tensor.py 71.2 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18 19 20
import numpy
import warnings

Y
Yu Yang 已提交
21
from ..layer_helper import LayerHelper
22
from ..param_attr import ParamAttr
23
from ..initializer import Initializer
24
from ..framework import _current_expected_place, convert_np_dtype_to_dtype_, _non_static_mode, _varbase_creator, device_guard, _in_legacy_dygraph, in_dygraph_mode, _get_paddle_place
X
xuwei06 已提交
25
from ..framework import Variable
26
from ..initializer import Constant
27
from ..core import VarDesc
28
from .. import core
29
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
30
from . import utils
31
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from paddle.utils import deprecated
33

34
from .utils import check_shape
35
from paddle import _C_ops, _legacy_C_ops
Y
Yu Yang 已提交
36 37

__all__ = [
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
64 65 66
]


X
xuwei06 已提交
67
def create_tensor(dtype, name=None, persistable=False):
68
    """
W
wangchaochaohu 已提交
69
    Create a variable, which will hold a Tensor with data type dtype.
70 71

    Args:
W
wangchaochaohu 已提交
72 73 74 75
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
76
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
77
            default value is False.
78 79

    Returns:
W
wangchaochaohu 已提交
80
        Variable: The tensor to be created according to dtype.
81 82 83 84

    Examples:
        .. code-block:: python

85
          import paddle.fluid as fluid
86 87
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
88 89 90 91
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
92
    helper = LayerHelper("create_tensor", **locals())
93 94 95
    return helper.create_variable(name=helper.name,
                                  dtype=dtype,
                                  persistable=persistable)
Y
Yu Yang 已提交
96 97


98 99
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
100
                     name=None,
101 102 103 104
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
105
	:api_attr: Static Graph
S
swtkiwi 已提交
106

107
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
108 109 110 111 112
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

113 114 115 116 117 118 119
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
120 121 122
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
123
        default_initializer (Initializer, optional): Initializer for the parameter
124 125

    Returns:
126
        The created parameter.
Y
yuyang18 已提交
127 128

    Examples:
129 130
        .. code-block:: python

131 132 133
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
134
    """
135 136
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
137 138 139
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
140 141 142 143 144 145 146 147 148

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
149
    helper = LayerHelper("create_parameter", **locals())
150
    if attr is None:
X
xuwei06 已提交
151
        attr = ParamAttr(name=name)
152
    return helper.create_parameter(attr, shape, convert_dtype(dtype), is_bias,
153 154 155
                                   default_initializer)


156 157 158 159 160 161 162
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
163
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
164

165
    Parameters:
166
        shape (list[int]|tuple[int]): Shape of the variable
167
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
168
                      variable will be filled with it.
169 170
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
171
                           Default: False
172
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
173
                         Default: False
174 175
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
176 177

    Returns:
178
        Variable: The created Variable
F
fengjiayi 已提交
179 180 181 182

    Examples:
        .. code-block:: python

183 184 185
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
186
                                           persistable=True, force_cpu=True, name='new_var')
187
    """
188 189 190
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
191 192 193
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
194 195

    check_dtype(dtype, 'dtype', [
196 197 198 199 200 201 202 203 204 205
        'bool',
        'float16',
        'float32',
        'float64',
        'int8',
        'int16',
        'int32',
        'int64',
        'uint8',
        'uint16',
206 207
    ], 'create_global_var')

Q
Qiao Longfei 已提交
208
    helper = LayerHelper("global_var", **locals())
209 210 211 212 213 214 215 216
    var = helper.create_global_variable(dtype=dtype,
                                        shape=shape,
                                        persistable=persistable,
                                        name=name,
                                        stop_gradient=True)
    helper.set_variable_initializer(var,
                                    initializer=Constant(value=float(value),
                                                         force_cpu=force_cpu))
M
minqiyang 已提交
217

Q
Qiao Longfei 已提交
218 219 220
    return var


221
def cast(x, dtype):
Y
Yu Yang 已提交
222
    """
S
swtkiwi 已提交
223

224
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
225 226
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
227 228

