nn.py 309.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35
    'fc',
    'embedding',
P
peizhilin 已提交
36
    'dynamic_lstm',
X
Xin Pan 已提交
37 38 39 40
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
P
peizhilin 已提交
41
    'crf_decoding',
X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
88
    'group_norm',
X
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
P
peizhilin 已提交
101
    'roi_pool',
J
jerrywgz 已提交
102
    'roi_align',
X
Xin Pan 已提交
103 104 105 106
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
107
    'resize_nearest',
X
Xin Pan 已提交
108 109 110 111 112 113
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
114
    'selu',
X
Xin Pan 已提交
115 116 117
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
118
    'margin_rank_loss',
X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
162
    'space_to_depth',
W
whs 已提交
163
    'affine_grid',
S
sneaxiy 已提交
164
    'sequence_reverse',
165
    'affine_channel',
B
barrierye 已提交
166
    'similarity_focus',
M
minqiyang 已提交
167
    'hash',
D
dengkaipeng 已提交
168
    'grid_sampler',
G
gmcather 已提交
169 170
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
171
    'bilinear_tensor_product',
Y
Yu Yang 已提交
172 173 174 175 176 177 178 179 180
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
181
       is_test=False,
182
       name=None):
Y
Yu Yang 已提交
183
    """
184
    **Fully Connected Layer**
Y
Yu Yang 已提交
185

186 187 188 189 190 191 192 193
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
194
    to the output as well.
C
caoying03 已提交
195

C
caoying03 已提交
196
    This process can be formulated as follows:
197 198 199

    .. math::

200
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
201 202 203

    In the above equation:

C
caoying03 已提交
204 205 206 207
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
208
    * :math:`Act`: The activation function.
C
caoying03 已提交
209
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
210 211

    Args:
R
ranqiu 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
227 228
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
229
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
230
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
231
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
232

233
    Returns:
F
fengjiayi 已提交
234
        Variable: The transformation result.
235 236

    Raises:
C
caoying03 已提交
237
        ValueError: If rank of the input tensor is less than 2.
238 239 240 241

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
242
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
243
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
244
    """
C
caoying03 已提交
245

C
caoying03 已提交
246
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
247 248 249 250

    dtype = helper.input_dtype()

    mul_results = []
251 252
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
253 254 255
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
256

Y
Yu Yang 已提交
257
        w = helper.create_parameter(
258
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
259
        tmp = helper.create_variable_for_type_inference(dtype)
260
        helper.append_op(
261 262 263
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
264
            outputs={"Out": tmp},
M
mozga-intel 已提交
265 266
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
267 268 269 270
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
271
    else:
X
Xin Pan 已提交
272
        pre_bias = helper.create_variable_for_type_inference(dtype)
273
        helper.append_op(
274 275 276
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
277
            attrs={"use_mkldnn": False})
278 279 280 281
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
282 283


284 285 286
def embedding(input,
              size,
              is_sparse=False,
287
              is_distributed=False,
Q
Qiao Longfei 已提交
288
              remote_prefetch=False,
289 290 291
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
292
    """
293 294
    **Embedding Layer**

295
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
296 297
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
298 299 300

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
301 302

    Args:
303 304 305 306 307
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
308
        is_distributed(bool): Whether to run lookup table from remote parameter server.
309 310
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
311
            with zeros whenever lookup encounters it in :attr:`input`. If
312
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
313 314
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
315
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
316

317 318 319
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
320

321 322
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
323

C
chengduoZH 已提交
324
          dict_size = len(dataset.ids)
325
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
326
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
327 328 329
    """

    helper = LayerHelper('embedding', **locals())
Q
Qiao Longfei 已提交
330 331
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
332 333
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
334
    tmp = helper.create_variable_for_type_inference(dtype)
335 336
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
337 338 339 340 341
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
342 343 344
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
345
            'remote_prefetch': remote_prefetch,
346 347
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
348 349 350
    return tmp


W
wopeizl 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
P
peizhilin 已提交
367

W
wopeizl 已提交
368 369 370 371 372 373 374 375 376 377 378
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
379

W
wopeizl 已提交
380 381 382 383
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
384

W
wopeizl 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
471 472


Y
Yibing Liu 已提交
473 474 475 476 477 478 479 480 481 482 483
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
484 485
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
486 487 488
    """
    **Dynamic LSTMP Layer**

489 490 491 492 493 494
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
495 496 497 498 499

    The formula is as follows:

    .. math::

500
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
501

502
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
503

504
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
505

506
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
507

508
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
509

510
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
511

512
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
513

Y
Yibing Liu 已提交
514 515 516 517 518 519
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
520
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
521
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
522
          bias vector).
Y
Yibing Liu 已提交
523 524 525
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
526
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
527
    * :math:`h`: The hidden state.
528
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
529 530
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
531
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
532
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
533
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
534 535
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
536 537 538 539

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
540

Y
Yibing Liu 已提交
541 542 543 544 545 546 547 548 549 550 551 552
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
553
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
554 555
                               hidden-hidden weight and projection weight.

556 557
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
558 559
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
560 561
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
562
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
563 564 565 566 567

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
568
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
569 570 571 572 573 574
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
575
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
576 577 578
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
579
                                - The shape is (1 x 7D).
C
chengduo 已提交
580 581 582 583 584

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
585 586 587 588 589 590 591 592 593
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
594
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
595 596
                              default "tanh".
        proj_activation(str): The activation for projection output.
597
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
598 599
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
600 601
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
602 603

    Returns:
604 605 606 607
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
608 609

    Examples:
610

Y
Yibing Liu 已提交
611 612
        .. code-block:: python

613 614 615 616
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
617
            hidden_dim, proj_dim = 512, 256
618
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
619
                                     act=None, bias_attr=None)
620 621 622
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
623 624 625 626
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
627
    """
628

C
chengduo 已提交
629
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
630
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
631
    size = size // 4
Y
Yibing Liu 已提交
632 633 634 635 636 637 638 639 640 641
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
642 643 644 645 646 647
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
676 677 678 679 680 681 682 683 684
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
685
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
686

687
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
688
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
689

G
guosheng 已提交
690 691 692 693 694 695 696 697 698
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
699

G
guosheng 已提交
700
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
701

G
guosheng 已提交
702
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
703 704
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
705 706 707 708
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
709
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
710 711

    Args:
712 713
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
714
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
715
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
716 717
            is the hidden size.
        size(int): The dimension of the gru cell.
718
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
719 720
            hidden-hidden weight matrix. Note:

721
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
722
              :math:`D` is the hidden size.
723
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
724
              The first part are weights of the update gate and reset gate with
725
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
726
              candidate hidden state with shape :math:`(D \\times D)`.
727 728 729 730 731

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
732
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
733
            the bias in the update gate, reset gate and candidate calculations.
734 735 736
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
737 738
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
739
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
740 741 742
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
743
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
744
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
745 746 747 748
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
749 750

    Returns:
G
guosheng 已提交
751
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
752
            and sequence length is the same with the input.
753

G
guosheng 已提交
754
    Examples:
755

G
guosheng 已提交
756 757
        .. code-block:: python

758 759 760 761
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
762
            hidden_dim = 512
763
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
764 765 766 767 768 769 770 771 772 773
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
774
    batch_size = input.shape[0]
G
guosheng 已提交
775
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
776
    if h_0:
G
guosheng 已提交
777
        assert h_0.shape == (
Y
Yancey 已提交
778 779 780
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
781

X
Xin Pan 已提交
782 783 784 785
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
804 805 806
def gru_unit(input,
             hidden,
             size,
807 808
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
809
             activation='tanh',
810
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
811
    """
812
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
813

814 815
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
816

817
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
818

819
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
820

821
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
822 823

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
824 825 826
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
827 828
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

829 830
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
831 832 833
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
834 835 836

    Args:
        input (Variable): The fc transformed input value of current step.
837
        hidden (Variable): The hidden value of gru unit from previous step.
838
        size (integer): The input dimension value.
839 840 841 842 843 844 845 846 847 848 849 850 851 852
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
853
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
854
            the bias in the update gate, reset gate and candidate calculations.
855 856 857
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
858 859
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
860 861 862 863
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
864

