei 已提交
208 209
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
210 211 212 213 214
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
215 216 217
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
218

Q
Qiao Longfei 已提交
219 220 221
    return var


222
def cast(x, dtype):
Y
Yu Yang 已提交
223
    """
S
swtkiwi 已提交
224

225
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
226 227
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
228 229

    Args:
230
        x(Tensor): An input N-D Tensor with data type bool, float16,
231
            float32, float64, int32, int64, uint8.
232
        dtype(np.dtype|str): Data type of the output:
233
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
234 235

    Returns:
236
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
237 238 239

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
240

241
            import paddle
242

243 244
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
245
    """
H
hong 已提交
246 247 248 249 250
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        return _C_ops.final_state_cast(x, dtype)

J
Jiabin Yang 已提交
251
    if _non_static_mode():
252 253
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
W
wanghuancoder 已提交
254
        out = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
255
        return out
256

257
    check_variable_and_dtype(x, 'x', [
258 259
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
260
    ], 'cast')
261
    check_dtype(dtype, 'dtype', [
262 263
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
264 265 266
    ], 'cast')

    helper = LayerHelper('cast', **locals())
267 268
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
269 270 271 272 273 274 275 276 277
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


278
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
279
    """
280
    This OP concatenates the input along the axis.
281 282

    Args:
283 284
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
285 286
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
287
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
288
            as ``axis+R``. Default is 0.
289 290 291
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
292 293

    Returns:
294
        Tensor: A Tensor with the same data type as ``input``.
295 296 297

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
298

299
            import paddle.fluid as fluid
300 301
            import numpy as np

302 303 304 305 306 307
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
308 309 310 311
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
312 313
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
314 315
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
316 317 318 319 320 321 322 323
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
324
    """
325

326 327 328 329 330 331
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
332 333 334
        out = _varbase_creator()
        _C_ops.concat(input, out, 'axis', axis)
        return out
335 336

    if _in_legacy_dygraph():
S
songyouwei 已提交
337 338
        if isinstance(axis, Variable):
            axis = axis.numpy()
339
            axis = axis.item(0)
340 341
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
342 343 344
        out = _varbase_creator()
        _C_ops.concat(input, out, 'axis', axis)
        return out
345

346 347 348 349 350 351 352 353 354 355 356
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
357
        input = [input]
358
    check_type(axis, 'axis', (int, Variable), 'concat')
359

360 361 362 363 364
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

365
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
366
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
367 368

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
369 370 371 372
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

373
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
374
                "number of the elements must be 1, but received %s." % len(input)
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
394 395 396
    return out


G
Guo Sheng 已提交
397
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
398
    r"""
G
Guo Sheng 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
449 450

    Args:
G
Guo Sheng 已提交
451 452 453 454 455 456 457
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
458 459

    Returns:
G
Guo Sheng 已提交
460 461 462
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
463 464 465 466

    Examples:
        .. code-block:: python

467
            import paddle.fluid as fluid
468
            import numpy as np
G
Guo Sheng 已提交
469 470 471 472 473 474 475
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
476
    """
J
Jiabin Yang 已提交
477
    if _non_static_mode():
478 479 480 481 482 483 484 485 486 487
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

488 489 490 491 492
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
493
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
494 495 496
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
497
        type='tensor_array_to_tensor',
L
li099 已提交
498 499 500
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
501 502
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
503 504 505
    return out, out_index


506
def sums(input, out=None):
507
    r"""
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
529 530

    Args:
531 532 533 534
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
535 536

    Returns:
537 538
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
539 540

    Examples:
F
fengjiayi 已提交
541
        .. code-block:: python
K
kavyasrinet 已提交
542

543 544 545 546 547 548 549 550 551
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
552

553 554
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
555
    """
556 557 558 559
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
560
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
561 562
    else:
        check_variable_and_dtype(input, "input", \
563
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
564

Y
Yu Yang 已提交
565 566
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
567 568
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
569 570 571 572
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
573 574 575 576 577
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
578 579 580
    return out


F
fengjiayi 已提交
581
def assign(input, output=None):
582
    """
S
swtkiwi 已提交
583

584
    The OP copies the :attr:`input` to the :attr:`output`.
585

586
    Parameters:
587 588 589 590
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
591
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
592
            be created as :attr:`output`. Default: None.
593 594

    Returns:
595
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
596 597 598

    Examples:
        .. code-block:: python
599

600
          import paddle
601
          import numpy as np
602
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
603 604 605 606
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
607 608 609
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
610
    """
Y
Yu Yang 已提交
611
    helper = LayerHelper('assign', **locals())
612 613
    check_type(input, 'input', (Variable, numpy.ndarray, list, tuple, float,
                                int, bool), 'assign')
614 615
    is_inplace = True if output is not None else False

