tensor.py 65.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18 19 20
import numpy
import warnings

Y
Yu Yang 已提交
21
from ..layer_helper import LayerHelper
22
from ..param_attr import ParamAttr
23
from ..initializer import Initializer
24
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
25
from ..framework import Variable
26
from ..initializer import Constant
27
from ..core import VarDesc
28
from .. import core
29
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
30
from . import utils
31
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from paddle.utils import deprecated
33

34
from .utils import check_shape
W
wanghuancoder 已提交
35
from paddle import _C_ops
Y
Yu Yang 已提交
36 37

__all__ = [
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
64 65 66
]


X
xuwei06 已提交
67
def create_tensor(dtype, name=None, persistable=False):
68
    """
W
wangchaochaohu 已提交
69
    Create a variable, which will hold a Tensor with data type dtype.
70 71

    Args:
W
wangchaochaohu 已提交
72 73 74 75
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
76
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
77
            default value is False.
78 79

    Returns:
W
wangchaochaohu 已提交
80
        Variable: The tensor to be created according to dtype.
81 82 83 84

    Examples:
        .. code-block:: python

85
          import paddle.fluid as fluid
86 87
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
88 89 90 91
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
92
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
93 94
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
95 96


97 98
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
99
                     name=None,
100 101 102 103
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
104
	:api_attr: Static Graph
S
swtkiwi 已提交
105

106
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
107 108 109 110 111
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

112 113 114 115 116 117 118
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
119 120 121
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
122
        default_initializer (Initializer, optional): Initializer for the parameter
123 124

    Returns:
125
        The created parameter.
Y
yuyang18 已提交
126 127

    Examples:
128 129
        .. code-block:: python

130 131 132
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
133
    """
134 135
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
136 137 138
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
139 140 141 142 143 144 145 146 147

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
148
    helper = LayerHelper("create_parameter", **locals())
149
    if attr is None:
X
xuwei06 已提交
150
        attr = ParamAttr(name=name)
151 152
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
153 154 155
                                   default_initializer)


156 157 158 159 160 161 162
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
163
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
164

165
    Parameters:
166
        shape (list[int]|tuple[int]): Shape of the variable
167
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
168
                      variable will be filled with it.
169 170
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
171
                           Default: False
172
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
173
                         Default: False
174 175
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
176 177

    Returns:
178
        Variable: The created Variable
F
fengjiayi 已提交
179 180 181 182

    Examples:
        .. code-block:: python

183 184 185
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
186
                                           persistable=True, force_cpu=True, name='new_var')
187
    """
188 189 190
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
191 192 193
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
194 195

    check_dtype(dtype, 'dtype', [
196 197 198 199 200 201 202 203 204 205
        'bool',
        'float16',
        'float32',
        'float64',
        'int8',
        'int16',
        'int32',
        'int64',
        'uint8',
        'uint16',
206 207
    ], 'create_global_var')

Q
Qiao Longfei 已提交
208 209
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
210 211 212 213 214
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
215 216 217
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
218

Q
Qiao Longfei 已提交
219 220 221
    return var


222
def cast(x, dtype):
Y
Yu Yang 已提交
223
    """
S
swtkiwi 已提交
224

225
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
226 227
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
228 229

    Args:
230
        x(Tensor): An input N-D Tensor with data type bool, float16,
231 232
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
233
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
234 235

    Returns:
236
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
237 238 239

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
240

241
            import paddle
242

243 244
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
245
    """
246 247 248
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
W
wanghuancoder 已提交
249
        out = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
250
        return out
251

252 253 254 255
    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8',
        'uint16'
    ], 'cast')
256 257
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
258
        'uint8', 'uint16'
259 260 261
    ], 'cast')

    helper = LayerHelper('cast', **locals())
262 263
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
264 265 266 267 268 269 270 271 272
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


273
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
274
    """
275
    This OP concatenates the input along the axis.
276 277