865 866 867 868 869 870
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
871

872
             # assuming we have x_t_data and prev_hidden of size=10
873
             x_t = fluid.layers.fc(input=x_t_data, size=30)
874 875
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
876 877 878 879 880 881 882 883 884 885 886 887

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
888
    size = size // 3
Y
Yu Yang 已提交
889 890

    # create weight
891 892
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
893

X
Xin Pan 已提交
894 895 896
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
897
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
898
    # create bias
899
    if helper.bias_attr:
Y
Yu Yang 已提交
900 901 902
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
903
        inputs['Bias'] = bias
Y
Yu Yang 已提交
904 905 906

    helper.append_op(
        type='gru_unit',
907
        inputs=inputs,
Y
Yu Yang 已提交
908 909 910 911 912 913
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
914 915
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
916 917 918 919 920
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
921
@templatedoc()
922
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
923 924 925 926 927 928 929
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
930
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
931 932 933 934
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
935 936 937
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
938 939

    """
Y
Yu Yang 已提交
940 941 942 943 944 945
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
946 947 948 949 950 951 952 953
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
969 970 971 972
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yuyang18 已提交
973

W
wopeizl 已提交
974 975
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
976

W
wopeizl 已提交
977
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
978

W
wopeizl 已提交
979
        label(${label_type}): ${label_comment}
Y
yuyang18 已提交
980

W
wopeizl 已提交
981 982
    Returns:
        Variable: ${viterbi_path_comment}
983

W
wopeizl 已提交
984 985
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
986

W
wopeizl 已提交
987 988 989 990 991 992 993 994 995 996
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
P
peizhilin 已提交
997
                "Transition": transition,
W
wopeizl 已提交
998 999
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1000

W
wopeizl 已提交
1001
    return viterbi_path
Y
Yu Yang 已提交
1002 1003


Y
yi.wu 已提交
1004
@templatedoc()
F
fengjiayi 已提交
1005
def cos_sim(X, Y):
Y
Yu Yang 已提交
1006
    """
Y
yi.wu 已提交
1007 1008 1009
    ${comment}

    Args:
1010 1011
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1012

Y
yi.wu 已提交
1013
    Returns:
1014
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1015
    """
F
fengjiayi 已提交
1016
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1017 1018 1019
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1030 1031 1032 1033 1034
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1035
            dropout_implementation="downgrade_in_infer"):
1036 1037 1038 1039 1040
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1041
    training. The dropout operator randomly sets (according to the given dropout
1042 1043 1044 1045
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1046 1047
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1048 1049 1050 1051 1052 1053 1054
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1066
                                           dropout op can be removed from the program.
P
phlrain 已提交
1067
                                           the program will be efficient
1068

P
phlrain 已提交
1069

1070 1071

    Returns:
1072
        Variable: A tensor variable is the shape with `x`.
1073 1074

    Examples:
1075

1076 1077
        .. code-block:: python

1078 1079
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1080 1081
    """

F
fengjiayi 已提交
1082
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1083 1084 1085
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1086 1087 1088 1089

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1090 1091 1092 1093 1094
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1095 1096 1097 1098
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1099 1100
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1101
        })
1102 1103 1104
    return out


1105
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1106
    """
Y
Yibing Liu 已提交
1107 1108
    **Cross Entropy Layer**

1109 1110 1111
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1112 1113

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1114
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1115

Y
Yibing Liu 已提交
1116
        .. math::
Y
yangyaming 已提交
1117

Y
Yibing Liu 已提交
1118 1119 1120
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1121 1122
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1123 1124 1125 1126 1127

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1128
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1129 1130 1131
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1132 1133
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1134
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1135

Y
Yibing Liu 已提交
1136
    Args:
Y
yangyaming 已提交
1137
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1138 1139 1140 1141
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1142
        label (Variable|list): the ground truth which is a 2-D tensor. When
1143 1144 1145 1146
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1147
        soft_label (bool): a flag indicating whether to
1148
                                           interpretate the given labels as soft
1149
                                           labels. Default: `False`.
M
minqiyang 已提交
1150 1151
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1152
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1153 1154 1155 1156 1157

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1158 1159 1160 1161 1162
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1163 1164 1165 1166 1167 1168

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1169
    """
F
fengjiayi 已提交
1170
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1171
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1172 1173 1174 1175 1176
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1177 1178
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1179 1180 1181
    return out


F
fengjiayi 已提交
1182
def square_error_cost(input, label):
Y
Yu Yang 已提交
1183
    """
1184 1185
    **Square error cost layer**

1186 1187
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1202 1203
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1204 1205

    Returns:
G
guosheng 已提交
1206
        Variable: The tensor variable storing the element-wise squared error \
1207
                  difference of input and label.
1208 1209 1210 1211 1212 1213 1214 1215

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1216
    """
F
fengjiayi 已提交
1217
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1218
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1219 1220 1221 1222 1223 1224
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1225
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1226
    helper.append_op(
F
fengjiayi 已提交
1227 1228
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1229 1230 1231
    return square_out


Y
yi.wu 已提交
1232
@templatedoc()
Y
Yu Yang 已提交
1233 1234 1235 1236
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1237
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1238
    """
Y
yi.wu 已提交
1239
    **Chunk Evaluator**
Y
yi.wu 已提交
1240

Y
yangyaming 已提交
1241
    This function computes and outputs the precision, recall and
1242
    F1-score of chunk detection.
Y
yi.wu 已提交
1243

Y
yi.wu 已提交
1244 1245 1246 1247 1248 1249 1250 1251
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1252

Y
yi.wu 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1278

Y
yi.wu 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1303
    Args:
1304 1305 1306 1307 1308
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1309

Y
yi.wu 已提交
1310
    Returns:
Y
update  
yi.wu 已提交
1311 1312 1313
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1314

Y
yi.wu 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1327
    """
F
fengjiayi 已提交
1328
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1329 1330

    # prepare output
X
Xin Pan 已提交
1331 1332 1333 1334 1335 1336 1337
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1338 1339 1340 1341 1342 1343 1344 1345

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1346 1347 1348 1349
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1350 1351 1352
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1353 1354
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1355
        })
1356 1357
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1358 1359


1360
@templatedoc()
Y
Yu Yang 已提交
1361 1362 1363 1364 1365 1366 1367
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1368 1369
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1370 1371 1372 1373
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1374 1375 1376 1377 1378 1379 1380

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1394

1395 1396
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1397 1398 1399 1400 1401 1402 1403
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1404
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1415
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1416 1417 1418 1419 1420 1421
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1422
def sequence_softmax(input, use_cudnn=False, name=None):
1423 1424 1425
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1426
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1443 1444 1445
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1446

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1458 1459
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1460
    softmax_out = helper.create_variable_for_type_inference(dtype)
1461 1462 1463 1464 1465 1466 1467 1468
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1469
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1470
    """
1471
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1472
    has the same shape as the input.
Q
qiaolongfei 已提交
1473

1474 1475 1476 1477 1478 1479
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1480
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1481 1482 1483 1484 1485 1486 1487

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1488
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1489 1490 1491 1492 1493 1494 1495 1496

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1497 1498 1499
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1512 1513
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1514
    softmax_out = helper.create_variable_for_type_inference(dtype)
1515 1516 1517 1518 1519 1520 1521 1522
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1523 1524 1525
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1526 1527
           stride=1,
           padding=0,
1528
           dilation=1,
Y
Yu Yang 已提交
1529 1530 1531
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1532
           use_cudnn=True,
1533 1534
           act=None,
           name=None):
Y
Yu Yang 已提交
1535
    """
C
chengduoZH 已提交
1536
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1537 1538
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1539
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1540 1541 1542 1543 1544 1545 1546
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1547 1548 1549
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1550

1551
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1552

C
chengduoZH 已提交
1553 1554
    .. math::

C
refine  
chengduoZH 已提交
1555
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1556

