tensor.py 15.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from ..layer_helper import LayerHelper
16
from ..param_attr import ParamAttr
X
xuwei06 已提交
17 18
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
19
from ..initializer import Constant, force_init_on_cpu
20
from ..core import VarDesc
Y
yuyang18 已提交
21
from layer_function_generator import templatedoc
X
xuwei06 已提交
22
import numpy
Y
Yu Yang 已提交
23 24

__all__ = [
25 26
    'create_tensor',
    'create_parameter',
Q
Qiao Longfei 已提交
27
    'create_global_var',
28 29 30 31 32 33
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
S
sneaxiy 已提交
34 35
    'argmin',
    'argmax',
36 37
    'ones',
    'zeros',
Y
Yu Yang 已提交
38 39 40
]


X
xuwei06 已提交
41
def create_tensor(dtype, name=None, persistable=False):
Y
Yu Yang 已提交
42
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
43 44
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
45 46


47 48
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
49
                     name=None,
50 51 52 53
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
54 55 56 57 58 59 60 61 62 63 64 65
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

    >>> import paddle.fluid as fluid
    >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
    >>> data = fluid.layers.data(name="img", shape=[64, 784],
    >>>           append_batch_size=False)
    >>> hidden = fluid.layers.matmul(x=data, y=W)

66 67 68 69 70 71 72 73 74 75 76
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
77
        the created parameter
78
    """
Q
Qiao Longfei 已提交
79
    helper = LayerHelper("create_parameter", **locals())
80
    if attr is None:
X
xuwei06 已提交
81
        attr = ParamAttr(name=name)
82 83 84 85
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
    Create a global variable. such as global_step
    Args:
        shape(list[int]): shape of the variable
        value(float): the value of the variable
        dtype(string): element type of the parameter
        persistable(bool): if this variable is persistable
        force_cpu(bool): force this variable to be on CPU

    Returns:
        Variable: the created Variable
    """
Q
Qiao Longfei 已提交
104 105 106 107
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype, shape=shape, persistable=persistable, name=name)
    helper.set_variable_initializer(
108 109
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
Q
Qiao Longfei 已提交
110 111 112
    return var


113
def cast(x, dtype):
Y
Yu Yang 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    """
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


129
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
130
    """
131 132 133
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
134
    and returns that as the output.
135 136 137 138

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
139 140
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
141 142 143 144 145 146 147

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
          out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
148 149 150 151 152 153 154 155 156 157 158
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


159
def sums(input, out=None):
K
kavyasrinet 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    """This function performs the sum operation on the input and returns the
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.

    Returns:
        Variable: The tensor type variable that has the sum of input
                  written to it.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
179 180
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
181
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
182 183 184 185 186 187 188 189
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


190
def assign(input, output):
191 192 193 194 195 196
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
197
        input(Variable|numpy.ndarray): The source variable
198 199 200 201 202 203 204 205 206 207 208
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
209
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
210 211
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
212
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
213 214
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
215
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
216
            value_name = "fp32_values"
217
            values = [float(v) for v in input.flat]
218
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
219
            value_name = "int32_values"
220
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
221 222
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
223 224 225
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
226 227 228 229 230 231 232

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
233
                value_name: values
X
xuwei06 已提交
234 235 236 237
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
238 239 240
    return output


Q
QI JUN 已提交
241
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
242
    """
243 244
    **fill_constant**

245 246
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
247

248
    The attribute `stop_gradient` of the created tensor is set to True.
249 250

    Args:
251
        shape(tuple|list|None): Shape of the output tensor.
252
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
253 254
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
255
        force_cpu(True|False): data should be on CPU if set true.
256 257

    Returns:
258
        Variable: The tensor variable storing the output.
259 260 261 262 263

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
264
    """
265

Y
Yu Yang 已提交
266 267 268 269 270 271 272
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
273 274 275 276
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
277
            'force_cpu': force_cpu or force_init_on_cpu()
Q
QI JUN 已提交
278
        })
Y
Yu Yang 已提交
279 280 281 282
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
283
@templatedoc()
Y
Yu Yang 已提交
284 285 286 287 288
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
289
                                  output_dim_idx=0):
290
    """
Y
yuyang18 已提交
291
    ${comment}
292 293 294

    It also sets *stop_gradient* to True.

Y
yuyang18 已提交
295 296 297
    >>> data = fluid.layers.fill_constant_batch_size_like(
    >>>             input=like, shape=[1], value=0, dtype='int64')

298
    Args:
Y
yuyang18 已提交
299
        input(${input_type}): ${input_comment}.
300

Y
yuyang18 已提交
301
        shape(${shape_type}): ${shape_comment}.
302

Y
yuyang18 已提交
303 304 305
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
306

Y
yuyang18 已提交
307 308 309 310 311
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
312
        ${out_comment}.
313
    """
Y
Yu Yang 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
def argmin(x, axis=0):
    """
    **argmin**

    This function computes the indices of the min elements 
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
    
    Returns:
        Variable: The tensor variable storing the output
    
    Examples:
        .. code-block:: python
          
          out = fluid.layers.argmin(x=in, axis=0)
          out = fluid.layers.argmin(x=in, axis=-1)  
    """
    helper = LayerHelper("arg_min", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

    This function computes the indices of the max elements 
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
    
    Returns:
        Variable: The tensor variable storing the output
    
    Examples:
        .. code-block:: python
          
          out = fluid.layers.argmax(x=in, axis=0)
          out = fluid.layers.argmax(x=in, axis=-1)  
    """
    helper = LayerHelper("arg_max", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


Y
Yang Yu 已提交
393
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
394
    """
395 396 397 398 399 400 401 402 403
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
404
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
405 406 407 408 409 410 411 412

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
413 414 415 416
    """
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
417
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
418
    """
419 420 421 422 423 424 425 426 427
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
428
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
429 430 431 432 433 434 435 436

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
437 438
    """
    return fill_constant(value=0.0, **locals())
439 440


F
fengjiayi 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
        axis(int|tuple|list): Axis that along which order of elements 
                    is reversed. If it is a tuple or a list, reversing 
                    will be apply on each axis in the tuple or list.  

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reverse',
        inputs={'Input': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
        overwrite(bool): Whether or not cover the given file when it has already 
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
        x(list): A list of Tensor/LoDTensor to be saved together in a single file.
        file_path(str): The file path where variables will be saved.
        overwrite(bool): Whether or not cover the given file when it has already 
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})