    Args:
229
        x(Tensor): An input N-D Tensor with data type bool, float16,
230
            float32, float64, int32, int64, uint8.
231
        dtype(np.dtype|str): Data type of the output:
232
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
233 234

    Returns:
235
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
236 237 238

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
239

240
            import paddle
241

242 243
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
244
    """
H
hong 已提交
245 246 247
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
248
        return _C_ops.cast(x, dtype)
H
hong 已提交
249

J
Jiabin Yang 已提交
250
    if _non_static_mode():
251 252
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
253
        out = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
254
        return out
255

256
    check_variable_and_dtype(x, 'x', [
257 258
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
259
    ], 'cast')
260
    check_dtype(dtype, 'dtype', [
261 262
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
263 264 265
    ], 'cast')

    helper = LayerHelper('cast', **locals())
266 267
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
268 269 270 271 272 273 274
    helper.append_op(type='cast',
                     inputs={'X': [x]},
                     outputs={'Out': [out]},
                     attrs={
                         'in_dtype': x.dtype,
                         'out_dtype': out.dtype
                     })
Y
Yu Yang 已提交
275 276 277
    return out


278
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
279
    """
280
    This OP concatenates the input along the axis.
281 282

    Args:
283 284
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
285 286
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
287
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
288
            as ``axis+R``. Default is 0.
289 290 291
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
292 293

    Returns:
294
        Tensor: A Tensor with the same data type as ``input``.
295 296 297

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
298

299
            import paddle.fluid as fluid
300 301
            import numpy as np

302 303 304 305 306 307
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
308 309 310 311
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
312 313
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
314 315
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
316 317 318 319 320 321 322 323
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
324
    """
325

326 327 328 329 330 331
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
332
        out = _C_ops.concat(input, axis)
333
        return out
334 335

    if _in_legacy_dygraph():
S
songyouwei 已提交
336 337
        if isinstance(axis, Variable):
            axis = axis.numpy()
338
            axis = axis.item(0)
339 340
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
341
        out = _varbase_creator()
342
        _legacy_C_ops.concat(input, out, 'axis', axis)
343
        return out
344

345 346 347 348 349 350 351 352 353
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
354 355
                    "All the Tensors in the input must have the same data type."
                )
356
    else:
357
        input = [input]
358
    check_type(axis, 'axis', (int, Variable), 'concat')
359

360 361 362
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
363 364
            "The data type of axis must be int32 or int64 when axis is a Tensor"
        )
365

366
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
367
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
368 369

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
370 371 372 373
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

374
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
375
                "number of the elements must be 1, but received %s." % len(input)
376
        out_index = helper.create_variable_for_type_inference(dtype="int32")
377 378 379 380 381 382 383 384 385 386
        helper.append_op(type='tensor_array_to_tensor',
                         inputs={'X': input[0]},
                         outputs={
                             'Out': [out],
                             'OutIndex': [out_index]
                         },
                         attrs={
                             'axis': axis,
                             'use_stack': False
                         })
387 388 389 390 391
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
392
        attrs['axis'] = axis
393

394 395 396 397
        helper.append_op(type='concat',
                         inputs=inputs,
                         outputs={'Out': [out]},
                         attrs=attrs)
Y
Yu Yang 已提交
398 399 400
    return out


G
Guo Sheng 已提交
401
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
402
    r"""
G
Guo Sheng 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
453 454

    Args:
G
Guo Sheng 已提交
455 456 457 458 459 460 461
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
462 463

    Returns:
G
Guo Sheng 已提交
464 465 466
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
467 468 469 470

    Examples:
        .. code-block:: python

471
            import paddle.fluid as fluid
472
            import numpy as np
G
Guo Sheng 已提交
473 474 475 476 477 478 479
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
480
    """
J
Jiabin Yang 已提交
481
    if _non_static_mode():
482 483 484 485 486 487 488 489 490 491
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

492 493 494 495 496
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
497
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
498 499
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
500 501 502 503 504 505 506 507 508 509
    helper.append_op(type='tensor_array_to_tensor',
                     inputs={'X': input},
                     outputs={
                         'Out': [out],
                         'OutIndex': [out_index]
                     },
                     attrs={
                         'axis': axis,
                         'use_stack': use_stack
                     })
L
li099 已提交
510 511 512
    return out, out_index