    Args:
278 279
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
280 281
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
282
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
283
            as ``axis+R``. Default is 0.
284 285 286
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
287 288

    Returns:
289
        Tensor: A Tensor with the same data type as ``input``.
290 291 292

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
293

294
            import paddle.fluid as fluid
295 296
            import numpy as np

297 298 299 300 301 302
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
303 304 305 306
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
307 308
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
309 310
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
311 312 313 314 315 316 317 318
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
319
    """
320 321

    if in_dygraph_mode():
S
songyouwei 已提交
322 323
        if isinstance(axis, Variable):
            axis = axis.numpy()
324
            axis = axis.item(0)
325 326
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
W
wanghuancoder 已提交
327
        return _C_ops.concat(input, 'axis', axis)
328

329 330 331 332 333 334 335 336 337 338 339
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
340
        input = [input]
341
    check_type(axis, 'axis', (int, Variable), 'concat')
342

343 344 345 346 347
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

348
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
349
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
350 351

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
352 353 354 355
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

356
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
357
                "number of the elements must be 1, but received %s." % len(input)
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
377 378 379
    return out


G
Guo Sheng 已提交
380
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
381
    r"""
G
Guo Sheng 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
432 433

    Args:
G
Guo Sheng 已提交
434 435 436 437 438 439 440
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
441 442

    Returns:
G
Guo Sheng 已提交
443 444 445
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
446 447 448 449

    Examples:
        .. code-block:: python

450
            import paddle.fluid as fluid
451
            import numpy as np
G
Guo Sheng 已提交
452 453 454 455 456 457 458
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
459
    """
460 461 462 463 464 465 466 467 468 469 470
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

471 472 473 474 475
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
476
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
477 478 479
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
480
        type='tensor_array_to_tensor',
L
li099 已提交
481 482 483
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
484 485
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
486 487 488
    return out, out_index


489
def sums(input, out=None):
490
    r"""
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
512 513

    Args:
514 515 516 517
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
518 519

    Returns:
520 521
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
522 523

    Examples:
F
fengjiayi 已提交
524
        .. code-block:: python
K
kavyasrinet 已提交
525

526 527 528 529 530 531 532 533 534
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
535

536 537
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
538
    """
539 540 541 542
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
543
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
544 545
    else:
        check_variable_and_dtype(input, "input", \
546
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
547

Y
Yu Yang 已提交
548 549
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
550 551
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
552 553 554 555
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
556 557 558 559 560
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
561 562 563
    return out


F
fengjiayi 已提交
564
def assign(input, output=None):
565
    """
S
swtkiwi 已提交
566

567
    The OP copies the :attr:`input` to the :attr:`output`.
568

569
    Parameters:
570 571 572 573
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
574
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
575
            be created as :attr:`output`. Default: None.
576 577

    Returns:
578
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
579 580 581

    Examples:
        .. code-block:: python
582

583
          import paddle
584
          import numpy as np
585
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
586 587 588 589
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
590 591 592
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
593
    """
Y
Yu Yang 已提交
594
    helper = LayerHelper('assign', **locals())
595 596
    check_type(input, 'input', (Variable, numpy.ndarray, list, tuple, float,
                                int, bool), 'assign')
597 598
    is_inplace = True if output is not None else False

599 600 601 602
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
603 604 605 606 607 608
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but in_dygraph_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
A
arlesniak 已提交
609
        check_dtype(input.dtype, 'input', [
610 611
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
            'uint8', 'bool'
A
arlesniak 已提交
612
        ], 'assign', '(When the type of input in assign is Variable.)')
613 614 615
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
616
        helper.append_op(
R
robot 已提交
617
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
618
    elif isinstance(input, numpy.ndarray):
619 620 621 622 623
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
X
xuwei06 已提交
624
        dtype = convert_np_dtype_to_dtype_(input.dtype)
625 626 627 628 629 630 631 632
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
633 634 635 636
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
637
            value_name = "fp32_values"
638
            values = [float(v) for v in input.flat]
639
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
640
            value_name = "int32_values"
641
            values = [int(v) for v in input.flat]
642 643 644
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
645
        else:
646 647
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
648
                "the data type of 'input' must be bool, float32, int32 or int64, but "
649
                "received %s." % convert_dtype(dtype))
650 651 652
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
653 654 655
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
656 657 658 659 660 661
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
662
                value_name: values
X
xuwei06 已提交
663 664
            })