616 617 618 619
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
620 621
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
J
Jiabin Yang 已提交
622
    # but _non_static_mode()==False under @to_static, which means
623 624 625
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
626
        if _non_static_mode():
C
chentianyu03 已提交
627 628 629 630 631 632 633 634 635
            if in_dygraph_mode() and output is None:
                output = _C_ops.final_state_assign(input)
            else:
                if output is None:
                    if _in_legacy_dygraph():
                        output = core.VarBase()
                    else:
                        output = core.eager.Tensor()
                _C_ops.assign(input, output)
636 637 638 639 640 641 642 643 644 645 646
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
            helper.append_op(
                type='assign', inputs={'X': [input]},
                outputs={'Out': [output]})
X
xuwei06 已提交
647
    elif isinstance(input, numpy.ndarray):
648 649 650 651 652
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
X
xuwei06 已提交
653
        dtype = convert_np_dtype_to_dtype_(input.dtype)
654 655 656 657 658 659 660 661
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
662 663
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
664
            values = [int(v) for v in input.flat]
665
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
666
            value_name = "fp32_values"
667
            values = [float(v) for v in input.flat]
668
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
669
            value_name = "int32_values"
670
            values = [int(v) for v in input.flat]
671 672 673
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
674
        else:
675 676
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
677
                "the data type of 'input' must be bool, float32, int32 or int64, but "
678
                "received %s." % convert_dtype(dtype))
679 680 681
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
682
        if output is None:
C
caozhou 已提交
683
            output = helper.create_variable_for_type_inference(dtype=dtype)
X
xuwei06 已提交
684 685 686 687 688 689
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
690
                value_name: values
X
xuwei06 已提交
691 692
            })

J
Jiabin Yang 已提交
693
    if is_inplace and _non_static_mode():
694
        output._bump_inplace_version()
695

Y
Yu Yang 已提交
696 697 698
    return output


699
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
700
    """
S
swtkiwi 已提交
701

W
wangchaochaohu 已提交
702
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
703
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
704

T
tianshuo78520a 已提交
705
    The attribute `stop_gradient` of the created Tensor is set to True.
706 707

    Args:
708 709 710
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
711
        dtype(np.dtype|str): Data type of the output Tensor which can
712
            be float16, float32, float64, uint8, int16, int32, int64.
713 714 715 716 717 718
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
719 720
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
721 722

    Returns:
723
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
724

725 726 727
    Examples:
        .. code-block:: python

728
          import paddle.fluid as fluid
729
          # attr shape is a list which doesn't contain  Tensor.
730 731
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
732
          # data1=[[5], [5]] data2=[[5], [5]]
733

734
          # attr shape is a list which contains Tensor.
735
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
736
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
737

738
          # attr shape is a Tensor.
739
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
740
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
741
          
742
          # attr value is a Tensor.
W
wangchaochaohu 已提交
743 744
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
745
    """
746

W
wangchaochaohu 已提交
747
    attrs = {'force_cpu': force_cpu}
748
    dtype = convert_dtype(dtype)
749
    if not isinstance(value, Variable):
750
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
751
            attrs['str_value'] = str(int(value))
752
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
753 754
        else:
            attrs['str_value'] = str(float(value))
755
            attrs['value'] = float(value)
756

J
Jiabin Yang 已提交
757
    if _non_static_mode():
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
        if out is None and in_dygraph_mode():
            #Currently, final state mode don't support out is None.
            place = _current_expected_place()
            if force_cpu:
                place = core.CPUPlace()

            shape = utils.convert_shape_to_list(shape)
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)
            out = _C_ops.final_state_full(shape, float(value), dtype, place)
            out.stop_gradient = True
            return out

        else:
            shape = utils.convert_shape_to_list(shape)
            if out is None:
                out = _varbase_creator(dtype=dtype)

            if isinstance(value, Variable):
                if dtype in ['uint8', 'int16', 'int32', 'int64']:
                    attrs['str_value'] = str(int(value.numpy().item(0)))
                else:
                    attrs['str_value'] = str(float(value.numpy().item(0)))

            _C_ops.fill_constant(out, 'value',
                                 float(value), 'force_cpu', force_cpu, 'dtype',
                                 out.dtype, 'str_value', attrs['str_value'],
                                 'shape', shape)
            out.stop_gradient = True
            return out
788

789 790 791
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
792 793
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
794 795
        inputs['ValueTensor'] = value

