tensor.py 63.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import six
17
from six.moves import reduce
Y
Yu Yang 已提交
18
from ..layer_helper import LayerHelper
19
from ..param_attr import ParamAttr
20
from ..initializer import Initializer
21
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
22
from ..framework import Variable
23
from ..initializer import Constant
24
from ..core import VarDesc
25
from .. import core
26
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
27
from . import utils
28
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
29
from paddle.utils import deprecated
X
xuwei06 已提交
30
import numpy
31
import warnings
32
from .utils import check_shape
Y
Yu Yang 已提交
33 34

__all__ = [
L
li099 已提交
35 36 37
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
38
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
Y
yaoxuefeng 已提交
39
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye', 'triu'
Y
Yu Yang 已提交
40 41 42
]


X
xuwei06 已提交
43
def create_tensor(dtype, name=None, persistable=False):
44
    """
W
wangchaochaohu 已提交
45
    Create a variable, which will hold a Tensor with data type dtype.
46 47

    Args:
W
wangchaochaohu 已提交
48 49 50 51
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
52
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
53
            default value is False.
54 55

    Returns:
W
wangchaochaohu 已提交
56
        Variable: The tensor to be created according to dtype.
57 58 59 60

    Examples:
        .. code-block:: python

61
          import paddle.fluid as fluid
62 63
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
64 65 66 67
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
68
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
69 70
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
71 72


73 74
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
75
                     name=None,
76 77 78 79
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
80
	:api_attr: Static Graph
S
swtkiwi 已提交
81

82
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
83 84 85 86 87
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

88 89 90 91 92 93 94
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
95 96 97
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
98
        default_initializer (Initializer, optional): Initializer for the parameter
99 100

    Returns:
101
        The created parameter.
Y
yuyang18 已提交
102 103

    Examples:
104 105
        .. code-block:: python

106 107 108
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
109
    """
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
129
    helper = LayerHelper("create_parameter", **locals())
130
    if attr is None:
X
xuwei06 已提交
131
        attr = ParamAttr(name=name)
132 133
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
134 135 136
                                   default_initializer)


137 138 139 140 141 142 143
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
144
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
145

146 147 148
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
149
                      variable will be filled with it.
150 151
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
152
                           Default: False
153
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
154
                         Default: False
155 156
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
157 158

    Returns:
159
        Variable: The created Variable
F
fengjiayi 已提交
160 161 162 163

    Examples:
        .. code-block:: python

164 165 166
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
167
                                           persistable=True, force_cpu=True, name='new_var')
168
    """
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
186 187
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
188 189 190 191 192
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
193 194 195
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
196

Q
Qiao Longfei 已提交
197 198 199
    return var


200
def cast(x, dtype):
Y
Yu Yang 已提交
201
    """
S
swtkiwi 已提交
202

203 204 205
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
206 207

    Args:
208
        x(Tensor): An input N-D Tensor with data type bool, float16,
209 210
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
211
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
212 213

    Returns:
214
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
215 216 217

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
218

219
            import paddle
220

221 222
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
223
    """
224 225
    check_variable_and_dtype(
        x, 'x',
226 227
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
228 229 230 231 232 233
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
234
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
235 236 237 238 239 240 241 242 243
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


244
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
245
    """
246
    This OP concatenates the input along the axis.
247 248

    Args:
249 250
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
251 252
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
253
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
254
            as ``axis+R``. Default is 0.
255 256 257
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
258 259

    Returns:
260
        Tensor: A Tensor with the same data type as ``input``.
261 262 263

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
264

265
            import paddle.fluid as fluid
266 267
            import numpy as np

268 269 270 271 272 273
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
274 275 276 277
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
278 279
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
280 281
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
282 283 284 285 286 287 288 289
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
290
    """
291 292

    if in_dygraph_mode():
S
songyouwei 已提交
293 294
        if isinstance(axis, Variable):
            axis = axis.numpy()
295
            axis = axis.item(0)
296
        return core.ops.concat(input, 'axis', axis)
297

298 299 300 301 302 303 304 305 306 307 308
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
309
        input = [input]
310
    check_type(axis, 'axis', (int, Variable), 'concat')
311

312 313 314 315 316
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

317
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
318
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
319 320 321