665 666 667
    if is_inplace and in_dygraph_mode():
        output._bump_inplace_version()

Y
Yu Yang 已提交
668 669 670
    return output


671
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
672
    """
S
swtkiwi 已提交
673

W
wangchaochaohu 已提交
674
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
675
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
676

T
tianshuo78520a 已提交
677
    The attribute `stop_gradient` of the created Tensor is set to True.
678 679

    Args:
680 681 682
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
683
        dtype(np.dtype|str): Data type of the output Tensor which can
684
            be float16, float32, float64, uint8, int16, int32, int64.
685 686 687 688 689 690
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
691 692
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
693 694

    Returns:
695
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
696

697 698 699
    Examples:
        .. code-block:: python

700
          import paddle.fluid as fluid
701
          # attr shape is a list which doesn't contain  Tensor.
702 703
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
704
          # data1=[[5], [5]] data2=[[5], [5]]
705

706
          # attr shape is a list which contains Tensor.
707
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
708
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
709

710
          # attr shape is a Tensor.
711
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
712
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
713
          
714
          # attr value is a Tensor.
W
wangchaochaohu 已提交
715 716
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
717
    """
718

W
wangchaochaohu 已提交
719
    attrs = {'force_cpu': force_cpu}
720
    dtype = convert_dtype(dtype)
721
    if not isinstance(value, Variable):
722
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
723
            attrs['str_value'] = str(int(value))
724
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
725 726
        else:
            attrs['str_value'] = str(float(value))
727
            attrs['value'] = float(value)
728 729

    if in_dygraph_mode():
730
        shape = utils.convert_shape_to_list(shape)
731 732
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
733 734

        if isinstance(value, Variable):
735
            if dtype in ['uint8', 'int16', 'int32', 'int64']:
736
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
737
            else:
738
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
739

W
wanghuancoder 已提交
740 741 742 743
        _C_ops.fill_constant(out, 'value',
                             float(value), 'force_cpu', force_cpu, 'dtype',
                             out.dtype, 'str_value', attrs['str_value'],
                             'shape', shape)
744 745 746
        out.stop_gradient = True
        return out

747 748 749
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
750 751
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
752 753
        inputs['ValueTensor'] = value

754
    check_shape(shape)
755 756 757 758
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'uint8', 'int16', 'int32',
        'int64'
    ], 'fill_constant')
759
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
760

761 762 763 764 765
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
766
    utils.get_shape_tensor_inputs(
767
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
768

Y
Yu Yang 已提交
769
    if out is None:
X
Xin Pan 已提交
770
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
771
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
772 773
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
774
        inputs=inputs,
Y
Yu Yang 已提交
775
        outputs={'Out': [out]},
L
liym27 已提交
776
        attrs=attrs,
M
minqiyang 已提交
777
        stop_gradient=True)
Y
Yu Yang 已提交
778 779 780 781
    out.stop_gradient = True
    return out


782
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
783
@templatedoc()
Y
Yu Yang 已提交
784 785 786 787 788
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
789 790
                                  output_dim_idx=0,
                                  force_cpu=False):
791
    """
T
tianshuo78520a 已提交
792
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
793 794 795 796
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
797 798

    Args:
W
wangchaochaohu 已提交
799 800 801 802 803 804 805 806 807 808 809
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
810
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
811 812

    Returns:
W
wangchaochaohu 已提交
813
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
814 815 816 817 818

    Examples:

        .. code-block:: python

819
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
820
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
821
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
822
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
823