T
tensor-tang 已提交
1557
    Where:
C
chengduoZH 已提交
1558

1559 1560 1561 1562 1563
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1564
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1565 1566 1567

    Example:

1568 1569
        - Input:

W
weixing02 已提交
1570
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1571

W
weixing02 已提交
1572
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1573

1574
        - Output:
T
tensor-tang 已提交
1575

W
weixing02 已提交
1576
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1577

C
chengduoZH 已提交
1578
        Where
1579 1580

        .. math::
C
chengduoZH 已提交
1581

W
weixing02 已提交
1582 1583
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1584 1585

    Args:
1586
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1587
        num_filters(int): The number of filter. It is as same as the output
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1616 1617
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1618 1619
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1620
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1621
            will be named automatically. Default: None
C
chengduoZH 已提交
1622 1623

    Returns:
G
guosheng 已提交
1624
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1625 1626
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1627
    Raises:
1628 1629
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1630

C
chengduoZH 已提交
1631 1632 1633
    Examples:
        .. code-block:: python

1634 1635
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1636 1637 1638
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1639
    assert param_attr is not False, "param_attr should not be False here."
1640
    l_type = 'conv2d'
X
xzl 已提交
1641 1642
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1643
        l_type = 'depthwise_conv2d'
1644 1645 1646 1647

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1648 1649 1650 1651 1652
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1653
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1654

C
chengduoZH 已提交
1655 1656 1657
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1658
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1659

C
chengduoZH 已提交
1660 1661
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1662 1663

    input_shape = input.shape
M
minqiyang 已提交
1664
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1665 1666

    def _get_default_param_initializer():
C
chengduo 已提交
1667 1668
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1669 1670 1671 1672 1673 1674 1675 1676
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1677
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1678

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1693
    helper.append_op(
1694
        type=l_type,
Y
Yu Yang 已提交
1695 1696 1697 1698 1699
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1700 1701 1702
        attrs={
            'strides': stride,
            'paddings': padding,
1703
            'dilations': dilation,
C
chengduoZH 已提交
1704
            'groups': groups,
1705
            'use_cudnn': use_cudnn,
1706
            'use_mkldnn': False,
C
chengduoZH 已提交
1707
        })
Y
Yu Yang 已提交
1708 1709 1710 1711 1712 1713

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1731 1732 1733 1734 1735 1736
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1746 1747
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1748 1749 1750
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1751
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1777
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1778 1779
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1780
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1781 1782
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1783
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1784 1785
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1786
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1787 1788 1789 1790 1791 1792
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1803 1804
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1805 1806
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1807
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1808
            will be named automatically. Default: None.
C
chengduoZH 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1821 1822
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1823 1824 1825
    """

    l_type = 'conv3d'
C
chengduo 已提交
1826
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1837
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1851 1852 1853
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1854 1855 1856 1857 1858 1859 1860 1861
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1862
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1877
            'use_mkldnn': False
C
chengduoZH 已提交
1878 1879
        })

1880
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1881 1882 1883 1884

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1885
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1886
    """
Y
yangyaming 已提交
1887 1888 1889
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1901
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1902 1903 1904 1905 1906
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1907
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1908 1909 1910 1911 1912 1913 1914

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1915 1916
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1917

L
Luo Tao 已提交
1918 1919
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1920
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1921
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1922
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1923 1924 1925 1926 1927 1928 1929

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1930

Y
yangyaming 已提交
1931
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1932 1933 1934 1935 1936
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1937 1938
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1939
    """
F
fengjiayi 已提交
1940
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1941
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1942 1943
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1944 1945 1946 1947 1948 1949

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1950 1951
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1952

Y
yangyaming 已提交
1953 1954 1955 1956 1957
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1958 1959 1960
    return pool_out


C
add doc  
chengduoZH 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1980
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1981 1982 1983 1984 1985
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1986
def sequence_first_step(input):
L
Luo Tao 已提交
1987
    """
L
Luo Tao 已提交
1988
    This function gets the first step of sequence.
L
Luo Tao 已提交
1989 1990 1991 1992

    .. code-block:: text

       x is a 1-level LoDTensor:
1993
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1994 1995 1996 1997 1998
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1999
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2000
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2001

L
Luo Tao 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2011

Y
yangyaming 已提交
2012
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2013 2014 2015
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2016 2017 2018
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2019
def sequence_last_step(input):
L
Luo Tao 已提交
2020
    """
L
Luo Tao 已提交
2021
    This function gets the last step of sequence.
L
Luo Tao 已提交
2022 2023 2024 2025

    .. code-block:: text

       x is a 1-level LoDTensor:
2026
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2027 2028 2029 2030 2031
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2032
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2033
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2034

L
Luo Tao 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2044

Y
yangyaming 已提交
2045
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2046 2047 2048
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2049 2050 2051
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2052 2053 2054 2055
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2056
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2057 2058 2059 2060 2061
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2062

Y
Yibing Liu 已提交
2063 2064
	- Case:

2065
            Given the input Variable **input**:
2066

2067 2068 2069
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2070

2071
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2072

2073
            the output Variable will be
2074

2075 2076 2077
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2078 2079

    NOTE: The first dimension size of **input**, **offset** and **length**
2080
          should be equal. The **offset** should start from 0.
2081

Y
Yibing Liu 已提交
2082
    Args:
2083
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2084
                         sequences.
Y
Yibing Liu 已提交
2085 2086 2087 2088 2089 2090
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2091
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2102
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2103 2104 2105 2106
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2107
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2122
@templatedoc()
Y
Yu Yang 已提交
2123
def pool2d(input,
C
chengduoZH 已提交
2124 2125
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2126 2127
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2128
           global_pooling=False,
C
chengduoZH 已提交
2129
           use_cudnn=True,
2130
           ceil_mode=False,
2131 2132
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2133
    """
F
fengjiayi 已提交
2134
    ${comment}
2135 2136

    Args:
2137 2138 2139
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2140
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2141
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2142 2143
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2144
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2145 2146 2147 2148 2149 2150
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2151 2152 2153
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2154
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2155
                        layer will be named automatically.
2156
        exclusive (bool): Whether to exclude padding points in average pooling
2157
                          mode, default is true
F
fengjiayi 已提交
2158

2159
    Returns:
F
fengjiayi 已提交
2160
        Variable: The pooling result.
F
fengjiayi 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2174 2175 2176 2177
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2178
                            global_pooling=False)
Y
Yu Yang 已提交
2179 2180 2181 2182 2183
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2184

C
chengduoZH 已提交
2185 2186 2187 2188 2189
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2190 2191 2192 2193
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2194 2195
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2196

C
Add doc  
chengduoZH 已提交
2197
    l_type = 'pool2d'
2198 2199

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2200
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2201
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2202 2203

    helper.append_op(
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2215 2216
            "use_mkldnn": False,
            "exclusive": exclusive,
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2230 2231
           name=None,
           exclusive=True):
2232 2233
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2234
    pooling configurations mentioned in input parameters.
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2247
        exclusive (bool): Whether to exclude padding points in average pooling
2248
                          mode, default is true
2249

2250
    Returns:
2251
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2252 2253 2254 2255 2256
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2257

C
chengduoZH 已提交
2258 2259 2260 2261 2262
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2263 2264 2265
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2266

C
chengduoZH 已提交
2267 2268
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2269

2270 2271
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2272
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2273
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2274 2275

    helper.append_op(
2276
        type=l_type,
Y
Yu Yang 已提交
2277 2278 2279 2280 2281 2282 2283
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2284
            "paddings": pool_padding,
2285
            "use_cudnn": use_cudnn,
2286
            "ceil_mode": ceil_mode,
2287 2288
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2301
               data_layout='NCHW',
Y
Yang Yang 已提交
2302
               in_place=False,
2303 2304
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2305
               moving_variance_name=None,
2306 2307
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2308
    """
Q
qiaolongfei 已提交
2309 2310 2311 2312
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2313

Q
qiaolongfei 已提交
2314
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2315

Q
qiaolongfei 已提交
2316 2317
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2318 2319 2320
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2333 2334