796
    check_shape(shape)
797 798
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'uint8', 'int16', 'int32',
799
        'int64', 'complex64', 'complex128'
800
    ], 'fill_constant')
801
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
802

803 804 805 806 807
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
808
    utils.get_shape_tensor_inputs(
809
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
810

Y
Yu Yang 已提交
811
    if out is None:
X
Xin Pan 已提交
812
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
813
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
814 815
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
816
        inputs=inputs,
Y
Yu Yang 已提交
817
        outputs={'Out': [out]},
L
liym27 已提交
818
        attrs=attrs,
M
minqiyang 已提交
819
        stop_gradient=True)
Y
Yu Yang 已提交
820 821 822 823
    out.stop_gradient = True
    return out


824
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
825
@templatedoc()
Y
Yu Yang 已提交
826 827 828 829 830
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
831 832
                                  output_dim_idx=0,
                                  force_cpu=False):
833
    """
T
tianshuo78520a 已提交
834
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
835 836 837 838
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
839 840

    Args:
W
wangchaochaohu 已提交
841 842 843 844 845 846 847 848 849 850 851
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
852
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
853 854

    Returns:
W
wangchaochaohu 已提交
855
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
856 857 858 859 860

    Examples:

        .. code-block:: python

861
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
862
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
863
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
864
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
865

866
    """
867 868 869 870 871 872 873 874 875 876 877 878
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        out = _C_ops.final_state_full_batch_size_like(
            input, shape, dtype, value, input_dim_idx, output_dim_idx, place)
        out.stop_gradient = True
        return out

Y
Yu Yang 已提交
879
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
880
    out = helper.create_variable_for_type_inference(dtype=dtype)
881 882 883 884 885 886
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
887
        'force_cpu': force_cpu
888 889 890 891 892
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
893 894 895 896
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
897
        attrs=attrs)
Y
Yu Yang 已提交
898 899 900 901
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
902 903
def argmin(x, axis=0):
    """
904 905 906
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
907

S
sneaxiy 已提交
908 909
    **argmin**

910 911
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
912 913

    Args:
914 915 916 917 918
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
919

S
sneaxiy 已提交
920
    Returns:
921
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
922

S
sneaxiy 已提交
923 924
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
925

926
            import paddle.fluid as fluid
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
954
    """
955 956 957
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
958
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
959
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
960 961 962 963 964
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
965
    out.stop_gradient = True
S
sneaxiy 已提交
966 967 968 969 970 971 972
    return out


def argmax(x, axis=0):
    """
    **argmax**

973 974
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
975 976

    Args:
977 978 979 980 981
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
982

S
sneaxiy 已提交
983
    Returns:
984
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
985

S
sneaxiy 已提交
986 987
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
988

989
            import paddle.fluid as fluid
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
1017
    """
1018 1019 1020
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
1021
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
1022
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
1023 1024 1025 1026 1027
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
1028
    out.stop_gradient = True
S
sneaxiy 已提交
1029 1030 1031
    return out


1032
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
1033
    """
1034 1035 1036
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
1037

1038 1039 1040
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
1041 1042

    Args:
1043 1044 1045 1046 1047
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
1048 1049 1050
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
1051 1052 1053
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
1054 1055

    Returns:
1056 1057 1058
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1059 1060 1061 1062

    Examples:
        .. code-block:: python

1063
            import paddle.fluid as fluid
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1105
    """
1106 1107 1108
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1109
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1110 1111 1112 1113
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1114 1115 1116 1117
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1118
                 'Indices': ids},
1119 1120
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1121 1122 1123
    return out, ids


Y
Yang Yu 已提交
1124
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1125
    """
1126 1127
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1128

1129
    Parameters:
1130
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1131
        dtype (np.dtype|str): Data type of output Tensor, it supports
1132
            bool, float16, float32, float64, int32 and int64.
1133 1134
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1135
            Default: False.
1136 1137

    Returns:
1138
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1139 1140 1141 1142

    Examples:
        .. code-block:: python

1143
          import paddle.fluid as fluid
1144 1145 1146 1147 1148
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1149 1150 1151 1152
    """
    return fill_constant(value=1.0, **locals())


1153
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1154
    """
1155 1156
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1157

1158
    Parameters:
1159
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1160
        dtype (np.dtype|str): Data type of output Tensor, it supports
1161
            bool, float16, float32, float64, int32 and int64.
1162 1163
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1164
            Default: False.
1165 1166
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1167 1168

    Returns:
1169
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1170 1171 1172 1173

    Examples:
        .. code-block:: python

1174
          import paddle.fluid as fluid
1175
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1176 1177 1178 1179
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1180 1181
    """
    return fill_constant(value=0.0, **locals())
1182 1183