513
def sums(input, out=None):
514
    r"""
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
536 537

    Args:
538 539 540 541
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
542 543

    Returns:
544 545
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
546 547

    Examples:
F
fengjiayi 已提交
548
        .. code-block:: python
K
kavyasrinet 已提交
549

550 551 552 553 554 555 556 557 558
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
559

560 561
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
562
    """
563 564 565 566
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
567
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
568 569
    else:
        check_variable_and_dtype(input, "input", \
570
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
571

Y
Yu Yang 已提交
572 573
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
574 575
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
576
    else:
577 578 579 580 581 582 583 584
        check_variable_and_dtype(out, "out",
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'sums')

    helper.append_op(type='sum',
                     inputs={'X': input},
                     outputs={'Out': out},
                     attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
585 586 587
    return out


F
fengjiayi 已提交
588
def assign(input, output=None):
589
    """
S
swtkiwi 已提交
590

591
    The OP copies the :attr:`input` to the :attr:`output`.
592

593
    Parameters:
594 595 596 597
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
598
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
599
            be created as :attr:`output`. Default: None.
600 601

    Returns:
602
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
603 604 605

    Examples:
        .. code-block:: python
606

607
          import paddle
608
          import numpy as np
609
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
610 611 612 613
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
614 615 616
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
617
    """
Y
Yu Yang 已提交
618
    helper = LayerHelper('assign', **locals())
619 620 621
    check_type(input, 'input',
               (Variable, numpy.ndarray, list, tuple, float, int, bool),
               'assign')
622 623
    is_inplace = True if output is not None else False

624 625 626 627
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
628 629
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
J
Jiabin Yang 已提交
630
    # but _non_static_mode()==False under @to_static, which means
631 632 633
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
634
        if _non_static_mode():
C
chentianyu03 已提交
635
            if in_dygraph_mode() and output is None:
636
                output = _C_ops.assign(input)
C
chentianyu03 已提交
637 638 639 640 641 642
            else:
                if output is None:
                    if _in_legacy_dygraph():
                        output = core.VarBase()
                    else:
                        output = core.eager.Tensor()
643
                _legacy_C_ops.assign(input, output)
644 645 646 647 648 649 650 651
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
652 653 654
            helper.append_op(type='assign',
                             inputs={'X': [input]},
                             outputs={'Out': [output]})
X
xuwei06 已提交
655
    elif isinstance(input, numpy.ndarray):
656 657 658 659 660
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
X
xuwei06 已提交
661
        dtype = convert_np_dtype_to_dtype_(input.dtype)
662 663 664 665 666 667 668 669
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
670 671
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
672
            values = [int(v) for v in input.flat]
673
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
674
            value_name = "fp32_values"
675
            values = [float(v) for v in input.flat]
676
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
677
            value_name = "int32_values"
678
            values = [int(v) for v in input.flat]
679 680 681
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
682
        else:
683 684
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
685
                "the data type of 'input' must be bool, float32, int32 or int64, but "
686
                "received %s." % convert_dtype(dtype))
687 688 689
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
690 691 692
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
693 694
            _C_ops.assign_value_(output, list(input.shape), dtype, values,
                                 _current_expected_place())
695 696 697
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
698 699
            _legacy_C_ops.assign_value(output, 'shape', list(input.shape),
                                       'dtype', dtype, value_name, values)
700
        else:
701 702 703
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
704 705 706 707 708 709 710
            helper.append_op(type='assign_value',
                             outputs={'Out': [output]},
                             attrs={
                                 'dtype': dtype,
                                 'shape': list(input.shape),
                                 value_name: values
                             })
X
xuwei06 已提交
711

J
Jiabin Yang 已提交
712
    if is_inplace and _non_static_mode():
713
        output._bump_inplace_version()
714

Y
Yu Yang 已提交
715 716 717
    return output


718
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
719
    """
S
swtkiwi 已提交
720

W
wangchaochaohu 已提交
721
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
722
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
723

T
tianshuo78520a 已提交
724
    The attribute `stop_gradient` of the created Tensor is set to True.
725 726