    Args:
Q
qiaolongfei 已提交
2335
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2336 2337 2338 2339
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2340 2341 2342 2343 2344 2345 2346 2347
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2348
        data_layout(string, default NCHW): NCHW|NHWC
2349
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2350 2351 2352 2353
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2354
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2355
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2356 2357

    Returns:
Q
qiaolongfei 已提交
2358
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2359 2360 2361 2362 2363 2364 2365

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2366
    """
C
chengduo 已提交
2367
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2390
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2391

2392 2393
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2394 2395 2396
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2397
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2398
        shape=param_shape,
2399 2400 2401 2402 2403 2404 2405
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2406
            trainable=False,
W
wanghaoshuang 已提交
2407
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2408
        shape=param_shape,
2409 2410
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2411 2412 2413 2414 2415 2416

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2417 2418 2419 2420
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2421

X
Xin Pan 已提交
2422 2423
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2441 2442 2443 2444
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2445
            "use_mkldnn": False,
2446
            "fuse_with_relu": fuse_with_relu
2447
        })
Y
Yu Yang 已提交
2448 2449 2450 2451

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2452
@templatedoc()
G
guosheng 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2463
    ${comment}
G
guosheng 已提交
2464 2465 2466

    The formula is as follows:

Y
yuyang18 已提交
2467
    ..  math::
G
guosheng 已提交
2468 2469 2470 2471 2472 2473 2474

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2475 2476 2477 2478 2479 2480 2481 2482
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2483

G
guosheng 已提交
2484 2485
    Args:
        input(Variable): The input tensor variable.
2486
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2487
            normalization. Default True.
2488
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2489 2490
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2491
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2492
            Default 1.
2493
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2494
            division by zero. Default 1e-05.
G
guosheng 已提交
2495
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2496 2497
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2498 2499
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2500
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2501 2502
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2503
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2504
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2505
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2506 2507 2508
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2509 2510

    Returns:
Y
yuyang18 已提交
2511
        ${y_comment}
G
guosheng 已提交
2512 2513 2514

    Examples:

Y
yuyang18 已提交
2515 2516 2517
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2533
    if shift:
G
guosheng 已提交
2534 2535 2536 2537 2538 2539
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2540 2541 2542 2543 2544
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2638 2639 2640 2641
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2642 2643 2644
                     padding=0,
                     stride=1,
                     dilation=1,
2645
                     groups=None,
C
caoying03 已提交
2646
                     param_attr=None,
2647
                     bias_attr=None,
C
chengduoZH 已提交
2648
                     use_cudnn=True,
2649
                     act=None,
C
caoying03 已提交
2650
                     name=None):
Y
Yu Yang 已提交
2651
    """
2652 2653 2654 2655 2656 2657 2658 2659
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2660 2661
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2662 2663 2664
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2665 2666 2667 2668 2669

    For each input :math:`X`, the equation is:

    .. math::

2670
        Out = \sigma (W \\ast X + b)
2671

2672
    Where:
2673 2674 2675

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2676 2677 2678 2679
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2680

2681 2682 2683 2684
    Example:

        - Input:

2685
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2686

2687
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2688 2689 2690

        - Output:

2691
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2692 2693

        Where
Y
Yu Yang 已提交
2694

2695 2696
        .. math::

2697 2698 2699 2700
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2701 2702

    Args:
2703 2704 2705 2706
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2707 2708 2709 2710
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2739
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2740 2741 2742
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2743
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2744
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2745 2746

    Returns:
2747
        Variable: The tensor variable storing the convolution transpose result.
2748 2749

    Raises:
2750 2751
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2752 2753 2754 2755

    Examples:
       .. code-block:: python

2756 2757
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2758
    """
C
chengduo 已提交
2759
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2760 2761 2762 2763 2764 2765 2766 2767
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2768 2769 2770
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2771 2772 2773
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2774

C
chengduoZH 已提交
2775 2776
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2777

Y
Yu Yang 已提交
2778 2779 2780 2781 2782
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2783

Y
Yu Yang 已提交
2784 2785
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2786

C
chengduoZH 已提交
2787
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2788
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2789
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2790
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2791
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2792 2793 2794
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2795

2796 2797 2798 2799 2800 2801 2802
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2803
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2804
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2805

Y
Yu Yang 已提交
2806 2807 2808
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2809
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2810
    helper.append_op(
2811
        type=op_type,
Y
Yu Yang 已提交
2812 2813
        inputs={'Input': [input],
                'Filter': [img_filter]},
2814
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2815
        attrs={
2816
            'output_size': output_size,
2817 2818 2819 2820 2821
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2822 2823
        })

2824 2825 2826
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2827 2828


2829
def conv3d_transpose(input,
Y
Yu Yang 已提交
2830 2831 2832
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2833 2834 2835
                     padding=0,
                     stride=1,
                     dilation=1,
2836
                     groups=None,
C
caoying03 已提交
2837
                     param_attr=None,
2838
                     bias_attr=None,
C
chengduoZH 已提交
2839
                     use_cudnn=True,
2840
                     act=None,
C
caoying03 已提交
2841
                     name=None):
Y
Yu Yang 已提交
2842
    """
2843
    **Convlution3D transpose layer**
2844

2845
    The convolution3D transpose layer calculates the output based on the input,
2846
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2847 2848 2849 2850 2851 2852
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2853 2854 2855
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2856 2857 2858 2859 2860

    For each input :math:`X`, the equation is:

    .. math::

2861
        Out = \sigma (W \\ast X + b)
2862 2863 2864

    In the above equation:

2865 2866
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2867 2868 2869 2870
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2871

2872 2873 2874 2875
    Example:

        - Input:

2876
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2877

2878
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2879 2880 2881

        - Output:

2882
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2883 2884

        Where
Y
Yu Yang 已提交
2885

2886 2887
        .. math::

2888 2889 2890
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2891 2892

    Args:
2893
        input(Variable): The input image with [N, C, D, H, W] format.
2894 2895 2896
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2897
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2898 2899
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2900
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2901 2902 2903
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2904 2905
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2906
        stride(int|tuple): The stride size. If stride is a tuple, it must
2907 2908
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2909
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2910 2911 2912
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2913 2914 2915 2916 2917
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2918 2919 2920 2921 2922 2923 2924 2925 2926
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2927 2928
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2929 2930
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2931 2932
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2933 2934

    Returns:
2935
        Variable: The tensor variable storing the convolution transpose result.
2936 2937

    Raises:
2938 2939
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2940 2941 2942 2943

    Examples:
       .. code-block:: python

2944 2945
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2946
    """
C
chengduo 已提交
2947
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2948 2949
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2950
    if not isinstance(input, Variable):
2951
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2952 2953
    input_channel = input.shape[1]

2954 2955 2956
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2957

C
chengduoZH 已提交
2958 2959 2960
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2961 2962 2963 2964 2965 2966
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2967 2968 2969
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2970

2971
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2972
                         padding[0] - 1) // dilation[0] + 1
2973
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2974
                         padding[1] - 1) // dilation[1] + 1
2975
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2976
                         padding[2] - 1) // dilation[2] + 1
2977
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2978
    else:
2979 2980
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2981

2982
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2983
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2984 2985 2986
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2987
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2988
    helper.append_op(
2989
        type=l_type,
Y
Yu Yang 已提交
2990 2991
        inputs={'Input': [input],
                'Filter': [img_filter]},
2992
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2993 2994 2995 2996
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2997
            'groups': groups,
C
chengduoZH 已提交
2998 2999
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3000

3001 3002
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3003
    return out
Y
yangyaming 已提交
3004 3005


Y
yangyaming 已提交
3006
def sequence_expand(x, y, ref_level=-1, name=None):
3007
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3008 3009 3010 3011
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3012 3013 3014 3015 3016

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3017
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3018
                x.data = [[a], [b], [c], [d]]
3019 3020 3021
                x.dims = [4, 1]

            y is a LoDTensor:
3022 3023
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3024