824
    """
Y
Yu Yang 已提交
825
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
826
    out = helper.create_variable_for_type_inference(dtype=dtype)
827 828 829 830 831 832
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
833
        'force_cpu': force_cpu
834 835 836 837 838
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
839 840 841 842
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
843
        attrs=attrs)
Y
Yu Yang 已提交
844 845 846 847
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
848 849
def argmin(x, axis=0):
    """
850 851 852
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
853

S
sneaxiy 已提交
854 855
    **argmin**

856 857
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
858 859

    Args:
860 861 862 863 864
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
865

S
sneaxiy 已提交
866
    Returns:
867
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
868

S
sneaxiy 已提交
869 870
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
871

872
            import paddle.fluid as fluid
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
900
    """
901 902 903
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
904
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
905
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
906 907 908 909 910
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
911
    out.stop_gradient = True
S
sneaxiy 已提交
912 913 914 915 916 917 918
    return out


def argmax(x, axis=0):
    """
    **argmax**

919 920
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
921 922

    Args:
923 924 925 926 927
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
928

S
sneaxiy 已提交
929
    Returns:
930
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
931

S
sneaxiy 已提交
932 933
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
934

935
            import paddle.fluid as fluid
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
963
    """
964 965 966
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
967
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
968
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
969 970 971 972 973
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
974
    out.stop_gradient = True
S
sneaxiy 已提交
975 976 977
    return out


978
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
979
    """
980 981 982
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
983

984 985 986
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
987 988

    Args:
989 990 991 992 993
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
994 995 996
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
997 998 999
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
1000 1001

    Returns:
1002 1003 1004
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1005 1006 1007 1008

    Examples:
        .. code-block:: python

1009
            import paddle.fluid as fluid
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1051
    """
1052 1053 1054
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1055
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1056 1057 1058 1059
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1060 1061 1062 1063
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1064
                 'Indices': ids},
1065 1066
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1067 1068 1069
    return out, ids


Y
Yang Yu 已提交
1070
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1071
    """
1072 1073
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1074

1075
    Parameters:
1076
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1077
        dtype (np.dtype|str): Data type of output Tensor, it supports
1078
            bool, float16, float32, float64, int32 and int64.
1079 1080
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1081
            Default: False.
1082 1083

    Returns:
1084
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1085 1086 1087 1088

    Examples:
        .. code-block:: python

1089
          import paddle.fluid as fluid
1090 1091 1092 1093 1094
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1095 1096 1097 1098
    """
    return fill_constant(value=1.0, **locals())


1099
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1100
    """
1101 1102
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1103

1104
    Parameters:
1105
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1106
        dtype (np.dtype|str): Data type of output Tensor, it supports
1107
            bool, float16, float32, float64, int32 and int64.
1108 1109
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1110
            Default: False.
1111 1112
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1113 1114

    Returns:
1115
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1116 1117 1118 1119

    Examples:
        .. code-block:: python

1120
          import paddle.fluid as fluid
1121
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1122 1123 1124 1125
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1126 1127
    """
    return fill_constant(value=0.0, **locals())
1128 1129


F
fengjiayi 已提交
1130 1131
def reverse(x, axis):
    """
1132 1133 1134
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1135

1136
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1137

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1162
    Parameters:
1163 1164
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1165 1166
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1167 1168
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1169 1170

    Returns:
1171
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1172 1173 1174 1175

    Examples:
        .. code-block:: python

1176
          import paddle.fluid as fluid
1177 1178 1179 1180
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1191
    """
1192 1193 1194
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1195 1196 1197
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1198
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1199 1200
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1201
        inputs={'X': x},
F
fengjiayi 已提交
1202 1203 1204 1205 1206
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1207 1208 1209 1210 1211 1212 1213
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1214 1215 1216
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1232 1233
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1234
        file_path(str): The file path where variables will be saved.
1235
        overwrite(bool): Whether or not cover the given file when it has already
1236 1237
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1238 1239 1240 1241 1242 1243 1244 1245

