tensor.py 38.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .layer_function_generator import templatedoc
24
from ..data_feeder import convert_dtype
X
xuwei06 已提交
25
import numpy
Y
Yu Yang 已提交
26 27

__all__ = [
L
li099 已提交
28 29 30
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
31
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
32
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
33 34 35
]


X
xuwei06 已提交
36
def create_tensor(dtype, name=None, persistable=False):
37
    """
W
wangchaochaohu 已提交
38
    Create a variable, which will hold a Tensor with data type dtype.
39 40

    Args:
W
wangchaochaohu 已提交
41 42 43 44
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
45
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
46
            default value is False.
47 48

    Returns:
W
wangchaochaohu 已提交
49
        Variable: The tensor to be created according to dtype.
50 51 52 53

    Examples:
        .. code-block:: python

54
          import paddle.fluid as fluid
55 56
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
57
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
58 59
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
60 61


62 63
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
64
                     name=None,
65 66 67 68
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
69 70 71 72 73 74
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

75 76 77 78 79 80 81 82 83 84 85
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
86 87 88
        the created parameter.

    Examples:
89 90
        .. code-block:: python

91
            import paddle.fluid as fluid
92 93
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
94
    """
Q
Qiao Longfei 已提交
95
    helper = LayerHelper("create_parameter", **locals())
96
    if attr is None:
X
xuwei06 已提交
97
        attr = ParamAttr(name=name)
98 99 100 101
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


102 103 104 105 106 107 108
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
X
Xin Pan 已提交
109
    Create a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
110

111 112
    Args:
        shape(list[int]): shape of the variable
M
minqiyang 已提交
113
        value(float): the value of the variable. The new created
F
fengjiayi 已提交
114 115
                      variable will be filled with it.
        dtype(string): data type of the variable
M
minqiyang 已提交
116
        persistable(bool): if this variable is persistable.
F
fengjiayi 已提交
117
                           Default: False
M
minqiyang 已提交
118
        force_cpu(bool): force this variable to be on CPU.
F
fengjiayi 已提交
119
                         Default: False
M
minqiyang 已提交
120 121
        name(str|None): The name of the variable. If set to None the variable
                        name will be generated automatically.
F
fengjiayi 已提交
122
                        Default: None
123 124 125

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
126 127 128 129

    Examples:
        .. code-block:: python

130
            import paddle.fluid as fluid
131 132 133
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                          persistable=True, force_cpu=True, name='new_var')
134
    """
Q
Qiao Longfei 已提交
135 136
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
137 138 139 140 141
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
142 143 144
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
145

Q
Qiao Longfei 已提交
146 147 148
    return var


149
def cast(x, dtype):
Y
Yu Yang 已提交
150
    """
M
minqiyang 已提交
151
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts
T
tensor-tang 已提交
152 153
    it to the output with :attr:`dtype`. It's meaningless if the output
    dtype equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
154 155 156 157 158 159 160 161 162 163

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
164

165
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
166 167
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
168 169
    """
    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
170
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
171 172 173 174 175 176 177 178 179
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


180
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
181
    """
182 183 184
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
185
    and returns that as the output.
186 187 188 189

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
190 191
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
192 193 194 195 196 197

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
198

199
            import paddle.fluid as fluid
200 201 202 203 204
            a = fluid.layers.data(name='a', shape=[2, 13], dtype='float32')
            b = fluid.layers.data(name='b', shape=[2, 3], dtype='float32')
            c = fluid.layers.data(name='c', shape=[2, 2], dtype='float32')
            d = fluid.layers.data(name='d', shape=[2, 5], dtype='float32')
            out = fluid.layers.concat(input=[a, b, c, d], axis=2)
Y
Yu Yang 已提交
205 206
    """
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
207
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
208 209 210 211 212 213 214 215
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


L
li099 已提交
216 217 218 219 220 221
def tensor_array_to_tensor(input, axis=1, name=None):
    """
    This function concatenates the input LodTensorArray along the axis mentioned
    and returns that as the output.