Y
yangyaming 已提交
3025
            ref_level: 0
3026

Y
yangyaming 已提交
3027
            then output is a 1-level LoDTensor:
3028
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3029
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3030 3031 3032 3033
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3034
                x.data = [[a], [b], [c]]
3035 3036 3037
                x.dims = [3, 1]

            y is a LoDTensor:
3038
                y.lod = [[2, 0, 3]]
3039

Y
yangyaming 已提交
3040
            ref_level: -1
3041

Y
yangyaming 已提交
3042 3043 3044
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3045 3046 3047
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3048 3049
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3050
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3051
                        will be named automatically.
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3062
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3063
    """
Y
yangyaming 已提交
3064
    helper = LayerHelper('sequence_expand', input=x, **locals())
3065
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3066
    tmp = helper.create_variable_for_type_inference(dtype)
3067
    helper.append_op(
Y
yangyaming 已提交
3068 3069 3070 3071 3072
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3073
    return tmp
3074 3075


C
chengduo 已提交
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3132
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3133 3134 3135 3136 3137 3138 3139 3140
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3141
@templatedoc()
3142
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3143 3144 3145 3146 3147
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3148 3149 3150
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3151
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3152 3153 3154 3155
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3156 3157 3158
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3159

F
fengjiayi 已提交
3160
    Returns:
M
minqiyang 已提交
3161
        Variable: The padded sequence batch and the original lengths before
3162
                  padding. All sequences has the same length.
M
minqiyang 已提交
3163

F
fengjiayi 已提交
3164 3165 3166 3167 3168 3169 3170
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3171
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3172
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3173 3174 3175 3176 3177
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3178 3179
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3180 3181 3182 3183

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3184 3185 3186 3187 3188 3189
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3190 3191
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3192
        attrs={'padded_length': maxlen})
3193
    return out, length
F
fengjiayi 已提交
3194 3195


3196
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3197
    """
3198
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3199

3200 3201
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3202 3203 3204 3205 3206 3207 3208 3209 3210
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3211 3212 3213
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3214
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3215 3216 3217 3218 3219 3220

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3221
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3222 3223 3224 3225 3226 3227

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3228 3229
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3244
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3256 3257 3258 3259 3260 3261 3262 3263 3264
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3265 3266
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3267 3268 3269

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3270 3271

    This layer does the search in beams for one time step. Specifically, it
3272 3273 3274 3275 3276 3277
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3278

3279 3280 3281 3282 3283 3284 3285 3286
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3287

3288
    Args:
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3314

3315
    Returns:
3316 3317
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3318 3319 3320 3321

    Examples:
        .. code-block:: python

3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3339 3340 3341 3342
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3343 3344 3345
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3346 3347 3348 3349 3350

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3351
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3369 3370 3371 3372 3373 3374 3375
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3376

3377 3378 3379 3380 3381 3382 3383 3384 3385
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3386

3387 3388 3389 3390 3391 3392
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3393

3394 3395 3396 3397 3398 3399 3400 3401
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3402 3403
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3419 3420 3421 3422
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3423
              param_attr=None,
C
caoying03 已提交
3424 3425
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3426 3427 3428 3429
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3430
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3431

3432
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3433

3434
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3435

3436
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3437 3438 3439

            h_t & = o_t tanh(c_t)

3440 3441 3442 3443 3444 3445
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3446 3447 3448

        .. math::

3449
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3450 3451 3452 3453 3454 3455 3456 3457

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3458
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3459 3460

    Args:
Y
yangyaming 已提交
3461 3462 3463 3464 3465 3466
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3467
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3480 3481
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3482 3483

    Returns:
Y
yangyaming 已提交
3484
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3485 3486

    Raises:
3487 3488 3489 3490
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3491 3492 3493 3494 3495 3496

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3497
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3498
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3499
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3516
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3517 3518 3519 3520
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3521 3522
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3523 3524 3525
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3526
    size = cell_t_prev.shape[1]
3527
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3528 3529
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3530
                param_attr=param_attr,
3531
                bias_attr=bias_attr)
Y
yangyaming 已提交
3532
    dtype = x_t.dtype
X
Xin Pan 已提交
3533 3534
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3535 3536 3537 3538 3539 3540 3541 3542 3543

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3544
    return h, c
G
guosheng 已提交
3545 3546


C
caoying03 已提交
3547
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3548
    """
Y
yangyaming 已提交
3549
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3550 3551 3552

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3553
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3554 3555
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3556 3557
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3558
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3559
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3560
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3561 3562
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3563 3564 3565

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3566

G
guosheng 已提交
3567 3568 3569 3570 3571 3572
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3573
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3574 3575 3576 3577
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3578 3579 3580 3581

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3582
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3583 3584 3585
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3586 3587
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3588
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3589 3590
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3591 3592 3593 3594 3595
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3596
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3597 3598 3599 3600
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3601 3602


C
caoying03 已提交
3603
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3604
    """
Y
Yibing Liu 已提交
3605
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3606 3607 3608

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3609 3610 3611
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3612
            must be in the range :math:`[-rank(input), rank(input))`. If
3613
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3614
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3615 3616
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3617
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3618
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3619
                       will be named automatically.
G
guosheng 已提交
3620 3621

    Returns:
Y
Yibing Liu 已提交
3622
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3623

G
guosheng 已提交
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3634 3635
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3636 3637 3638 3639 3640 3641 3642

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3643 3644
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3645
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3646 3647
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3648 3649 3650 3651 3652
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3653
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3654 3655 3656 3657
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3658 3659


C
caoying03 已提交
3660
def reduce_max(input, dim=None, keep_dim=False, name=None):
3661
    """
Y
yangyaming 已提交
3662
    Computes the maximum of tensor elements over the given dimension.
3663 3664 3665

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3666
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3667 3668 3669
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3670
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3671 3672
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3673
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3674 3675
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3676 3677 3678

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3679

3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3691 3692 3693 3694 3695 3696 3697

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3698 3699
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3700
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3701 3702
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3703 3704 3705 3706 3707
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3708
            'dim': dim if dim != None else [0],
3709 3710 3711 3712 3713 3714
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3715
def reduce_min(input, dim=None, keep_dim=False, name=None):
3716
    """
Y
yangyaming 已提交
3717
    Computes the minimum of tensor elements over the given dimension.
3718 3719 3720

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3721
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3722 3723 3724
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3725
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3726 3727
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3728
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3729 3730
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3731 3732 3733

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3734

3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3746 3747 3748 3749 3750 3751 3752

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3753 3754
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3755
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3756 3757
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3758 3759 3760 3761 3762
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3763
            'dim': dim if dim != None else [0],
3764 3765 3766 3767
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3768 3769


3770 3771 3772 3773 3774 3775
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3776
        dim (list|int|None): The dimensions along which the product is performed. If
3777 3778
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3779 3780
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3781 3782 3783
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3784
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3785
            layer will be named automatically.
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3800
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3801
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3802 3803 3804 3805 3806 3807 3808

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3809 3810
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3811
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3812 3813
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3814 3815 3816 3817 3818
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3819
            'dim': dim if dim != None else [0],
3820 3821 3822 3823 3824 3825
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3826
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3827
    """
C
caoying03 已提交
3828
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3829 3830 3831

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3832 3833 3834 3835 3836
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3837
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3838
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3839
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3840 3841
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3842 3843

    Returns:
D
dzhwinter 已提交
3844
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3845 3846 3847 3848 3849 3850 3851 3852 3853

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3854 3855
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3871
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3885 3886 3887 3888 3889 3890 3891 3892 3893


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3894
    .. math::
3895 3896

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3897 3898 3899 3900 3901

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3902
        x(Variable|list): The input tensor to l2_normalize layer.
3903
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3904 3905
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3906
        epsilon(float): The epsilon value is used to avoid division by zero, \
3907
            the defalut value is 1e-10.
3908
        name(str|None): A name for this layer(optional). If set None, the layer \
3909
            will be named automatically.
C
caoying03 已提交
3910 3911

    Returns:
3912
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3913 3914

    Examples:
3915

C
caoying03 已提交
3916 3917
        .. code-block:: python

3918 3919 3920 3921
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3922 3923
    """