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
322
                "number of the elements must be 1, but received %s." % len(input)
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
342 343 344
    return out


G
Guo Sheng 已提交
345
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
346
    """
G
Guo Sheng 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
397 398

    Args:
G
Guo Sheng 已提交
399 400 401 402 403 404 405
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
406 407

    Returns:
G
Guo Sheng 已提交
408 409 410
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
411 412 413 414

    Examples:
        .. code-block:: python

415
            import paddle.fluid as fluid
416
            import numpy as np
G
Guo Sheng 已提交
417 418 419 420 421 422 423
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
424
    """
425 426 427 428 429 430 431 432 433 434 435
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

436 437 438 439 440
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
441
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
442 443 444
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
445
        type='tensor_array_to_tensor',
L
li099 已提交
446 447 448
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
449 450
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
451 452 453
    return out, out_index


454
def sums(input, out=None):
F
fengjiayi 已提交
455
    """
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
477 478

    Args:
479 480 481 482
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
483 484

    Returns:
485 486
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
487 488

    Examples:
F
fengjiayi 已提交
489
        .. code-block:: python
K
kavyasrinet 已提交
490

491 492 493 494 495 496 497 498 499
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
500

501 502
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
503
    """
504 505 506 507 508 509 510 511 512
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
513 514
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
515 516
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
517 518 519 520
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
521 522 523 524 525
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
526 527 528
    return out


F
fengjiayi 已提交
529
def assign(input, output=None):
530
    """
S
swtkiwi 已提交
531

532
    The OP copies the :attr:`input` to the :attr:`output`.
533

534 535
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
536
            float16, float32, float64, int32 and int64.
537 538
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
539 540

    Returns:
541
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
542 543 544

    Examples:
        .. code-block:: python
545

546
          import paddle
547
          import numpy as np
548 549 550 551 552 553 554 555
          data = paddle.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
          paddle.nn.functional.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.nn.functional.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.nn.functional.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
556
    """
Y
Yu Yang 已提交
557
    helper = LayerHelper('assign', **locals())
558
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
559
    if isinstance(input, Variable):
560 561 562 563
        check_dtype(
            input.dtype, 'input',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
564 565 566
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
567
        helper.append_op(
R
robot 已提交
568
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
569 570
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
571 572 573 574
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
575
            value_name = "fp32_values"
576
            values = [float(v) for v in input.flat]
577
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
578
            value_name = "int32_values"
579
            values = [int(v) for v in input.flat]
580 581 582
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
583
        else:
584 585
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
586
                "the data type of 'input' must be bool, float32, int32 or int64, but "
587
                "received %s." % convert_dtype(dtype))
588 589 590
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
591 592 593
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
594 595 596 597 598 599
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
600
                value_name: values
X
xuwei06 已提交
601 602
            })

Y
Yu Yang 已提交
603 604 605
    return output


606
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
607
    """
S
swtkiwi 已提交
608

W
wangchaochaohu 已提交
609
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
610
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
611

T
tianshuo78520a 已提交
612
    The attribute `stop_gradient` of the created Tensor is set to True.
613 614

    Args:
615 616 617
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
618
        dtype(np.dtype|str): Data type of the output Tensor which can
W
wangchaochaohu 已提交
619
            be float16, float32, float64, int32, int64.
620 621 622 623 624 625
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
626 627
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
628 629

    Returns:
630
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
631

632 633 634
    Examples:
        .. code-block:: python

635
          import paddle.fluid as fluid
636
          # attr shape is a list which doesn't contain  Tensor.
637 638
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
639
          # data1=[[5], [5]] data2=[[5], [5]]
640

641
          # attr shape is a list which contains Tensor.
642
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
643
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
644

645
          # attr shape is a Tensor.
646
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
647
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
648
          
649
          # attr value is a Tensor.
W
wangchaochaohu 已提交
650 651
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
652
    """
653

W
wangchaochaohu 已提交
654
    attrs = {'force_cpu': force_cpu}
655
    dtype = convert_dtype(dtype)
656
    if not isinstance(value, Variable):
657
        if dtype in ['int64', 'int32']:
W
wangchaochaohu 已提交
658
            attrs['str_value'] = str(int(value))
659
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
660 661
        else:
            attrs['str_value'] = str(float(value))
662
            attrs['value'] = float(value)
663 664

    if in_dygraph_mode():
665
        shape = utils.convert_shape_to_list(shape)
666 667
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
668 669

        if isinstance(value, Variable):
670
            if dtype in ['int64', 'int32']:
671
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
672
            else:
673
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
674