    A simple example as below:
M
minqiyang 已提交
222

L
li099 已提交
223
    .. code-block:: text
M
minqiyang 已提交
224

L
li099 已提交
225 226 227 228 229 230 231 232
        Given:

        input.data = {[[0.6, 0.1, 0.3],
                       [0.5, 0.3, 0.2]],
                      [[1.3],
                       [1.8]],
                      [[2.3, 2.1],
                       [2.5, 2.4]]}
M
minqiyang 已提交
233

L
li099 已提交
234
        axis = 1
M
minqiyang 已提交
235

L
li099 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        Then:

        output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                       [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

        output_index.data = [3, 1, 2]

    Args:
        input(list): Input LodTensorArray
        axis(int): Integer axis along which the tensors will be concatenated
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation
        Variable: The input LodTensorArray items' dims along the axis

    Examples:
        .. code-block:: python

256 257 258
            import paddle.fluid as fluid
            tensor_array = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
            output, output_index = fluid.layers.tensor_array_to_tensor(input=tensor_array)
L
li099 已提交
259
    """
L
li099 已提交
260
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
261 262 263
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
264
        type='tensor_array_to_tensor',
L
li099 已提交
265 266 267 268 269 270 271
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
        attrs={'axis': axis})
    return out, out_index


272
def sums(input, out=None):
F
fengjiayi 已提交
273 274
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
275 276 277 278 279
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
280
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
281
                             Default: None
K
kavyasrinet 已提交
282 283

    Returns:
F
fengjiayi 已提交
284
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
285 286

    Examples:
F
fengjiayi 已提交
287
        .. code-block:: python
K
kavyasrinet 已提交
288

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
          import paddle.fluid as fluid

          # sum of several tensors
          a0 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
          a1 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
          a2 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=3)
          sums = fluid.layers.sums(input=[a0, a1, a2])

          # sum of a tensor array
          array = fluid.layers.create_array('int64')
          i = fluid.layers.zeros(shape=[1], dtype='int64', force_cpu=True)
          fluid.layers.array_write(a0, array=array, i=i)
          i = fluid.layers.increment(x=i)
          fluid.layers.array_write(a1, array=array, i=i)
          i = fluid.layers.increment(x=i)
          fluid.layers.array_write(a2, array=array, i=i)
          sums = fluid.layers.sums(input=array)
Y
Yu Yang 已提交
306 307 308
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
309 310
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
311 312 313 314 315
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
316 317 318
    return out


F
fengjiayi 已提交
319
def assign(input, output=None):
320 321 322 323 324 325
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
326
        input(Variable|numpy.ndarray): The source variable
F
fengjiayi 已提交
327
        output(Variable|None): The destination variable
328 329 330 331 332 333

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
334

335 336
          import paddle.fluid as fluid
          data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
337 338 339 340
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
341
    helper = LayerHelper('assign', **locals())
F
fengjiayi 已提交
342
    if output is None:
X
Xin Pan 已提交
343
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
xuwei06 已提交
344 345
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
346
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
347 348
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
349
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
350
            value_name = "fp32_values"
351
            values = [float(v) for v in input.flat]
352
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
353
            value_name = "int32_values"
354
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
355 356
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
357 358 359
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
360 361 362 363 364 365 366

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
367
                value_name: values
X
xuwei06 已提交
368 369 370 371
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
372 373 374
    return output


Q
QI JUN 已提交
375
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
376
    """
W
wangchaochaohu 已提交
377
    This OP creates a Tensor with specified `shape` and `dtype`, and
378
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
379

W
wangchaochaohu 已提交
380
    The attribute `stop_gradient` of the created Tensor is setted to True.
381 382

    Args:
W
wangchaochaohu 已提交
383 384 385 386 387 388 389 390
        shape(tuple|list): Shape of the Tensor to be created.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
        value(float): The constant value used to initialize the Tensor to be created.
        force_cpu(True): data should be on CPU if it's true, defalut value is False.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
391 392

    Returns:
W
wangchaochaohu 已提交
393 394 395 396 397
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
398 399 400 401

    Examples:
        .. code-block:: python

402
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
403 404 405
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') #data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1) 
          #data1=[[5], [5]] data2=[[5], [5]]
Y
Yu Yang 已提交
406
    """
407

Y
Yu Yang 已提交
408
    helper = LayerHelper("fill_constant", **locals())
409 410 411 412 413 414 415
    if convert_dtype(dtype) not in [
            'bool', 'float16', 'float32', 'float64', 'int32', 'int64'
    ]:
        raise TypeError(
            "The create data type in fill_constant must be one of 'bool', float16, float32,"
            "float64, int32 or int64, but received %s." % convert_dtype(
                (dtype)))
Y
Yu Yang 已提交
416
    if out is None:
X
Xin Pan 已提交
417
        out = helper.create_variable_for_type_inference(dtype=dtype)
418 419 420 421 422 423
    else:
        if not (convert_dtype(dtype) == convert_dtype(out.dtype)):
            raise TypeError(
                "The create data type in op must be same with out type"
                "but received %s and out dtype %s." % (convert_dtype(
                    (dtype), convert_dtype(out.dtype))))
Y
Yu Yang 已提交
424 425 426 427
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
428 429 430 431
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
432
            'force_cpu': force_cpu or force_init_on_cpu()
M
minqiyang 已提交
433 434
        },
        stop_gradient=True)
Y
Yu Yang 已提交
435 436 437 438
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
439
@templatedoc()
Y
Yu Yang 已提交
440 441 442 443 444
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
445
                                  output_dim_idx=0):
446
    """
W
wangchaochaohu 已提交
447 448 449 450 451
    This OP creates a Tesnor accroding the shape and dtype, and initializes the
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
452 453

