tensor.py 64.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18 19 20
import numpy
import warnings

Y
Yu Yang 已提交
21
from ..layer_helper import LayerHelper
22
from ..param_attr import ParamAttr
23
from ..initializer import Initializer
24
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
25
from ..framework import Variable
26
from ..initializer import Constant
27
from ..core import VarDesc
28
from .. import core
29
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
30
from . import utils
31
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from paddle.utils import deprecated
33

34
from .utils import check_shape
Y
Yu Yang 已提交
35 36

__all__ = [
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
63 64 65
]


X
xuwei06 已提交
66
def create_tensor(dtype, name=None, persistable=False):
67
    """
W
wangchaochaohu 已提交
68
    Create a variable, which will hold a Tensor with data type dtype.
69 70

    Args:
W
wangchaochaohu 已提交
71 72 73 74
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
75
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
76
            default value is False.
77 78

    Returns:
W
wangchaochaohu 已提交
79
        Variable: The tensor to be created according to dtype.
80 81 82 83

    Examples:
        .. code-block:: python

84
          import paddle.fluid as fluid
85 86
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
87 88 89 90
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
91
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
92 93
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
94 95


96 97
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
98
                     name=None,
99 100 101 102
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
103
	:api_attr: Static Graph
S
swtkiwi 已提交
104

105
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
106 107 108 109 110
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

111 112 113 114 115 116 117
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
118 119 120
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
121
        default_initializer (Initializer, optional): Initializer for the parameter
122 123

    Returns:
124
        The created parameter.
Y
yuyang18 已提交
125 126

    Examples:
127 128
        .. code-block:: python

129 130 131
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
132
    """
133 134
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
135 136 137
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
138 139 140 141 142 143 144 145 146

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
147
    helper = LayerHelper("create_parameter", **locals())
148
    if attr is None:
X
xuwei06 已提交
149
        attr = ParamAttr(name=name)
150 151
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
152 153 154
                                   default_initializer)


155 156 157 158 159 160 161
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
162
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
163

164
    Parameters:
165
        shape (list[int]|tuple[int]): Shape of the variable
166
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
167
                      variable will be filled with it.
168 169
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
170
                           Default: False
171
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
172
                         Default: False
173 174
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
175 176

    Returns:
177
        Variable: The created Variable
F
fengjiayi 已提交
178 179 180 181

    Examples:
        .. code-block:: python

182 183 184
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
185
                                           persistable=True, force_cpu=True, name='new_var')
186
    """
187 188 189
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
190 191 192
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
193 194 195 196 197 198

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
199 200
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
201 202 203 204 205
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
206 207 208
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
209

Q
Qiao Longfei 已提交
210 211 212
    return var


213
def cast(x, dtype):
Y
Yu Yang 已提交
214
    """
S
swtkiwi 已提交
215

216
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
217 218
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
219 220

    Args:
221
        x(Tensor): An input N-D Tensor with data type bool, float16,
222 223
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
224
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
225 226

    Returns:
227
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
228 229 230

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
231

232
            import paddle
233

234 235
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
236
    """
237 238 239 240
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        out = core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
241
        return out
242

243 244 245 246
    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8',
        'uint16'
    ], 'cast')
247 248
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
249
        'uint8', 'uint16'
250 251 252
    ], 'cast')

    helper = LayerHelper('cast', **locals())
253 254
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
255 256 257 258 259 260 261 262 263
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


264
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
265
    """
266
    This OP concatenates the input along the axis.
267 268

    Args:
269 270
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
271 272
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
273
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
274
            as ``axis+R``. Default is 0.
275 276 277
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
278 279

    Returns:
280
        Tensor: A Tensor with the same data type as ``input``.
281 282 283

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
284

285
            import paddle.fluid as fluid
286 287
            import numpy as np

288 289 290 291 292 293
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
294 295 296 297
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
298 299
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
300 301
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
302 303 304 305 306 307 308 309
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
310
    """
311 312

    if in_dygraph_mode():
S
songyouwei 已提交
313 314
        if isinstance(axis, Variable):
            axis = axis.numpy()
315
            axis = axis.item(0)
316
        return core.ops.concat(input, 'axis', axis)
317

318 319 320 321 322 323 324 325 326 327 328
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
329
        input = [input]
330
    check_type(axis, 'axis', (int, Variable), 'concat')
331

332 333 334 335 336
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

337
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
338
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
339 340