    Args:
727 728 729
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
730
        dtype(np.dtype|str): Data type of the output Tensor which can
731
            be float16, float32, float64, uint8, int16, int32, int64.
732 733 734 735 736 737
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
738 739
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
740 741

    Returns:
742
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
743

744 745 746
    Examples:
        .. code-block:: python

747
          import paddle.fluid as fluid
748
          # attr shape is a list which doesn't contain  Tensor.
749 750
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
751
          # data1=[[5], [5]] data2=[[5], [5]]
752

753
          # attr shape is a list which contains Tensor.
754
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
755
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
756

757
          # attr shape is a Tensor.
758
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
759
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
760
          
761
          # attr value is a Tensor.
W
wangchaochaohu 已提交
762 763
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
764
    """
765

W
wangchaochaohu 已提交
766
    attrs = {'force_cpu': force_cpu}
767
    dtype = convert_dtype(dtype)
768
    if not isinstance(value, Variable):
769
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
770
            attrs['str_value'] = str(int(value))
771
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
772 773
        else:
            attrs['str_value'] = str(float(value))
774
            attrs['value'] = float(value)
775

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
    if in_dygraph_mode():
        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        if isinstance(shape, (list, tuple)):
            for item in shape:
                if not isinstance(item, Variable):
                    shape = list(
                        map(
                            lambda x: x.numpy().flat[0]
                            if isinstance(x, Variable) else x, shape))
                    break

        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        if out is None:
793
            out = _C_ops.full(shape, float(value), dtype, place)
794 795 796
            out.stop_gradient = True
            return out

797 798
        if out is not None:
            # final state mode is support out is not None.
799
            _C_ops.full_(out, shape, float(value), dtype, place)
800 801
            out.stop_gradient = True
            return out
802

803 804 805 806 807 808 809 810 811 812 813
    if _in_legacy_dygraph():
        shape = utils.convert_shape_to_list(shape)
        if out is None:
            out = _varbase_creator(dtype=dtype)

        if isinstance(value, Variable):
            if dtype in ['uint8', 'int16', 'int32', 'int64']:
                attrs['str_value'] = str(int(value.numpy().item(0)))
            else:
                attrs['str_value'] = str(float(value.numpy().item(0)))

814 815 816
        _legacy_C_ops.fill_constant(out, 'value', float(value), 'force_cpu',
                                    force_cpu, 'dtype', out.dtype, 'str_value',
                                    attrs['str_value'], 'shape', shape)
817 818 819
        out.stop_gradient = True
        return out

820 821 822
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
823 824
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
825 826
        inputs['ValueTensor'] = value

827
    check_shape(shape)
828 829
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'uint8', 'int16', 'int32',
830
        'int64', 'complex64', 'complex128'
831
    ], 'fill_constant')
832
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
833

834 835 836 837 838
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
839 840 841 842
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='fill_constant')
L
liym27 已提交
843

Y
Yu Yang 已提交
844
    if out is None:
X
Xin Pan 已提交
845
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
846
    attrs['dtype'] = out.dtype
847 848 849 850 851
    helper.append_op(type='fill_constant',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
Y
Yu Yang 已提交
852 853 854 855
    out.stop_gradient = True
    return out


856
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
857
@templatedoc()
Y
Yu Yang 已提交
858 859 860 861 862
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
863 864
                                  output_dim_idx=0,
                                  force_cpu=False):
865
    """
T
tianshuo78520a 已提交
866
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
867 868 869 870
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
871 872

    Args:
W
wangchaochaohu 已提交
873 874 875 876 877 878 879 880 881 882 883
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
884
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
885 886

    Returns:
W
wangchaochaohu 已提交
887
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
888 889 890 891 892

    Examples:

        .. code-block:: python

893
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
894
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
895
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
896
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
897

898
    """
899 900 901 902 903 904 905
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
906 907
        out = _C_ops.full_batch_size_like(input, shape, dtype, value,
                                          input_dim_idx, output_dim_idx, place)
908 909 910
        out.stop_gradient = True
        return out