F
fengjiayi 已提交
3924 3925
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3926 3927
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3928 3929
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3930
    helper.append_op(
3931 3932 3933 3934
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3935
        attrs={
3936 3937
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3938 3939
        })
    return out
3940 3941


S
sneaxiy 已提交
3942
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3943
    """
Y
ying 已提交
3944 3945 3946 3947
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3948

C
chengduoZH 已提交
3949
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3950
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3951

3952 3953 3954 3955 3956
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3957
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3958

C
chengduoZH 已提交
3959
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3960
      performs in the following way.
G
guosheng 已提交
3961

3962
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3963
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3964
        last two dimensions and a batched matrix multiply supporting broadcast
3965
        applies on the two tensors.
G
guosheng 已提交
3966

Y
ying 已提交
3967 3968
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3969
    removed after matrix multiplication.
G
guosheng 已提交
3970 3971 3972

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3973 3974 3975
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3976
        alpha (float): The scale of output. Default 1.0.
3977
        name(str|None): A name for this layer(optional). If set None, the layer
3978
            will be named automatically.
G
guosheng 已提交
3979 3980

    Returns:
3981
        Variable: The product Tensor variable.
G
guosheng 已提交
3982

G
guosheng 已提交
3983 3984 3985
    Examples:
        .. code-block:: python

3986
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3987 3988
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3989

3990 3991
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3992

3993 3994
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3995

3996 3997
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3998 3999 4000 4001

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4002 4003
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4004

Y
ying 已提交
4005
            # x: [M], y: [N]
4006
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4007
    """
Y
ying 已提交
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4020
            y_shape = y_shape + [1]
Y
ying 已提交
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4037
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4038
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4039
    helper.append_op(
4040 4041 4042 4043
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4044 4045 4046
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4047
            'alpha': float(alpha),
S
sneaxiy 已提交
4048
        })
4049
    return out
4050 4051


4052
def topk(input, k, name=None):
Q
qingqing01 已提交
4053 4054 4055 4056
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4057
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4058 4059 4060 4061 4062 4063
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4085 4086 4087
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4088
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4089
                 of input.
4090
        name(str|None): A name for this layer(optional). If set None, the layer
4091
                       will be named automatically.
F
fengjiayi 已提交
4092
                       Default: None
Q
qingqing01 已提交
4093 4094

    Returns:
4095 4096 4097
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4098
        within the last dimension of input.
Q
qingqing01 已提交
4099

F
fengjiayi 已提交
4100 4101
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4102 4103 4104 4105 4106 4107 4108

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4109 4110
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4122
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4123
    """
Y
ying 已提交
4124 4125 4126 4127 4128 4129 4130 4131 4132
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4133

Y
ying 已提交
4134
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4135

4136
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4137 4138
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4139
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4140

4141
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4142 4143
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4144

4145 4146 4147
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4148
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4149
                          the length of reference string.
4150
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4151
                                     calculating edit distance.
4152
        name (str): The name of this layer. It is optional.
4153

W
wanghaoshuang 已提交
4154
    Returns:
W
wanghaoshuang 已提交
4155
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4156 4157 4158 4159

    Examples:
        .. code-block:: python

T
tink2123 已提交
4160 4161
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4162
            cost = fluid.layers.edit_distance(input=x,label=y)
4163
    """
4164
    helper = LayerHelper("edit_distance", **locals())
4165

4166
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4167
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4168 4169
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4170 4171 4172 4173 4174

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4175
            attrs={"tokens": ignored_tokens})
4176 4177 4178 4179 4180
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4181
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4182
            attrs={"tokens": ignored_tokens})
4183 4184
        label = erased_label

4185
    # edit distance op
X
Xin Pan 已提交
4186 4187
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4188 4189 4190 4191
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4192 4193
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4194 4195
        attrs={"normalized": normalized})

4196
    return edit_distance_out, sequence_num
4197 4198 4199 4200 4201


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4202

Y
ying 已提交
4203 4204 4205 4206
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4224
        input.lod = [[4, 4]]
4225 4226 4227 4228 4229 4230 4231

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4232
        output.lod = [[2, 1]]
4233 4234 4235

    Args:

Y
ying 已提交
4236 4237 4238 4239 4240 4241 4242 4243 4244
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4245
        name (str): The name of this layer. It is optional.
4246 4247

    Returns:
4248
        Variable: CTC greedy decode result. If all the sequences in result were
4249
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4250 4251 4252 4253 4254

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4255

4256
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4257
    """
4258
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4259
    _, topk_indices = topk(input, k=1)
4260 4261

    # ctc align op
X
Xin Pan 已提交
4262
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4263 4264 4265
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4266
        outputs={"Output": [ctc_out]},
4267 4268
        attrs={"merge_repeated": True,
               "blank": blank})
4269
    return ctc_out
4270 4271


W
Wu Yi 已提交
4272
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4273
    """
4274 4275
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4276
    to compute Connectionist Temporal Classification (CTC) loss.
4277 4278
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4279 4280 4281
    input tensor.

    Args:
4282
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4283 4284 4285 4286
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4287
       label (Variable): The ground truth of variable-length sequence,
4288 4289 4290
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4291 4292
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4293 4294 4295
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4296
         follewed by a mean_op.
W
Wu Yi 已提交
4297
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4298 4299

    Returns:
4300 4301
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4302 4303

    Examples:
4304

W
wanghaoshuang 已提交
4305
        .. code-block:: python
4306

4307 4308 4309
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4310 4311

    """
F
fengjiayi 已提交
4312
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4313 4314
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4315 4316 4317 4318 4319 4320
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4321 4322 4323 4324 4325
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4326
    return loss_out
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4342 4343 4344
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4345 4346 4347 4348 4349
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4350

4351
            out.lod  = [[0, 1, 3]]
4352 4353 4354 4355

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4356 4357 4358 4359 4360 4361 4362
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4363 4364 4365

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4366 4367

    Returns:
4368

4369 4370 4371 4372 4373
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4374
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4375
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4376 4377
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4378
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4379 4380 4381 4382 4383 4384
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4385 4386


4387 4388 4389 4390
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4391 4392 4393 4394 4395 4396
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4397
        num_neg_samples=None,
4398 4399 4400 4401
        name=None,
        sampler="uniform",
        custom_dist=None,
        seed=0):
4402 4403 4404 4405 4406 4407 4408
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4409 4410
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4411
            sample is 1.0.
C
chengduo 已提交
4412 4413 4414 4415 4416 4417 4418 4419 4420
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4421
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4422 4423
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4424 4425 4426
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4427
        custom_dist (Variable): A tensor with shape [num_total_classes].
4428 4429 4430 4431
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
F
fengjiayi 已提交
4432

4433
    Returns:
Y
Yibing Liu 已提交
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4461 4462 4463 4464 4465 4466 4467 4468 4469

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4470

4471
    """
Y
Yang Yu 已提交
4472 4473 4474
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4475 4476

    dim = input.shape[1]
Y
Yang Yu 已提交
4477 4478 4479 4480 4481 4482
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4496 4497 4498
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4499

Y
Yang Yu 已提交
4500 4501 4502 4503 4504
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'Bias': b,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
        assert isinstance(custom_dist, Variable)
        inputs['CustomDistribution'] = custom_dist
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

Y
Yang Yu 已提交
4525 4526
    attrs = {
        'num_total_classes': int(num_total_classes),
4527 4528 4529
        'num_neg_samples': num_neg_samples,
        'seed': seed,
        'sampler': sampler
Y
Yang Yu 已提交
4530
    }
Y
Yang Yu 已提交
4531 4532 4533

    helper.append_op(
        type='nce',
C
chengduo 已提交
4534
        inputs=inputs,
Y
Yang Yu 已提交
4535 4536 4537 4538 4539 4540
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4541
    return cost / (num_neg_samples + 1)
4542 4543


C
chengduo 已提交
4544 4545 4546 4547 4548 4549
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4550 4551
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4552
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4553 4554 4555 4556 4557 4558 4559 4560 4561
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4562