675 676
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
677 678
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
679 680 681
        out.stop_gradient = True
        return out

682 683 684
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
685 686
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
687 688
        inputs['ValueTensor'] = value

689
    check_shape(shape)
690
    check_dtype(dtype, 'dtype',
691 692 693
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
694

695 696 697 698 699
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
700
    utils.get_shape_tensor_inputs(
701
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
702

Y
Yu Yang 已提交
703
    if out is None:
X
Xin Pan 已提交
704
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
705
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
706 707
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
708
        inputs=inputs,
Y
Yu Yang 已提交
709
        outputs={'Out': [out]},
L
liym27 已提交
710
        attrs=attrs,
M
minqiyang 已提交
711
        stop_gradient=True)
Y
Yu Yang 已提交
712 713 714 715
    out.stop_gradient = True
    return out


716
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
717
@templatedoc()
Y
Yu Yang 已提交
718 719 720 721 722
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
723 724
                                  output_dim_idx=0,
                                  force_cpu=False):
725
    """
T
tianshuo78520a 已提交
726
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
727 728 729 730
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
731 732

    Args:
W
wangchaochaohu 已提交
733 734 735 736 737 738 739 740 741 742 743
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
744
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
745 746

    Returns:
W
wangchaochaohu 已提交
747
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
748 749 750 751 752

    Examples:

        .. code-block:: python

753
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
754
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
755
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
756
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
757

758
    """
Y
Yu Yang 已提交
759
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
760
    out = helper.create_variable_for_type_inference(dtype=dtype)
761 762 763 764 765 766
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
767
        'force_cpu': force_cpu
768 769 770 771 772
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
773 774 775 776
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
777
        attrs=attrs)
Y
Yu Yang 已提交
778 779 780 781
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
782 783
def argmin(x, axis=0):
    """
784 785 786
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
787

S
sneaxiy 已提交
788 789
    **argmin**

790 791
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
792 793

    Args:
794 795 796 797 798
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
799

S
sneaxiy 已提交
800
    Returns:
801
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
802

S
sneaxiy 已提交
803 804
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
805

806
            import paddle.fluid as fluid
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
834
    """
835 836 837
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
838
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
839
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
840 841 842 843 844
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
845
    out.stop_gradient = True
S
sneaxiy 已提交
846 847 848 849 850 851 852
    return out


def argmax(x, axis=0):
    """
    **argmax**

853 854
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
855 856

    Args:
857 858 859 860 861
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
862

S
sneaxiy 已提交
863
    Returns:
864
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
865

S
sneaxiy 已提交
866 867
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
868

869
            import paddle.fluid as fluid
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
897
    """
898 899 900
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
901
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
902
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
903 904 905 906 907
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
908
    out.stop_gradient = True
S
sneaxiy 已提交
909 910 911
    return out


912
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
913
    """
914 915 916
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
917

918 919 920
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
921 922

    Args:
923 924 925 926 927
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
928 929 930
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
931 932 933
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
934 935

    Returns:
936 937 938
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
939 940 941 942

    Examples:
        .. code-block:: python

943
            import paddle.fluid as fluid
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
985
    """
986 987 988
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
989
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
990 991 992 993
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
994 995 996 997
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
998
                 'Indices': ids},
999 1000
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1001 1002 1003
    return out, ids


Y
Yang Yu 已提交
1004
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1005
    """
1006 1007
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1008

1009
    Parameters:
1010
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1011
        dtype (np.dtype|str): Data type of output Tensor, it supports
1012
            bool, float16, float32, float64, int32 and int64.
1013 1014
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1015
            Default: False.
1016 1017

    Returns:
1018
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1019 1020 1021 1022

    Examples:
        .. code-block:: python

1023
          import paddle.fluid as fluid
1024 1025 1026 1027 1028
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1029 1030 1031 1032
    """
    return fill_constant(value=1.0, **locals())