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1246
            import paddle.fluid as fluid
1247 1248 1249 1250 1251 1252 1253
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1266
    Loads a list of variable from a single file.
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1278 1279 1280 1281 1282 1283 1284


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1285
       x (Tensor): The Tensor to be checked.
1286 1287

    Returns:
S
Steffy-zxf 已提交
1288
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1289 1290 1291 1292
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1293 1294
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1295
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1296
          # [False]
1297

1298
    """
S
Steffy-zxf 已提交
1299
    if in_dygraph_mode():
W
wanghuancoder 已提交
1300
        return _C_ops.isinf(x)
S
Steffy-zxf 已提交
1301

1302
    check_type(x, 'x', (Variable), 'has_inf')
1303
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1304
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1305 1306 1307 1308 1309 1310 1311 1312 1313
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1314
       x (Tensor): The Tensor to be checked.
1315 1316

    Returns:
S
Steffy-zxf 已提交
1317
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1318 1319 1320 1321
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1322 1323
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1324
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1325
          # [False]
1326

1327
    """
S
Steffy-zxf 已提交
1328
    if in_dygraph_mode():
W
wanghuancoder 已提交
1329
        return _C_ops.isnan(x)
S
Steffy-zxf 已提交
1330

1331
    check_type(x, 'x', (Variable), 'has_nan')
1332
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1333
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1334 1335 1336 1337 1338 1339
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1340

1341 1342 1343 1344
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1345
        x(Tensor): The Tensor to be checked.
1346 1347

    Returns:
N
Noel 已提交
1348
        Tensor: The tensor storing the output, contains a bool value.
1349 1350 1351 1352 1353

    Examples:

        .. code-block:: python

N
Noel 已提交
1354 1355 1356 1357 1358 1359
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1360
    """
1361 1362
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1363
    helper = LayerHelper("isfinite", **locals())
1364

1365
    out = helper.create_variable_for_type_inference(dtype='bool')
1366 1367
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1368 1369


1370
def range(start, end, step, dtype, name=None):
W
whs 已提交
1371
    """
1372
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1373

1374 1375
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1376

1377 1378
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1379

L
Liufang Sang 已提交
1380
    Parameters:
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1404 1405 1406 1407 1408

    examples:

        .. code-block:: python

1409
            import paddle.fluid as fluid
W
whs 已提交
1410

1411 1412
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1413

1414 1415 1416 1417 1418 1419 1420
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1421

W
whs 已提交
1422
    if not isinstance(start, Variable):
1423
        with device_guard("cpu"):
1424
            start = fill_constant([1], dtype, start, force_cpu=True)
1425 1426
    elif start.dtype != dtype:
        start = cast(start, dtype)
1427

W
whs 已提交
1428
    if not isinstance(end, Variable):
1429
        with device_guard("cpu"):
1430
            end = fill_constant([1], dtype, end, force_cpu=True)
1431 1432
    elif end.dtype != dtype:
        end = cast(end, dtype)
1433

W
whs 已提交
1434
    if not isinstance(step, Variable):
1435
        with device_guard("cpu"):
1436
            step = fill_constant([1], dtype, step, force_cpu=True)
1437 1438
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1439

1440
    if in_dygraph_mode():
J
Jiawei Wang 已提交
1441 1442 1443
        out = _C_ops.range(start, end, step)
        out.stop_gradient = True
        return out
W
whs 已提交
1444

W
wanghuancoder 已提交
1445 1446 1447 1448 1449
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1450 1451 1452
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1453
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1454 1455 1456 1457 1458
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1459
        outputs={'Out': out})
1460
    out.stop_gradient = True
W
whs 已提交
1461
    return out
Z
zhoukunsheng 已提交
1462 1463


1464
def linspace(start, stop, num, dtype=None, name=None):
1465
    r"""
1466
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1467 1468