    Args:
W
wangchaochaohu 已提交
454 455 456 457 458 459 460 461 462 463 464
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
Y
yuyang18 已提交
465 466

    Returns:
W
wangchaochaohu 已提交
467
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
468 469 470 471 472

    Examples:

        .. code-block:: python

473
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
474
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
475
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
476
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
477

478
    """
Y
Yu Yang 已提交
479
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
480
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
496 497 498 499
def argmin(x, axis=0):
    """
    **argmin**

500
    This function computes the indices of the min elements
S
sneaxiy 已提交
501 502 503 504 505 506
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
507

S
sneaxiy 已提交
508 509
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
510

S
sneaxiy 已提交
511 512
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
513

514
            import paddle.fluid as fluid
515 516 517
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
            out = fluid.layers.argmin(x, axis=0)
            out = fluid.layers.argmin(x, axis=-1)
S
sneaxiy 已提交
518 519
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
520
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
521 522 523 524 525 526 527 528 529 530 531 532
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

533
    This function computes the indices of the max elements
S
sneaxiy 已提交
534 535 536 537 538 539
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
540

S
sneaxiy 已提交
541 542
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
543

S
sneaxiy 已提交
544 545
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
546

547
            import paddle.fluid as fluid
548 549 550
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
            out = fluid.layers.argmax(x, axis=0)
            out = fluid.layers.argmax(x, axis=-1)
S
sneaxiy 已提交
551 552
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
553
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
554 555 556 557 558 559 560 561
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


562
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
563
    """
M
minqiyang 已提交
564 565
    Performs sorting on the input Variable along the given axis, and outputs
    sorted data Varibale and its corresponding index Variable with the same
Y
Yibing Liu 已提交
566 567 568
    shape as :attr:`input`.

    .. code-block:: text
M
minqiyang 已提交
569

Y
Yibing Liu 已提交
570 571 572 573 574 575 576 577 578 579 580 581
        For example, the given axis is -1 and the input Variable

            input = [[0.15849551, 0.45865775, 0.8563702 ],
                     [0.12070083, 0.28766365, 0.18776911]],

        after argsort, the sorted Vairable becomes

            out = [[0.15849551, 0.45865775, 0.8563702 ],
                   [0.12070083, 0.18776911, 0.28766365]],

        and the sorted indices along the given axis turn outs to be

M
minqiyang 已提交
582
            indices = [[0, 1, 2],
Y
Yibing Liu 已提交
583 584 585 586
                       [0, 2, 1]]

    Args:
        input(Variable): The input Variable for sorting.
M
minqiyang 已提交
587 588
        axis(int): The axis along which to sort the input Variable. When
                   :attr:`axis` < 0, the actual axis will be :attr:`axis` +
Y
Yibing Liu 已提交
589
                   rank(:attr:`input`). Default -1, the last dimension.
M
minqiyang 已提交
590
        name(str|None): (optional) A name for this layer. If set None, the
591
                   layer will be named automatically.
Y
Yibing Liu 已提交
592 593 594 595 596 597 598

    Returns:
        tuple: A tuple of sorted data Variable and the sorted indices.