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
341 342 343 344
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

345
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
346
                "number of the elements must be 1, but received %s." % len(input)
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
366 367 368
    return out


G
Guo Sheng 已提交
369
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
370
    r"""
G
Guo Sheng 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
421 422

    Args:
G
Guo Sheng 已提交
423 424 425 426 427 428 429
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
430 431

    Returns:
G
Guo Sheng 已提交
432 433 434
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
435 436 437 438

    Examples:
        .. code-block:: python

439
            import paddle.fluid as fluid
440
            import numpy as np
G
Guo Sheng 已提交
441 442 443 444 445 446 447
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
448
    """
449 450 451 452 453 454 455 456 457 458 459
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

460 461 462 463 464
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
465
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
466 467 468
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
469
        type='tensor_array_to_tensor',
L
li099 已提交
470 471 472
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
473 474
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
475 476 477
    return out, out_index


478
def sums(input, out=None):
479
    r"""
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
501 502

    Args:
503 504 505 506
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
507 508

    Returns:
509 510
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
511 512

    Examples:
F
fengjiayi 已提交
513
        .. code-block:: python
K
kavyasrinet 已提交
514

515 516 517 518 519 520 521 522 523
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
524

525 526
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
527
    """
528 529 530 531 532 533 534 535 536
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
537 538
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
539 540
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
541 542 543 544
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
545 546 547 548 549
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
550 551 552
    return out


F
fengjiayi 已提交
553
def assign(input, output=None):
554
    """
S
swtkiwi 已提交
555

556
    The OP copies the :attr:`input` to the :attr:`output`.
557

558
    Parameters:
559 560 561 562
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
563
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
564
            be created as :attr:`output`. Default: None.
565 566

    Returns:
567
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
568 569 570

    Examples:
        .. code-block:: python
571

572
          import paddle
573
          import numpy as np
574
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
575 576 577 578
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
579 580 581
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
582
    """
Y
Yu Yang 已提交
583
    helper = LayerHelper('assign', **locals())
584 585
    check_type(input, 'input', (Variable, numpy.ndarray, list, tuple, float,
                                int, bool), 'assign')
586 587
    is_inplace = True if output is not None else False

588 589 590 591
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
592 593 594 595 596 597
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but in_dygraph_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
A
arlesniak 已提交
598
        check_dtype(input.dtype, 'input', [
599 600
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
            'uint8', 'bool'
A
arlesniak 已提交
601
        ], 'assign', '(When the type of input in assign is Variable.)')
602 603 604
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
605
        helper.append_op(
R
robot 已提交
606
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
607 608
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
609 610 611 612 613 614 615 616
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
617 618 619 620
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
621
            value_name = "fp32_values"
622
            values = [float(v) for v in input.flat]
623
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
624
            value_name = "int32_values"
625
            values = [int(v) for v in input.flat]
626 627 628
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
629
        else:
630 631
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
632
                "the data type of 'input' must be bool, float32, int32 or int64, but "
633
                "received %s." % convert_dtype(dtype))
634 635 636
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
637 638 639
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
640 641 642 643 644 645
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
646
                value_name: values
X
xuwei06 已提交
647 648
            })

649 650 651
    if is_inplace and in_dygraph_mode():
        output._bump_inplace_version()

Y
Yu Yang 已提交
652 653 654
    return output


655
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
656
    """
S
swtkiwi 已提交
657

W
wangchaochaohu 已提交
658
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
659
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
660

T
tianshuo78520a 已提交
661
    The attribute `stop_gradient` of the created Tensor is set to True.
662 663

    Args:
664 665 666
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
667
        dtype(np.dtype|str): Data type of the output Tensor which can
668
            be float16, float32, float64, uint8, int32, int64.
669 670 671 672 673 674
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
675 676
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
677 678

    Returns:
679
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
680

681 682 683
    Examples:
        .. code-block:: python

684
          import paddle.fluid as fluid
685
          # attr shape is a list which doesn't contain  Tensor.
686 687
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
688
          # data1=[[5], [5]] data2=[[5], [5]]
689

690
          # attr shape is a list which contains Tensor.
691
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
692
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
693

694
          # attr shape is a Tensor.
695
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
696
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
697
          
698
          # attr value is a Tensor.
W
wangchaochaohu 已提交
699 700
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
701
    """
702