Y
Yu Yang 已提交
911
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
912
    out = helper.create_variable_for_type_inference(dtype=dtype)
913 914 915 916 917 918
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
919
        'force_cpu': force_cpu
920 921 922 923 924
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
925 926 927 928
    helper.append_op(type='fill_constant_batch_size_like',
                     inputs={'Input': input},
                     outputs={'Out': [out]},
                     attrs=attrs)
Y
Yu Yang 已提交
929 930 931 932
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
933 934
def argmin(x, axis=0):
    """
935 936 937
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
938

S
sneaxiy 已提交
939 940
    **argmin**

941 942
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
943 944

    Args:
945 946 947 948 949
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
950

S
sneaxiy 已提交
951
    Returns:
952
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
953

S
sneaxiy 已提交
954 955
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
956

957
            import paddle.fluid as fluid
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
985
    """
986 987 988
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
989
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
990
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
991 992 993 994
    helper.append_op(type='arg_min',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs={'axis': axis})
995
    out.stop_gradient = True
S
sneaxiy 已提交
996 997 998 999 1000 1001 1002
    return out


def argmax(x, axis=0):
    """
    **argmax**

1003 1004
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
1005 1006

    Args:
1007 1008 1009 1010 1011
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
1012

S
sneaxiy 已提交
1013
    Returns:
1014
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
1015

S
sneaxiy 已提交
1016 1017
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1018

1019
            import paddle.fluid as fluid
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
1047
    """
1048 1049 1050
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
1051
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
1052
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1053 1054 1055 1056
    helper.append_op(type='arg_max',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs={'axis': axis})
1057
    out.stop_gradient = True
S
sneaxiy 已提交
1058 1059 1060
    return out


1061
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
1062
    """
1063 1064 1065
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
1066

1067 1068 1069
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
1070 1071

    Args:
1072 1073 1074 1075 1076
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
1077 1078 1079
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
1080 1081 1082
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
1083 1084

    Returns:
1085 1086 1087
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1088 1089 1090 1091

    Examples:
        .. code-block:: python

1092
            import paddle.fluid as fluid
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1134
    """
1135 1136 1137
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1138
    helper = LayerHelper("argsort", **locals())
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
    out = helper.create_variable_for_type_inference(dtype=input.dtype,
                                                    stop_gradient=True)
    ids = helper.create_variable_for_type_inference(VarDesc.VarType.INT64,
                                                    stop_gradient=True)
    helper.append_op(type='argsort',
                     inputs={'X': input},
                     outputs={
                         'Out': out,
                         'Indices': ids
                     },
                     attrs={
                         'axis': axis,
                         'descending': descending
                     })
Y
Yibing Liu 已提交
1153 1154 1155
    return out, ids


Y
Yang Yu 已提交
1156
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1157
    """
1158 1159
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1160

1161
    Parameters:
1162
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1163
        dtype (np.dtype|str): Data type of output Tensor, it supports
1164
            bool, float16, float32, float64, int32 and int64.
1165 1166
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1167
            Default: False.
1168 1169

    Returns:
1170
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1171 1172 1173 1174

    Examples:
        .. code-block:: python

1175
          import paddle.fluid as fluid
1176 1177 1178 1179 1180
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1181 1182 1183 1184
    """
    return fill_constant(value=1.0, **locals())


1185
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1186
    """
1187 1188
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1189

1190
    Parameters:
1191
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1192
        dtype (np.dtype|str): Data type of output Tensor, it supports
1193
            bool, float16, float32, float64, int32 and int64.
1194 1195
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1196
            Default: False.
1197 1198
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1199 1200

    Returns:
1201
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1202 1203 1204 1205

    Examples:
        .. code-block:: python

1206
          import paddle.fluid as fluid
1207
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1208 1209 1210 1211
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1212 1213
    """
    return fill_constant(value=0.0, **locals())
1214 1215


F
fengjiayi 已提交
1216 1217
def reverse(x, axis):
    """
1218 1219 1220
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1221

1222
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1223

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1248
    Parameters:
1249 1250
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1251 1252
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1253 1254
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1255 1256

    Returns:
1257
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1258 1259 1260 1261