W
weixing02 已提交
4563
    Args:
M
minqiyang 已提交
4564
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4565 4566 4567 4568 4569
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4581 4582 4583 4584 4585 4586 4587 4588

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4589 4590 4591
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4592 4593 4594 4595
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4596 4597
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4598 4599
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4600
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4601 4602 4603 4604 4605
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4606 4607 4608 4609 4610 4611 4612 4613
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4614 4615
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4616
        inputs=inputs,
W
weixing02 已提交
4617 4618 4619 4620 4621 4622
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4623
def transpose(x, perm, name=None):
Y
ying 已提交
4624 4625 4626 4627 4628 4629 4630
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4631 4632 4633
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4634 4635 4636 4637 4638 4639 4640

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4641
            # use append_batch_size=False to avoid prepending extra
4642
            # batch size in shape
4643
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4644
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4645
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4646 4647
    """

Y
fix ci.  
ying 已提交
4648
    if len(perm) != len(x.shape):
Y
ying 已提交
4649 4650 4651
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4652 4653 4654 4655 4656 4657
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4658 4659

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4660 4661
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4662
    helper.append_op(
4663
        type='transpose2',
Y
fix ci.  
ying 已提交
4664
        inputs={'X': [x]},
4665 4666
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4667 4668
        attrs={'axis': perm})
    return out
4669 4670


4671 4672 4673 4674 4675 4676 4677
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4678
    """
4679 4680 4681 4682 4683 4684 4685
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4714 4715 4716 4717 4718 4719 4720 4721 4722
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4723 4724 4725
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4726 4727 4728 4729 4730
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4758 4759 4760
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4773
            output.dims = {8, 8}
4774

4775
            output.lod = [[4, 4]]
4776

D
dzhwinter 已提交
4777
     Examples:
4778 4779 4780

        .. code-block:: python

4781 4782
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4783 4784

    """
W
wanghaoshuang 已提交
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4795 4796 4797 4798 4799 4800 4801
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4802
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4803
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4804
    helper.append_op(
4805
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4806
    return out
4807 4808


Y
yuyang18 已提交
4809
@templatedoc()
4810
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4811 4812
    """
    ${comment}
4813 4814

    Args:
Y
yuyang18 已提交
4815
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4816 4817
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4818 4819 4820 4821 4822
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4823
        ${out_comment}.
4824 4825

    Examples:
Y
yuyang18 已提交
4826 4827 4828 4829
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4830 4831 4832 4833 4834 4835
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4836
    out = helper.create_variable_for_type_inference(dtype)
4837 4838 4839 4840 4841
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4842
    return helper.append_activation(out)
4843 4844


Y
yuyang18 已提交
4845
@templatedoc()
4846 4847
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4848 4849 4850 4851 4852 4853 4854
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4855 4856

    Args:
Y
yuyang18 已提交
4857 4858
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4859 4860

    Returns:
Y
yuyang18 已提交
4861
        ${out_comment}.
4862 4863
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4864 4865 4866 4867 4868

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4869
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4870 4871 4872 4873 4874 4875
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4876 4877


4878 4879 4880
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
4881
                               ignore_index=-100,
4882 4883
                               numeric_stable_mode=False,
                               return_softmax=False):
4884 4885
    """
    **Softmax With Cross Entropy Operator.**
4886

4887 4888 4889 4890
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4891

4892 4893 4894
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4895

4896 4897 4898
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4899

4900
    The equation is as follows:
4901

4902
    1) Hard label (one-hot label, so every sample has exactly one class)
4903

4904 4905 4906 4907
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4908

4909 4910 4911
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4912

4913 4914 4915 4916
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
4917 4918 4919
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
4920

S
sneaxiy 已提交
4921 4922 4923 4924 4925 4926 4927 4928
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

4929 4930 4931 4932 4933 4934 4935 4936
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4937 4938
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4939
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
4940 4941 4942
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
4943 4944 4945
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
4946
                                    stable algorithm. Default: False
4947
        return_softmax (bool): A flag indicating whether to return the softmax
4948
                               along with the cross entropy loss. Default: False
4949

4950
    Returns:
4951 4952 4953 4954
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
4955
                              2-D tensor with shape [N x K].
4956 4957 4958 4959 4960 4961 4962

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4963 4964
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4965 4966
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4967 4968
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4969 4970 4971 4972 4973 4974
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
4975 4976 4977 4978 4979
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
4980 4981 4982 4983

    if return_softmax:
        return loss, softmax

4984 4985 4986 4987 4988
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4989 4990
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4991
    For each instance, it computes the smooth L1 loss element by element first
4992
    and then sums all the losses. So the shape of ouput Variable is
4993
    [batch_size, 1].
4994

4995 4996
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4997
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4998
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4999
            L1 loss op with same shape as :attr:`x`.
5000
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5001 5002
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5003
            by this tensor element by element.
5004
        outside_weight (Variable|None): A tensor with rank at least 2. This
5005 5006
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5007
            element by element.
5008
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5009 5010
           scalar with default value 1.0.

5011
    Returns:
5012
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5013 5014 5015 5016 5017

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5018 5019
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5020
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5021
            out = fluid.layers.smooth_l1(x=fc, y=label)
5022
    """
5023

5024
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5025 5026
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5039 5040 5041 5042


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5043
    This layer creates the one-hot representations for input indices.
5044 5045

    Args:
Y
Yibing Liu 已提交
5046 5047
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5048 5049

    Returns:
Y
Yibing Liu 已提交
5050
        Variable: The one-hot representations of input.
5051 5052

    Examples:
C
caoying03 已提交
5053
        .. code-block:: python
5054

Y
Yibing Liu 已提交
5055 5056
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5057 5058
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5059
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5060 5061 5062 5063 5064 5065
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5066 5067


Y
Yu Yang 已提交
5068
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5069
    """
Y
yi.wu 已提交
5070 5071 5072
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5073 5074 5075 5076 5077 5078

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5079 5080
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5081 5082 5083 5084 5085 5086

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5087 5088
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5089 5090
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5091 5092 5093 5094 5095
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5096
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5097
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5098 5099
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5100 5101
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5102 5103 5104
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5105 5106


5107
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5108
    """
C
caoying03 已提交
5109 5110
    Gives a new shape to the input Tensor without changing its data.

5111 5112 5113 5114 5115
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5116

5117
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5118

5119 5120 5121 5122
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5123
    2. 0 means the actual dimension value is going to be copied from the
5124 5125 5126 5127
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5128 5129

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5130
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5131
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5132

5133
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5134 5135
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5136 5137
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5138
    dimensions.
C
caoying03 已提交
5139

5140
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5141 5142 5143 5144
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5145 5146

    Args:
5147
        x(variable): The input tensor.
C
caoying03 已提交
5148 5149
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5150 5151 5152 5153 5154
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5155 5156
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5157 5158 5159 5160 5161 5162 5163
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5164
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5165

5166
    Returns:
G
guosheng 已提交
5167 5168 5169 5170
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5171

X
Xin Pan 已提交
5172 5173 5174
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5175 5176
    Examples:
        .. code-block:: python
G
guosheng 已提交
5177

5178
            data = fluid.layers.data(
5179
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5180
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5181
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5182 5183 5184
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5185
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5186 5187 5188 5189 5190
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5191

5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5207
    helper = LayerHelper("reshape2", **locals())
5208 5209
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5210
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5211
    helper.append_op(
5212
        type="reshape2",
X
Xin Pan 已提交
5213
        inputs=inputs,
D
dzhwinter 已提交
5214
        attrs={"shape": shape},
5215 5216
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5217

D
dzhwinter 已提交
5218
    return helper.append_activation(out)
5219

5220

5221
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5222
    """
M
minqiyang 已提交
5223 5224 5225
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5226
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5227

Y
Yibing Liu 已提交
5228 5229
    Examples:
    Case 1:
M
minqiyang 已提交
5230
      Given
Y
Yibing Liu 已提交
5231 5232 5233 5234 5235 5236 5237 5238
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5239
        and
Y
Yibing Liu 已提交
5240 5241 5242
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5243