W
wangchaochaohu 已提交
703
    attrs = {'force_cpu': force_cpu}
704
    dtype = convert_dtype(dtype)
705
    if not isinstance(value, Variable):
706
        if dtype in ['uint8', 'int64', 'int32']:
W
wangchaochaohu 已提交
707
            attrs['str_value'] = str(int(value))
708
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
709 710
        else:
            attrs['str_value'] = str(float(value))
711
            attrs['value'] = float(value)
712 713

    if in_dygraph_mode():
714
        shape = utils.convert_shape_to_list(shape)
715 716
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
717 718

        if isinstance(value, Variable):
719
            if dtype in ['uint8', 'int64', 'int32']:
720
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
721
            else:
722
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
723

724 725
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
726 727
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
728 729 730
        out.stop_gradient = True
        return out

731 732 733
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
734 735
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
736 737
        inputs['ValueTensor'] = value

738
    check_shape(shape)
739 740 741 742
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'uint8', 'int32', 'int64'],
        'fill_constant')
743
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
744

745 746 747 748 749
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
750
    utils.get_shape_tensor_inputs(
751
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
752

Y
Yu Yang 已提交
753
    if out is None:
X
Xin Pan 已提交
754
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
755
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
756 757
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
758
        inputs=inputs,
Y
Yu Yang 已提交
759
        outputs={'Out': [out]},
L
liym27 已提交
760
        attrs=attrs,
M
minqiyang 已提交
761
        stop_gradient=True)
Y
Yu Yang 已提交
762 763 764 765
    out.stop_gradient = True
    return out


766
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
767
@templatedoc()
Y
Yu Yang 已提交
768 769 770 771 772
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
773 774
                                  output_dim_idx=0,
                                  force_cpu=False):
775
    """
T
tianshuo78520a 已提交
776
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
777 778 779 780
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
781 782

    Args:
W
wangchaochaohu 已提交
783 784 785 786 787 788 789 790 791 792 793
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
794
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
795 796

    Returns:
W
wangchaochaohu 已提交
797
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
798 799 800 801 802

    Examples:

        .. code-block:: python

803
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
804
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
805
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
806
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
807

808
    """
Y
Yu Yang 已提交
809
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
810
    out = helper.create_variable_for_type_inference(dtype=dtype)
811 812 813 814 815 816
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
817
        'force_cpu': force_cpu
818 819 820 821 822
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
823 824 825 826
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
827
        attrs=attrs)
Y
Yu Yang 已提交
828 829 830 831
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
832 833
def argmin(x, axis=0):
    """
834 835 836
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
837

S
sneaxiy 已提交
838 839
    **argmin**

840 841
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
842 843

    Args:
844 845 846 847 848
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
849

S
sneaxiy 已提交
850
    Returns:
851
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
852

S
sneaxiy 已提交
853 854
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
855

856
            import paddle.fluid as fluid
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
884
    """
885 886 887
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
888
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
889
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
890 891 892 893 894
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
895
    out.stop_gradient = True
S
sneaxiy 已提交
896 897 898 899 900 901 902
    return out


def argmax(x, axis=0):
    """
    **argmax**

903 904
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
905 906

    Args:
907 908 909 910 911
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
912

S
sneaxiy 已提交
913
    Returns:
914
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
915

S
sneaxiy 已提交
916 917
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
918

919
            import paddle.fluid as fluid
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
947
    """
948 949 950
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
951
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
952
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
953 954 955 956 957
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
958
    out.stop_gradient = True
S
sneaxiy 已提交
959 960 961
    return out


962
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
963
    """
964 965 966
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
967

968 969 970
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
971 972

    Args:
973 974 975 976 977
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
978 979 980
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
981 982 983
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
984 985

    Returns:
986 987 988
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
989 990 991 992

    Examples:
        .. code-block:: python

993
            import paddle.fluid as fluid
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1035
    """
1036 1037 1038
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1039
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1040 1041 1042 1043
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1044 1045 1046 1047
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1048
                 'Indices': ids},
1049 1050
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1051 1052 1053
    return out, ids


Y
Yang Yu 已提交
1054
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1055
    """
1056 1057
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1058

1059
    Parameters:
1060
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1061
        dtype (np.dtype|str): Data type of output Tensor, it supports
1062
            bool, float16, float32, float64, int32 and int64.
1063 1064
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1065
            Default: False.
1066 1067

    Returns:
1068
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1069 1070 1071 1072