    Examples:
        .. code-block:: python

599
            import paddle.fluid as fluid
600 601
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
            out, indices = fluid.layers.argsort(input=x, axis=0)
Y
Yibing Liu 已提交
602 603
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
604 605 606 607
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
608 609 610 611
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
612 613
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
614 615 616
    return out, ids


Y
Yang Yu 已提交
617
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
618
    """
619 620 621 622 623 624 625 626
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
C
chengduozh 已提交
627
        shape(tuple|list): Shape of output tensor
628
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
629 630 631 632 633 634 635

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

636
          import paddle.fluid as fluid
637
          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
638
    """
C
chengduozh 已提交
639 640 641 642
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
643 644 645
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
646
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
647
    """
648 649 650 651 652 653 654 655
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
656 657 658
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
659 660

    Returns:
W
wanghaoshuang 已提交
661
        Variable: The tensor variable storing the output.
662 663 664 665

    Examples:
        .. code-block:: python

666
          import paddle.fluid as fluid
667
          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
668 669
    """
    return fill_constant(value=0.0, **locals())
670 671


F
fengjiayi 已提交
672 673 674 675 676 677 678 679
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
680 681 682
        axis(int|tuple|list): Axis that along which order of elements
                    is reversed. If it is a tuple or a list, reversing
                    will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
683 684 685 686 687 688 689

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

690 691 692
          import paddle.fluid as fluid
          data = fluid.layers.data(name="data", shape=[4, 8], dtype="float32")
          out = fluid.layers.reverse(x=data, axis=0)
F
fengjiayi 已提交
693
          # or:
694
          out = fluid.layers.reverse(x=data, axis=[0,1])
F
fengjiayi 已提交
695 696 697 698
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
699
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
700 701
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
702
        inputs={'X': x},
F
fengjiayi 已提交
703 704 705 706 707
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


708 709 710 711 712 713 714
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
715 716 717
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
733 734
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
735
        file_path(str): The file path where variables will be saved.
736
        overwrite(bool): Whether or not cover the given file when it has already
737 738
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
739 740 741 742 743 744 745 746

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

747
            import paddle.fluid as fluid
748 749 750 751 752 753 754
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
779 780 781 782 783 784 785


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
786
       x (Variable): The Tensor/LoDTensor to be checked.
787 788

    Returns:
L
liu zhengxi 已提交
789
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
790 791 792 793 794 795 796 797
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

798 799
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
800
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
801 802 803 804 805 806 807 808 809
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
810
       x (Variable): The Tensor/LoDTensor to be checked.
811 812

    Returns:
L
liu zhengxi 已提交
813
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
814 815 816 817 818 819 820 821
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

822 823
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
824
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
825 826 827 828 829 830 831 832 833 834 835 836 837 838
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
839 840 841 842 843

    Examples:

        .. code-block:: python

844
            import paddle.fluid as fluid
845 846 847
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
848
            out = fluid.layers.isfinite(var)
849 850
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
851
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
852 853
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
854 855 856 857 858 859 860 861 862


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
863 864 865 866
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
867
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
868 869 870
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
871
                                  distance between two adjacent values, out[i+1] - out[i].
L
Liufang Sang 已提交
872
        dtype(str): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
873

L
Liufang Sang 已提交
874 875 876
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
877 878 879 880 881

    examples:

        .. code-block:: python

882
             import paddle.fluid as fluid
W
whs 已提交
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
903
    out.stop_gradient = True
W
whs 已提交
904
    return out
Z
zhoukunsheng 已提交
905 906


Z
zhoukunsheng 已提交
907 908
def linspace(start, stop, num, dtype):
    """
909
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
910 911

    Args:
912 913 914 915 916 917 918
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
919 920

    Returns:
921 922 923
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
924

Z
zhoukunsheng 已提交
925
    Examples:
Z
zhoukunsheng 已提交
926 927
        .. code-block:: python

928
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
929 930
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
951 952


Z
zhoukunsheng 已提交
953 954
def zeros_like(x, out=None):
    """
955
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
956 957 958
    with `x`.

    Args:
959 960 961 962
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
            The defalut value is :attr:`None` .
Z
zhoukunsheng 已提交
963 964

    Returns:
965 966
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
967 968 969 970

    Examples:
        .. code-block:: python

971
          import paddle.fluid as fluid
972
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
973 974
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
975 976 977 978 979 980 981 982 983
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
984 985 986 987


def diag(diagonal):
    """
988
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
989 990

    Args:
991 992
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
993 994

    Returns:
995 996
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
997 998 999 1000 1001 1002 1003

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1004 1005 1006

          import paddle.fluid as fluid
          import numpy as np
1007 1008 1009
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

    """

    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1025 1026


1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1039 1040
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1041 1042

    Returns:
1043
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1044 1045 1046 1047 1048

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1049 1050
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1051
          #  [0, 1, 0]
1052 1053
          #  [0, 0, 1]]

1054
          data = fluid.layers.eye(2, 3, dtype='int32')
1055
          # [[1, 0, 0]
1056
          #  [0, 1, 0]]
1057 1058

          data = fluid.layers.eye(2, batch_shape=[3])
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1111
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out