    Examples:
        .. code-block:: python

1262
          import paddle.fluid as fluid
1263 1264 1265 1266
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1277
    """
1278 1279 1280
    check_variable_and_dtype(x, 'x',
                             ('float32', 'float64', 'int32', 'int64', 'uint8'),
                             'reverse')
1281
    check_type(axis, 'axis', (int, tuple, list, Variable), 'reverse')
F
fengjiayi 已提交
1282 1283
    if isinstance(axis, int):
        axis = [axis]
W
wanghuancoder 已提交
1284 1285
    if in_dygraph_mode():
        if x.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
1286
            return _C_ops.reverse_array(x, axis)
W
wanghuancoder 已提交
1287
        else:
1288
            return _C_ops.reverse(x, axis)
F
fengjiayi 已提交
1289
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1290
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1291 1292 1293 1294
    helper.append_op(type='reverse',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs={'axis': axis})
F
fengjiayi 已提交
1295 1296 1297
    return out


1298 1299 1300 1301 1302 1303 1304
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1305 1306 1307
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1308 1309
    """
    helper = LayerHelper("save", **locals())
1310 1311 1312 1313 1314 1315 1316
    helper.append_op(type="save",
                     inputs={"input": x},
                     outputs={},
                     args={
                         "file_path": file_path,
                         "overwrite": overwrite
                     })
1317 1318 1319 1320 1321 1322 1323


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1324 1325
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1326
        file_path(str): The file path where variables will be saved.
1327
        overwrite(bool): Whether or not cover the given file when it has already
1328 1329
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1330 1331 1332 1333 1334 1335 1336 1337

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1338
            import paddle.fluid as fluid
1339 1340 1341 1342 1343 1344 1345
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1346 1347
    """
    helper = LayerHelper("save_combine", **locals())
1348 1349 1350 1351 1352 1353 1354
    helper.append_op(type="save_combine",
                     inputs={"input": x},
                     outputs={},
                     args={
                         "file_path": file_path,
                         "overwrite": overwrite
                     })
1355 1356 1357 1358


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1359
    Loads a list of variable from a single file.
1360 1361 1362 1363 1364 1365

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
1366 1367 1368 1369
    helper.append_op(type="load_combine",
                     inputs={},
                     output={"Out": out},
                     args={"file_path": file_path})
1370 1371 1372 1373 1374 1375 1376


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1377
       x (Tensor): The Tensor to be checked.
1378 1379

    Returns:
S
Steffy-zxf 已提交
1380
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1381 1382 1383 1384
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1385 1386
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1387
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1388
          # [False]
1389

1390
    """
J
Jiabin Yang 已提交
1391
    if _non_static_mode():
1392
        return _legacy_C_ops.isinf(x)
S
Steffy-zxf 已提交
1393

1394
    check_type(x, 'x', (Variable), 'has_inf')
1395
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1396
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1397 1398 1399 1400 1401 1402 1403 1404 1405
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1406
       x (Tensor): The Tensor to be checked.
1407 1408

    Returns:
S
Steffy-zxf 已提交
1409
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1410 1411 1412 1413
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1414 1415
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1416
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1417
          # [False]
1418

1419
    """
J
Jiabin Yang 已提交
1420
    if _non_static_mode():
1421
        return _legacy_C_ops.isnan(x)
S
Steffy-zxf 已提交
1422

1423
    check_type(x, 'x', (Variable), 'has_nan')
1424
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1425
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1426 1427 1428 1429 1430 1431
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1432

1433 1434 1435 1436
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1437
        x(Tensor): The Tensor to be checked.
1438 1439

    Returns:
N
Noel 已提交
1440
        Tensor: The tensor storing the output, contains a bool value.
1441 1442 1443 1444 1445

    Examples:

        .. code-block:: python

N
Noel 已提交
1446 1447 1448 1449 1450 1451
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1452
    """
1453 1454
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1455
    helper = LayerHelper("isfinite", **locals())
1456

1457
    out = helper.create_variable_for_type_inference(dtype='bool')
1458 1459
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1460 1461


1462
def range(start, end, step, dtype, name=None):
W
whs 已提交
1463
    """
1464
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1465