    Examples:
        .. code-block:: python

1073
          import paddle.fluid as fluid
1074 1075 1076 1077 1078
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1079 1080 1081 1082
    """
    return fill_constant(value=1.0, **locals())


1083
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1084
    """
1085 1086
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1087

1088
    Parameters:
1089
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1090
        dtype (np.dtype|str): Data type of output Tensor, it supports
1091
            bool, float16, float32, float64, int32 and int64.
1092 1093
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1094
            Default: False.
1095 1096
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1097 1098

    Returns:
1099
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1100 1101 1102 1103

    Examples:
        .. code-block:: python

1104
          import paddle.fluid as fluid
1105
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1106 1107 1108 1109
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1110 1111
    """
    return fill_constant(value=0.0, **locals())
1112 1113


F
fengjiayi 已提交
1114 1115
def reverse(x, axis):
    """
1116 1117 1118
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1119

1120
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1121

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1146
    Parameters:
1147 1148
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1149 1150
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1151 1152
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1153 1154

    Returns:
1155
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1156 1157 1158 1159

    Examples:
        .. code-block:: python

1160
          import paddle.fluid as fluid
1161 1162 1163 1164
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1175
    """
1176 1177 1178
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1179 1180 1181
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1182
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1183 1184
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1185
        inputs={'X': x},
F
fengjiayi 已提交
1186 1187 1188 1189 1190
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1191 1192 1193 1194 1195 1196 1197
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1198 1199 1200
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1216 1217
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1218
        file_path(str): The file path where variables will be saved.
1219
        overwrite(bool): Whether or not cover the given file when it has already
1220 1221
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1222 1223 1224 1225 1226 1227 1228 1229

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1230
            import paddle.fluid as fluid
1231 1232 1233 1234 1235 1236 1237
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1250
    Loads a list of variable from a single file.
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1262 1263 1264 1265 1266 1267 1268


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1269
       x (Tensor): The Tensor to be checked.
1270 1271

    Returns:
S
Steffy-zxf 已提交
1272
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1273 1274 1275 1276
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1277 1278
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1279
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1280
          # [False]
1281

1282
    """
S
Steffy-zxf 已提交
1283 1284 1285
    if in_dygraph_mode():
        return core.ops.isinf(x)

1286
    check_type(x, 'x', (Variable), 'has_inf')
1287
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1288
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1289 1290 1291 1292 1293 1294 1295 1296 1297
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1298
       x (Tensor): The Tensor to be checked.
1299 1300

    Returns:
S
Steffy-zxf 已提交
1301
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1302 1303 1304 1305
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1306 1307
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1308
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1309
          # [False]
1310

1311
    """
S
Steffy-zxf 已提交
1312 1313 1314
    if in_dygraph_mode():
        return core.ops.isnan(x)

1315
    check_type(x, 'x', (Variable), 'has_nan')
1316
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1317
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1318 1319 1320 1321 1322 1323
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1324

1325 1326 1327 1328
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1329
        x(Tensor): The Tensor to be checked.
1330 1331

    Returns:
N
Noel 已提交
1332
        Tensor: The tensor storing the output, contains a bool value.
1333 1334 1335 1336 1337

    Examples:

        .. code-block:: python

N
Noel 已提交
1338 1339 1340 1341 1342 1343
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1344
    """
1345 1346
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1347
    helper = LayerHelper("isfinite", **locals())
1348

1349
    out = helper.create_variable_for_type_inference(dtype='bool')
1350 1351
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1352 1353


1354
def range(start, end, step, dtype, name=None):
W
whs 已提交
1355
    """
1356
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1357

1358 1359
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1360

1361 1362
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1363

L
Liufang Sang 已提交
1364
    Parameters:
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1388 1389 1390 1391 1392

    examples:

        .. code-block:: python

1393
            import paddle.fluid as fluid
W
whs 已提交
1394

1395 1396
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1397

1398 1399 1400 1401 1402 1403 1404
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1405

W
whs 已提交
1406
    if not isinstance(start, Variable):
1407
        with device_guard("cpu"):
1408
            start = fill_constant([1], dtype, start, force_cpu=True)
1409 1410
    elif start.dtype != dtype:
        start = cast(start, dtype)
1411

W
whs 已提交
1412
    if not isinstance(end, Variable):
1413
        with device_guard("cpu"):
1414
            end = fill_constant([1], dtype, end, force_cpu=True)
1415 1416
    elif end.dtype != dtype:
        end = cast(end, dtype)
1417