1033
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1034
    """
1035 1036
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1037

1038
    Parameters:
1039
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1040
        dtype (np.dtype|str): Data type of output Tensor, it supports
1041
            bool, float16, float32, float64, int32 and int64.
1042 1043
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1044
            Default: False.
1045 1046
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1047 1048

    Returns:
1049
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1050 1051 1052 1053

    Examples:
        .. code-block:: python

1054
          import paddle.fluid as fluid
1055
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1056 1057 1058 1059
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1060 1061
    """
    return fill_constant(value=0.0, **locals())
1062 1063


F
fengjiayi 已提交
1064 1065
def reverse(x, axis):
    """
1066 1067 1068
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1069

1070
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1071

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1096
    Parameters:
1097 1098
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1099 1100
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1101 1102
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1103 1104

    Returns:
1105
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1106 1107 1108 1109

    Examples:
        .. code-block:: python

1110
          import paddle.fluid as fluid
1111 1112 1113 1114
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1125
    """
1126 1127 1128
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1129 1130 1131
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1132
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1133 1134
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1135
        inputs={'X': x},
F
fengjiayi 已提交
1136 1137 1138 1139 1140
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1141 1142 1143 1144 1145 1146 1147
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1148 1149 1150
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1166 1167
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1168
        file_path(str): The file path where variables will be saved.
1169
        overwrite(bool): Whether or not cover the given file when it has already
1170 1171
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1172 1173 1174 1175 1176 1177 1178 1179

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1180
            import paddle.fluid as fluid
1181 1182 1183 1184 1185 1186 1187
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1200
    Loads a list of variable from a single file.
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1212 1213 1214 1215 1216 1217 1218


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1219
       x (Tensor): The Tensor to be checked.
1220 1221

    Returns:
S
Steffy-zxf 已提交
1222
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1223 1224 1225 1226
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1227 1228
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1229
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1230
          # [False]
1231

1232
    """
S
Steffy-zxf 已提交
1233 1234 1235
    if in_dygraph_mode():
        return core.ops.isinf(x)

1236
    check_type(x, 'x', (Variable), 'has_inf')
1237
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1238
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1239 1240 1241 1242 1243 1244 1245 1246 1247
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1248
       x (Tensor): The Tensor to be checked.
1249 1250

    Returns:
S
Steffy-zxf 已提交
1251
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1252 1253 1254 1255
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1256 1257
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1258
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1259
          # [False]
1260

1261
    """
S
Steffy-zxf 已提交
1262 1263 1264
    if in_dygraph_mode():
        return core.ops.isnan(x)

1265
    check_type(x, 'x', (Variable), 'has_nan')
1266
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1267
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1268 1269 1270 1271 1272 1273
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
1274 1275 1276
	:alias_main: paddle.isfinite
	:alias: paddle.isfinite,paddle.tensor.isfinite,paddle.tensor.logic.isfinite
	:old_api: paddle.fluid.layers.isfinite
S
swtkiwi 已提交
1277

1278 1279 1280 1281 1282 1283 1284 1285
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1286 1287 1288 1289 1290

    Examples:

        .. code-block:: python

1291
            import paddle.fluid as fluid
1292 1293 1294
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1295
            out = fluid.layers.isfinite(var)
1296
    """
1297 1298
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1299
    helper = LayerHelper("isfinite", **locals())
1300

1301
    out = helper.create_variable_for_type_inference(dtype='bool')
1302 1303
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1304 1305


1306
def range(start, end, step, dtype, name=None):
W
whs 已提交
1307
    """
1308
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1309

1310 1311
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1312

1313 1314
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1315

L
Liufang Sang 已提交
1316
    Parameters:
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1340 1341 1342 1343 1344

    examples:

        .. code-block:: python

1345
            import paddle.fluid as fluid
W
whs 已提交
1346

1347 1348
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1349

1350 1351 1352 1353 1354 1355 1356
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1357

W
whs 已提交
1358
    if not isinstance(start, Variable):
1359 1360
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start)
1361 1362
    elif start.dtype != dtype:
        start = cast(start, dtype)
1363

W
whs 已提交
1364
    if not isinstance(end, Variable):
1365 1366
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end)
1367 1368
    elif end.dtype != dtype:
        end = cast(end, dtype)
1369