F
fengjiayi 已提交
1184 1185
def reverse(x, axis):
    """
1186 1187 1188
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1189

1190
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1191

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1216
    Parameters:
1217 1218
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1219 1220
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1221 1222
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1223 1224

    Returns:
1225
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1226 1227 1228 1229

    Examples:
        .. code-block:: python

1230
          import paddle.fluid as fluid
1231 1232 1233 1234
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1245
    """
1246 1247 1248
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1249 1250 1251
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1252
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1253 1254
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1255
        inputs={'X': x},
F
fengjiayi 已提交
1256 1257 1258 1259 1260
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1261 1262 1263 1264 1265 1266 1267
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1268 1269 1270
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1286 1287
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1288
        file_path(str): The file path where variables will be saved.
1289
        overwrite(bool): Whether or not cover the given file when it has already
1290 1291
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1292 1293 1294 1295 1296 1297 1298 1299

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1300
            import paddle.fluid as fluid
1301 1302 1303 1304 1305 1306 1307
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1320
    Loads a list of variable from a single file.
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1332 1333 1334 1335 1336 1337 1338


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1339
       x (Tensor): The Tensor to be checked.
1340 1341

    Returns:
S
Steffy-zxf 已提交
1342
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1343 1344 1345 1346
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1347 1348
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1349
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1350
          # [False]
1351

1352
    """
J
Jiabin Yang 已提交
1353
    if _non_static_mode():
W
wanghuancoder 已提交
1354
        return _C_ops.isinf(x)
S
Steffy-zxf 已提交
1355

1356
    check_type(x, 'x', (Variable), 'has_inf')
1357
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1358
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1359 1360 1361 1362 1363 1364 1365 1366 1367
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1368
       x (Tensor): The Tensor to be checked.
1369 1370

    Returns:
S
Steffy-zxf 已提交
1371
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1372 1373 1374 1375
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1376 1377
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1378
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1379
          # [False]
1380

1381
    """
J
Jiabin Yang 已提交
1382
    if _non_static_mode():
W
wanghuancoder 已提交
1383
        return _C_ops.isnan(x)
S
Steffy-zxf 已提交
1384

1385
    check_type(x, 'x', (Variable), 'has_nan')
1386
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1387
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1388 1389 1390 1391 1392 1393
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1394

1395 1396 1397 1398
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1399
        x(Tensor): The Tensor to be checked.
1400 1401

    Returns:
N
Noel 已提交
1402
        Tensor: The tensor storing the output, contains a bool value.
1403 1404 1405 1406 1407

    Examples:

        .. code-block:: python

N
Noel 已提交
1408 1409 1410 1411 1412 1413
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1414
    """
1415 1416
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1417
    helper = LayerHelper("isfinite", **locals())
1418

1419
    out = helper.create_variable_for_type_inference(dtype='bool')
1420 1421
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1422 1423


1424
def range(start, end, step, dtype, name=None):
W
whs 已提交
1425
    """
1426
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1427

1428 1429
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1430

1431 1432
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1433

L
Liufang Sang 已提交
1434
    Parameters:
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1458 1459 1460 1461 1462

    examples:

        .. code-block:: python

1463
            import paddle.fluid as fluid
W
whs 已提交
1464

1465 1466
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1467

1468 1469 1470 1471 1472 1473 1474
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1475

W
whs 已提交
1476
    if not isinstance(start, Variable):
1477
        with device_guard("cpu"):
1478
            start = fill_constant([1], dtype, start, force_cpu=True)
1479 1480
    elif start.dtype != dtype:
        start = cast(start, dtype)
1481

W
whs 已提交
1482
    if not isinstance(end, Variable):
1483
        with device_guard("cpu"):
1484
            end = fill_constant([1], dtype, end, force_cpu=True)
1485 1486
    elif end.dtype != dtype:
        end = cast(end, dtype)
1487

W
whs 已提交
1488
    if not isinstance(step, Variable):
1489
        with device_guard("cpu"):
1490
            step = fill_constant([1], dtype, step, force_cpu=True)
1491 1492
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1493

Z
zyfncg 已提交
1494 1495 1496 1497
    if in_dygraph_mode():
        return _C_ops.final_state_arange(start, end, step, dtype,
                                         _current_expected_place())

Z
zyfncg 已提交
1498
    if _in_legacy_dygraph():
J
Jiawei Wang 已提交
1499 1500 1501
        out = _C_ops.range(start, end, step)
        out.stop_gradient = True
        return out
W
whs 已提交
1502