W
whs 已提交
1418
    if not isinstance(step, Variable):
1419
        with device_guard("cpu"):
1420
            step = fill_constant([1], dtype, step, force_cpu=True)
1421 1422
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1423

1424 1425
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1426

W
wanghuancoder 已提交
1427 1428 1429 1430 1431
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1432 1433 1434
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1435
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1436 1437 1438 1439 1440
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1441
        outputs={'Out': out})
1442
    out.stop_gradient = True
W
whs 已提交
1443
    return out
Z
zhoukunsheng 已提交
1444 1445


1446
def linspace(start, stop, num, dtype=None, name=None):
1447
    r"""
1448
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1449 1450

    Args:
1451 1452 1453 1454
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1455
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1456
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1457
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1458
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1459 1460
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1461 1462

    Returns:
1463
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1464 1465
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1466

Z
zhoukunsheng 已提交
1467
    Examples:
Z
zhoukunsheng 已提交
1468 1469
        .. code-block:: python

1470 1471 1472
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1473 1474

    """
1475 1476
    if dtype is None:
        dtype = 'float32'
1477 1478 1479
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1480 1481
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1482 1483
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1484
    if not isinstance(start, Variable):
1485 1486
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1487
    if not isinstance(stop, Variable):
1488 1489
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1490
    if not isinstance(num, Variable):
1491 1492
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1493
    if in_dygraph_mode():
1494 1495
        return core.ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                                 dtype)
1496 1497 1498

    helper = LayerHelper("linspace", **locals())

1499 1500 1501
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1502
    if isinstance(start, Variable):
1503 1504
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1505 1506
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1507

1508
    if isinstance(stop, Variable):
1509 1510
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1511 1512 1513 1514 1515 1516
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1517 1518 1519 1520 1521 1522 1523 1524
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1525 1526

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1527 1528 1529

    helper.append_op(
        type='linspace',
1530 1531 1532 1533
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1534
        outputs={'Out': [out]})
1535 1536
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1537
    return out
1538 1539


Z
zhoukunsheng 已提交
1540 1541
def zeros_like(x, out=None):
    """
1542
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1543 1544 1545
    with `x`.

    Args:
1546 1547 1548 1549 1550 1551
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1552 1553

    Returns:
1554 1555 1556
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1557 1558 1559 1560

    Examples:
        .. code-block:: python

1561
          import paddle.fluid as fluid
1562
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1563 1564
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1565 1566
    """

1567 1568
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1569 1570 1571
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1572 1573 1574
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1575
            'zeros_like')
1576

Z
zhoukunsheng 已提交
1577 1578 1579 1580
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1581 1582


1583
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1584
def diag(diagonal):
1585
    r"""
1586 1587 1588
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1589

1590
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1591 1592

    Args:
1593 1594
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1595 1596

    Returns:
1597 1598
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1599 1600 1601 1602 1603 1604 1605

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1606 1607 1608

          import paddle.fluid as fluid
          import numpy as np
1609 1610 1611
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1612 1613

    """
1614 1615 1616
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1629 1630


1631 1632 1633 1634 1635
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1636
    """
1637
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1638 1639 1640

    Args:
        num_rows(int): the number of rows in each batch tensor.
1641 1642
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1643 1644
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1645
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1646 1647 1648 1649
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1650 1651

    Returns:
1652
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1653 1654 1655 1656 1657

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1658 1659
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1660
          #  [0, 1, 0]
1661 1662
          #  [0, 0, 1]]

1663
          data = fluid.layers.eye(2, 3, dtype='int32')
1664
          # [[1, 0, 0]
1665
          #  [0, 1, 0]]
1666 1667

          data = fluid.layers.eye(2, batch_shape=[3])
1668 1669 1670 1671 1672
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1673 1674
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1675 1676 1677 1678 1679
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1702 1703

    if batch_shape is not None:
1704 1705 1706 1707 1708
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
1709
            return core.ops.expand(out, None, 'expand_times', expand_times)
1710

1711 1712
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1713
        for batch_val in (batch_shape):
1714 1715
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1716 1717 1718 1719 1720 1721

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1722 1723 1724
    return out


Z
zhoukunsheng 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1737
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1748 1749
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1750 1751 1752 1753

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1754 1755 1756 1757
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1758 1759 1760 1761 1762 1763
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1764 1765 1766 1767 1768 1769


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)