    Args:
1469 1470 1471 1472
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1473
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1474
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1475
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1476
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1477 1478
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1479 1480

    Returns:
1481
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1482 1483
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1484

Z
zhoukunsheng 已提交
1485
    Examples:
Z
zhoukunsheng 已提交
1486 1487
        .. code-block:: python

1488 1489 1490
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1491 1492

    """
1493 1494
    if dtype is None:
        dtype = 'float32'
1495 1496 1497
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1498 1499
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1500 1501
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1502
    if not isinstance(start, Variable):
1503 1504
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1505
    if not isinstance(stop, Variable):
1506 1507
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1508
    if not isinstance(num, Variable):
1509 1510
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1511
    if in_dygraph_mode():
W
wanghuancoder 已提交
1512 1513
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)
1514 1515 1516

    helper = LayerHelper("linspace", **locals())

1517 1518 1519
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1520
    if isinstance(start, Variable):
1521 1522
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1523 1524
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1525

1526
    if isinstance(stop, Variable):
1527 1528
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1529 1530 1531 1532 1533 1534
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1535 1536 1537 1538 1539 1540 1541 1542
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1543 1544

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1545 1546 1547

    helper.append_op(
        type='linspace',
1548 1549 1550 1551
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1552
        outputs={'Out': [out]})
1553 1554
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1555
    return out
1556 1557


Z
zhoukunsheng 已提交
1558 1559
def zeros_like(x, out=None):
    """
1560
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1561 1562 1563
    with `x`.

    Args:
1564 1565 1566 1567 1568 1569
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1570 1571

    Returns:
1572 1573 1574
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1575 1576 1577 1578

    Examples:
        .. code-block:: python

1579
          import paddle.fluid as fluid
1580
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1581 1582
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1583 1584
    """

1585 1586
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1587 1588 1589
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1590 1591 1592
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1593
            'zeros_like')
1594

Z
zhoukunsheng 已提交
1595 1596 1597 1598
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1599 1600


1601
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1602
def diag(diagonal):
1603
    r"""
1604 1605 1606
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1607

1608
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1609 1610

    Args:
1611 1612
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1613 1614

    Returns:
1615 1616
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1617 1618 1619 1620 1621 1622 1623

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1624 1625 1626

          import paddle.fluid as fluid
          import numpy as np
1627 1628 1629
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1630 1631

    """
1632 1633 1634
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1647 1648


1649 1650 1651 1652 1653
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1654
    """
1655
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1656 1657 1658

    Args:
        num_rows(int): the number of rows in each batch tensor.
1659 1660
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1661 1662
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1663
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1664 1665 1666 1667
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1668 1669

    Returns:
1670
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1671 1672 1673 1674 1675

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1676 1677
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1678
          #  [0, 1, 0]
1679 1680
          #  [0, 0, 1]]

1681
          data = fluid.layers.eye(2, 3, dtype='int32')
1682
          # [[1, 0, 0]
1683
          #  [0, 1, 0]]
1684 1685

          data = fluid.layers.eye(2, batch_shape=[3])
1686 1687 1688 1689 1690
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1691 1692
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1693 1694 1695 1696 1697
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1698 1699

    if in_dygraph_mode():
W
wanghuancoder 已提交
1700 1701
        out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                         num_columns)
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1720 1721

    if batch_shape is not None:
1722 1723 1724 1725
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
W
wanghuancoder 已提交
1726 1727
            out = _C_ops.reshape(out, 'shape', re_shape)
            return _C_ops.expand(out, None, 'expand_times', expand_times)
1728

1729 1730
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1731
        for batch_val in (batch_shape):
1732 1733
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1734 1735 1736 1737 1738 1739

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1740 1741 1742
    return out


Z
zhoukunsheng 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1755
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1766 1767
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1768 1769 1770 1771

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1772 1773 1774 1775
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1776 1777 1778 1779 1780 1781
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1782 1783 1784 1785 1786 1787


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)