W
wanghuancoder 已提交
1503 1504 1505 1506 1507
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1508 1509 1510
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1511
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1512 1513 1514 1515 1516
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1517
        outputs={'Out': out})
1518
    out.stop_gradient = True
W
whs 已提交
1519
    return out
Z
zhoukunsheng 已提交
1520 1521


1522
def linspace(start, stop, num, dtype=None, name=None):
1523
    r"""
1524
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1525 1526

    Args:
1527 1528 1529 1530
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1531
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1532
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1533
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1534
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1535 1536
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1537 1538

    Returns:
1539
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1540 1541
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1542

Z
zhoukunsheng 已提交
1543
    Examples:
Z
zhoukunsheng 已提交
1544 1545
        .. code-block:: python

1546 1547 1548
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1549 1550

    """
1551 1552
    if dtype is None:
        dtype = 'float32'
1553 1554 1555
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1556 1557
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1558 1559
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1560
    if not isinstance(start, Variable):
1561 1562
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1563
    if not isinstance(stop, Variable):
1564 1565
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1566
    if not isinstance(num, Variable):
1567 1568
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1569
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1570 1571
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)
1572 1573 1574
    if in_dygraph_mode():
        return _C_ops.final_state_linspace(tensor_start, tensor_stop,
                                           tensor_num, dtype)
1575 1576
    helper = LayerHelper("linspace", **locals())

1577 1578 1579
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1580
    if isinstance(start, Variable):
1581 1582
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1583 1584
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1585

1586
    if isinstance(stop, Variable):
1587 1588
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1589 1590 1591 1592 1593 1594
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1595 1596 1597 1598 1599 1600 1601 1602
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1603 1604

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1605 1606 1607

    helper.append_op(
        type='linspace',
1608 1609 1610 1611
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1612
        outputs={'Out': [out]})
1613 1614
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1615
    return out
1616 1617


Z
zhoukunsheng 已提交
1618 1619
def zeros_like(x, out=None):
    """
1620
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1621 1622 1623
    with `x`.

    Args:
1624 1625 1626 1627 1628 1629
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1630 1631

    Returns:
1632 1633 1634
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1635 1636 1637 1638

    Examples:
        .. code-block:: python

1639
          import paddle.fluid as fluid
1640
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1641 1642
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1643 1644
    """

1645 1646
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1647 1648 1649
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1650 1651 1652
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1653
            'zeros_like')
1654

Z
zhoukunsheng 已提交
1655 1656 1657 1658
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1659 1660


1661
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1662
def diag(diagonal):
1663
    r"""
1664 1665 1666
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1667

1668
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1669 1670

    Args:
1671 1672
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1673 1674

    Returns:
1675 1676
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1677 1678 1679 1680 1681 1682 1683

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1684 1685 1686

          import paddle.fluid as fluid
          import numpy as np
1687 1688 1689
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1690 1691

    """
1692 1693 1694
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1707 1708


1709 1710 1711 1712 1713
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1714
    """
1715
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1716 1717 1718

    Args:
        num_rows(int): the number of rows in each batch tensor.
1719 1720
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1721 1722
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1723
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1724 1725 1726 1727
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1728 1729

    Returns:
1730
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1731 1732 1733 1734 1735

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1736 1737
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1738
          #  [0, 1, 0]
1739 1740
          #  [0, 0, 1]]

1741
          data = fluid.layers.eye(2, 3, dtype='int32')
1742
          # [[1, 0, 0]
1743
          #  [0, 1, 0]]
1744 1745

          data = fluid.layers.eye(2, batch_shape=[3])
1746 1747 1748 1749 1750
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1751 1752
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1753 1754 1755 1756 1757
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1758

R
Ruibiao Chen 已提交
1759 1760 1761 1762
    if in_dygraph_mode():
        out = _C_ops.final_state_eye(num_rows, num_columns, dtype,
                                     _current_expected_place())
    elif _in_legacy_dygraph():
W
wanghuancoder 已提交
1763 1764
        out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                         num_columns)
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1782 1783

    if batch_shape is not None:
1784 1785 1786
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
J
Jiabin Yang 已提交
1787
        if _non_static_mode():
W
wanghuancoder 已提交
1788 1789
            out = _C_ops.reshape(out, 'shape', re_shape)
            return _C_ops.expand(out, None, 'expand_times', expand_times)
1790

1791 1792
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1793
        for batch_val in (batch_shape):
1794 1795
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1796 1797 1798 1799 1800 1801

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1802 1803 1804
    return out


Z
zhoukunsheng 已提交
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1817
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1828 1829
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1830 1831 1832 1833

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1834 1835 1836 1837
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1838 1839 1840 1841 1842 1843
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1844 1845 1846 1847 1848 1849


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)