1466 1467
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1468

1469 1470
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1471

L
Liufang Sang 已提交
1472
    Parameters:
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1496 1497 1498 1499 1500

    examples:

        .. code-block:: python

1501
            import paddle.fluid as fluid
W
whs 已提交
1502

1503 1504
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1505

1506 1507 1508 1509 1510
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
1511 1512 1513 1514 1515
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1516 1517
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1518

W
whs 已提交
1519
    if not isinstance(start, Variable):
1520
        with device_guard("cpu"):
1521
            start = fill_constant([1], dtype, start, force_cpu=True)
1522 1523
    elif start.dtype != dtype:
        start = cast(start, dtype)
1524

W
whs 已提交
1525
    if not isinstance(end, Variable):
1526
        with device_guard("cpu"):
1527
            end = fill_constant([1], dtype, end, force_cpu=True)
1528 1529
    elif end.dtype != dtype:
        end = cast(end, dtype)
1530

W
whs 已提交
1531
    if not isinstance(step, Variable):
1532
        with device_guard("cpu"):
1533
            step = fill_constant([1], dtype, step, force_cpu=True)
1534 1535
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1536

Z
zyfncg 已提交
1537
    if in_dygraph_mode():
1538
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
Z
zyfncg 已提交
1539

Z
zyfncg 已提交
1540
    if _in_legacy_dygraph():
1541
        out = _legacy_C_ops.range(start, end, step)
J
Jiawei Wang 已提交
1542 1543
        out.stop_gradient = True
        return out
W
whs 已提交
1544

1545 1546 1547
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1548
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
1549 1550 1551 1552 1553 1554 1555
    helper.append_op(type='range',
                     inputs={
                         'Start': start,
                         'End': end,
                         'Step': step
                     },
                     outputs={'Out': out})
1556
    out.stop_gradient = True
1557 1558
    if out_shape is not None:
        out.desc.set_shape(out_shape)
W
whs 已提交
1559
    return out
Z
zhoukunsheng 已提交
1560 1561


1562
def linspace(start, stop, num, dtype=None, name=None):
1563
    r"""
1564
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1565 1566

    Args:
1567 1568 1569 1570
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1571
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1572
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1573
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1574
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1575 1576
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1577 1578

    Returns:
1579
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1580 1581
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1582

Z
zhoukunsheng 已提交
1583
    Examples:
Z
zhoukunsheng 已提交
1584 1585
        .. code-block:: python

1586 1587 1588
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1589 1590

    """
1591 1592
    if dtype is None:
        dtype = 'float32'
1593 1594 1595
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1596 1597
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1598 1599
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1600
    if not isinstance(start, Variable):
1601 1602
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1603
    if not isinstance(stop, Variable):
1604 1605
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1606
    if not isinstance(num, Variable):
1607 1608
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1609
    if in_dygraph_mode():
1610
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, dtype)
1611
    if _in_legacy_dygraph():
1612 1613
        return _legacy_C_ops.linspace(tensor_start, tensor_stop, tensor_num,
                                      'dtype', dtype)
1614 1615
    helper = LayerHelper("linspace", **locals())

1616 1617 1618
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1619
    if isinstance(start, Variable):
1620 1621
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1622 1623
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1624

1625
    if isinstance(stop, Variable):
1626 1627
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1628 1629 1630 1631 1632 1633
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1634 1635 1636 1637
    if ((stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]) or (
                (stop_dtype == "int64" or start_dtype == "int64")
                and out_dtype == "int32"):
1638 1639 1640 1641
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1642 1643

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1644

1645 1646 1647 1648 1649 1650 1651 1652
    helper.append_op(type='linspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
1653 1654
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1655
    return out
1656 1657


Z
zhoukunsheng 已提交
1658 1659
def zeros_like(x, out=None):
    """
1660
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1661 1662 1663
    with `x`.