W
whs 已提交
1370
    if not isinstance(step, Variable):
1371 1372
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step)
1373 1374
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1375

1376 1377
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1378

1379 1380 1381 1382
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1383 1384 1385 1386 1387
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1388
        outputs={'Out': out})
1389
    out.stop_gradient = True
W
whs 已提交
1390
    return out
Z
zhoukunsheng 已提交
1391 1392


1393
def linspace(start, stop, num, dtype=None, name=None):
Z
zhoukunsheng 已提交
1394
    """
1395
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1396 1397

    Args:
1398 1399 1400 1401
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1402
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1403
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1404
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1405
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1406 1407
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1408 1409

    Returns:
1410
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1411 1412
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1413

Z
zhoukunsheng 已提交
1414
    Examples:
Z
zhoukunsheng 已提交
1415 1416
        .. code-block:: python

1417 1418 1419
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1420 1421

    """
1422 1423
    if dtype is None:
        dtype = 'float32'
1424 1425 1426
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1427 1428
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1429 1430
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1431
    if not isinstance(start, Variable):
1432 1433
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1434
    if not isinstance(stop, Variable):
1435 1436
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1437
    if not isinstance(num, Variable):
1438 1439
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1440
    if in_dygraph_mode():
1441 1442
        return core.ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                                 dtype)
1443 1444 1445

    helper = LayerHelper("linspace", **locals())

1446 1447 1448
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1449
    if isinstance(start, Variable):
1450 1451
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1452 1453
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1454

1455
    if isinstance(stop, Variable):
1456 1457
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1458 1459 1460 1461 1462 1463
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1464 1465 1466 1467 1468 1469 1470 1471
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1472 1473

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1474 1475 1476

    helper.append_op(
        type='linspace',
1477 1478 1479 1480
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1481 1482
        outputs={'Out': [out]})
    return out
1483 1484


Z
zhoukunsheng 已提交
1485 1486
def zeros_like(x, out=None):
    """
1487
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1488 1489 1490
    with `x`.

    Args:
1491 1492 1493 1494 1495 1496
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1497 1498

    Returns:
1499 1500 1501
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1502 1503 1504 1505

    Examples:
        .. code-block:: python

1506
          import paddle.fluid as fluid
1507
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1508 1509
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1510 1511
    """

1512 1513
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1514 1515 1516
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1517 1518 1519
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1520
            'zeros_like')
1521

Z
zhoukunsheng 已提交
1522 1523 1524 1525
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1526 1527


1528
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1529 1530
def diag(diagonal):
    """
1531 1532 1533
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1534

1535
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1536 1537

    Args:
1538 1539
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1540 1541

    Returns:
1542 1543
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1544 1545 1546 1547 1548 1549 1550

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1551 1552 1553

          import paddle.fluid as fluid
          import numpy as np
1554 1555 1556
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1557 1558

    """
1559 1560 1561
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1574 1575


1576 1577 1578 1579 1580
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1581
    """
1582
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1583 1584 1585

    Args:
        num_rows(int): the number of rows in each batch tensor.
1586 1587
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1588 1589
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1590
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1591 1592 1593 1594
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1595 1596

    Returns:
1597
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1598 1599 1600 1601 1602

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1603 1604
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1605
          #  [0, 1, 0]
1606 1607
          #  [0, 0, 1]]

1608
          data = fluid.layers.eye(2, 3, dtype='int32')
1609
          # [[1, 0, 0]
1610
          #  [0, 1, 0]]
1611 1612

          data = fluid.layers.eye(2, batch_shape=[3])
1613 1614 1615 1616 1617
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1618 1619
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1620 1621 1622 1623 1624
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1647 1648

    if batch_shape is not None:
1649 1650 1651 1652 1653 1654 1655
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
            return core.ops.expand(out, 'expand_times', expand_times)

1656 1657
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1658
        for batch_val in (batch_shape):
1659 1660
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1661 1662 1663 1664 1665 1666

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1667 1668 1669
    return out


Z
zhoukunsheng 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1682
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1693 1694
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1695 1696 1697 1698

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1699 1700 1701 1702
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1703 1704 1705 1706 1707 1708
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1709 1710 1711 1712 1713 1714


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)