    Args:
1664 1665 1666 1667 1668 1669
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1670 1671

    Returns:
1672 1673 1674
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1675 1676 1677 1678

    Examples:
        .. code-block:: python

1679
          import paddle.fluid as fluid
1680
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1681 1682
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1683 1684
    """

1685 1686 1687
    check_variable_and_dtype(x, "x",
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'ones_like')
Z
zhoukunsheng 已提交
1688 1689 1690
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1691 1692 1693
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1694
            'zeros_like')
1695

1696 1697 1698
    helper.append_op(type='fill_zeros_like',
                     inputs={'X': [x]},
                     outputs={'Out': [out]})
Z
zhoukunsheng 已提交
1699 1700
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1701 1702


1703
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1704
def diag(diagonal):
1705
    r"""
1706 1707 1708
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1709

1710
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1711 1712

    Args:
1713 1714
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1715 1716

    Returns:
1717 1718
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1719 1720 1721 1722 1723 1724 1725

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1726 1727 1728

          import paddle.fluid as fluid
          import numpy as np
1729 1730 1731
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1732 1733

    """
1734 1735 1736
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1737 1738 1739 1740 1741 1742 1743
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

1744 1745 1746
    helper.append_op(type='diag',
                     inputs={'Diagonal': [diagonal]},
                     outputs={'Out': [out]})
Z
zhoukunsheng 已提交
1747 1748 1749

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1750 1751


1752 1753 1754 1755 1756
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1757
    """
1758
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1759 1760 1761

    Args:
        num_rows(int): the number of rows in each batch tensor.
1762 1763
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1764 1765
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1766
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1767 1768 1769 1770
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1771 1772

    Returns:
1773
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1774 1775 1776 1777 1778

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1779 1780
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1781
          #  [0, 1, 0]
1782 1783
          #  [0, 0, 1]]

1784
          data = fluid.layers.eye(2, 3, dtype='int32')
1785
          # [[1, 0, 0]
1786
          #  [0, 1, 0]]
1787 1788

          data = fluid.layers.eye(2, batch_shape=[3])
1789 1790 1791 1792 1793
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1794 1795 1796 1797 1798 1799 1800
    def _check_attr(attr, message):
        if isinstance(attr, ((Variable, core.VarBase, core.eager.Tensor))):
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
            raise TypeError("{} should be a non-negative int.".format(message))

    _check_attr(num_rows, "num_rows")
1801 1802
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1803
    if num_columns is not None:
1804
        _check_attr(num_columns, "num_columns")
1805 1806
    else:
        num_columns = num_rows
1807

R
Ruibiao Chen 已提交
1808
    if in_dygraph_mode():
1809 1810
        out = _C_ops.eye(num_rows, num_columns, dtype,
                         _current_expected_place())
R
Ruibiao Chen 已提交
1811
    elif _in_legacy_dygraph():
1812 1813
        out = _legacy_C_ops.eye('dtype', dtype, 'num_rows', num_rows,
                                'num_columns', num_columns)
1814 1815 1816 1817 1818
    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        out = helper.create_variable_for_type_inference(dtype=dtype)
1819 1820 1821 1822 1823 1824 1825 1826 1827
        helper.append_op(type='eye',
                         inputs={},
                         outputs={'Out': [out]},
                         attrs={
                             'num_rows': num_rows,
                             'num_columns': num_columns,
                             'dtype': dtype
                         },
                         stop_gradient=True)
1828 1829

    if batch_shape is not None:
1830 1831 1832
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
J
Jiabin Yang 已提交
1833
        if _non_static_mode():
1834 1835
            out = _legacy_C_ops.reshape(out, 'shape', re_shape)
            return _legacy_C_ops.expand(out, None, 'expand_times', expand_times)
1836

1837 1838
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1839
        for batch_val in (batch_shape):
1840 1841
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1842 1843 1844 1845 1846 1847

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1848 1849 1850
    return out


Z
zhoukunsheng 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1863
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1874 1875 1876
    check_variable_and_dtype(x, "x",
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'ones_like')
Z
zhoukunsheng 已提交
1877 1878 1879 1880

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1881 1882 1883 1884
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
1885 1886 1887 1888
    helper.append_op(type='fill_any_like',
                     inputs={'X': [x]},
                     attrs={'value': 1.0},
                     outputs={'Out': [out]})
Z
zhoukunsheng 已提交
1889
    return out
Y
yaoxuefeng 已提交
1890 1891 1892 1893 1894 1895


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)