Y
Yibing Liu 已提交
5244
    Args:
5245
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5246
        axes (list): List of integers, indicating the dimensions to be squeezed.
5247
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5248 5249 5250 5251 5252 5253 5254 5255

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5256
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5257 5258
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5259 5260
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5261
    helper.append_op(
5262
        type="squeeze2",
5263
        inputs={"X": input},
Y
Yibing Liu 已提交
5264
        attrs={"axes": axes},
5265 5266
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5267

5268 5269 5270
    return out


5271
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5272
    """
M
minqiyang 已提交
5273 5274 5275
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5276

M
minqiyang 已提交
5277 5278
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5279
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5280

Y
Yibing Liu 已提交
5281
    Args:
5282
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5283
        axes (list): List of integers, indicating the dimensions to be inserted.
5284
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5285 5286 5287 5288 5289 5290 5291 5292

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5293
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5294 5295
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5296 5297
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5298
    helper.append_op(
5299
        type="unsqueeze2",
5300
        inputs={"X": input},
Y
Yibing Liu 已提交
5301
        attrs={"axes": axes},
5302 5303
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5304

5305 5306
    return out

5307

Y
yangyaming 已提交
5308
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5309
    """
Y
Yibing Liu 已提交
5310
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5311 5312 5313 5314
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5315
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5316 5317 5318 5319 5320 5321

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5322
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5323 5324 5325
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5326
            target_lod: [4, 2]
Y
yangyaming 已提交
5327 5328

            then we get a 1-level LoDTensor:
5329
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5330 5331 5332 5333 5334 5335
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5336
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5337 5338 5339 5340
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5341
                y.data = [[2, 4]]
Y
yangyaming 已提交
5342 5343 5344
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5345
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5346 5347 5348 5349 5350 5351
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5352
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5353 5354 5355 5356
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5357
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5358 5359 5360 5361
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5362
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5363 5364 5365 5366 5367
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5368
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5369
                           from :attr:`y`.
Y
yangyaming 已提交
5370
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5371
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5372 5373

    Returns:
Y
Yibing Liu 已提交
5374
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5375 5376

    Raises:
Y
Yibing Liu 已提交
5377
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5378 5379 5380 5381 5382 5383 5384 5385 5386

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5387
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5413
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5442 5443
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5456 5457 5458
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5472 5473 5474 5475


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5476
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5477
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5478

G
guosheng 已提交
5479 5480 5481 5482
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5505
                         The length of :attr:paddings must be
G
guosheng 已提交
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5516

G
guosheng 已提交
5517 5518 5519 5520 5521 5522
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5523
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5524 5525 5526 5527 5528 5529 5530
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5531 5532


C
chengduo 已提交
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5603
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5604 5605 5606 5607 5608 5609 5610 5611 5612
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5613 5614 5615 5616 5617 5618 5619
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5620 5621
    called label-smoothing regularization (LSR).

5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5645
                              be :math:`(1, class\_num)`.
5646 5647
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5648
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5668
    smooth_label = helper.create_variable_for_type_inference(dtype)
5669 5670 5671 5672 5673 5674 5675
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5676 5677


W
wopeizl 已提交
5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5714 5715


J
jerrywgz 已提交
5716 5717 5718 5719 5720 5721
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5722 5723
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5740 5741 5742
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5743 5744 5745 5746 5747 5748
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5749
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5790 5791
        .. code-block:: python

W
whs 已提交
5792 5793 5794 5795
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5796
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5797 5798 5799 5800 5801 5802
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5803 5804


5805 5806 5807 5808
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
5809 5810
                 resample='BILINEAR',
                 actual_shape=None):
5811
    """
Q
qiaolongfei 已提交
5812
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5813

5814
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5815 5816 5817
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5818

5819
        'BILINEAR' : Bilinear interpolation
5820
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
5821

5822
    Args:
5823
        input (Variable): The input tensor of image resize layer,
5824 5825
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5826
        out_shape(list|tuple|Variable|None): Output shape of image resize
5827 5828
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5829
        scale(float|None): The multiplier for the input height or width.
5830 5831 5832
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5833 5834
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5835
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
5836
                       currently.
5837
                       Default: 'BILINEAR'
5838 5839 5840
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
5841
                                :attr:`out_shape` and :attr:`scale` specifying
5842 5843 5844 5845 5846 5847 5848
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
5849 5850
                                constructing stage.
                                Default: None
5851 5852

    Returns:
Q
update  
qiaolongfei 已提交
5853 5854
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5855

5856 5857 5858
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
5859
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
5860 5861 5862 5863
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

5864 5865 5866
    Examples:
        .. code-block:: python

5867
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
5868
    """
5869 5870 5871 5872
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
5873 5874
    if resample not in resample_methods:
        raise ValueError(
5875
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
5876
        )
5877
    resample_type = resample_methods[resample]
5878
    if out_shape is None and scale is None:
5879
        raise ValueError("One of out_shape and scale must not be None.")
5880
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
5881
    dtype = helper.input_dtype()
5882 5883 5884 5885

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5886 5887 5888
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5889
    if out_shape is not None:
5890 5891 5892 5893
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
5894
            inputs['OutSize'] = out_shape
5895 5896 5897 5898 5899 5900 5901 5902
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
5903 5904 5905 5906
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5907 5908 5909 5910 5911
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
5912
    out = helper.create_variable_for_type_inference(dtype)
5913
    helper.append_op(
5914
        type='{}_interp'.format(resample_type),
5915
        inputs=inputs,
5916
        outputs={"Out": out},
5917 5918 5919
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
5920
    return out
F
stash  
fengjiayi 已提交
5921 5922


5923
@templatedoc(op_type="bilinear_interp")
5924 5925 5926 5927 5928
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
5929
    """
5930 5931
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
5932 5933
    in priority order.

5934 5935 5936 5937
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
5938 5939
    again in the other direction.

5940
    For details of bilinear interpolation, please refer to Wikipedia:
5941
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
5942 5943 5944 5945 5946

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5947

Y
yuyang18 已提交
5948 5949 5950 5951 5952
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5953 5954 5955
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
5956
                                :attr:`out_shape` and :attr:`scale` specifying
5957 5958 5959 5960 5961 5962 5963
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
5964 5965
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5966 5967 5968

    Returns:
        ${out_comment}.
5969 5970 5971 5972 5973

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
5974 5975
    """

5976
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
5977 5978


5979
@templatedoc(op_type="nearest_interp")
5980 5981 5982 5983 5984
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
5985
    """
5986
    Resize input by performing nearest neighbor interpolation in both the
5987 5988
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
5989 5990
    out_shape and scale in priority order.

5991
    For details of nearest neighbor interpolation, please refer to Wikipedia:
5992
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
5993 5994 5995 5996 5997

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5998

Y
yuyang18 已提交
5999 6000 6001 6002 6003
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6004 6005 6006
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6007
                                :attr:`out_shape` and :attr:`scale` specifying
6008 6009 6010 6011 6012 6013 6014
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6015 6016
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6017 6018 6019

    Returns:
        ${out_comment}.
6020 6021 6022 6023 6024

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6025 6026
    """

6027
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6028 6029 6030 6031


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6032 6033 6034
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6035 6036 6037 6038 6039 6040 6041
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6042
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6043

6044
    Returns:
Q
update  
qiaolongfei 已提交
6045
        Variable: The output is a 4-D tensor of the shape
6046
        (num_batches, channls, out_h, out_w).
6047 6048 6049 6050 6051 6052 6053 6054 6055 6056
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6057 6058 6059
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6060 6061 6062
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6063 6064
def gather(input, index):
    """
Q
qiaolongfei 已提交
6065 6066
    **Gather Layer**

6067
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6068 6069 6070 6071
    of X indexed by `index` and concatenate them together.

    .. math::

6072
        Out = X[Index]
W
whs 已提交
6073 6074 6075 6076 6077 6078 6079


    .. code-block:: text


                Given:

6080 6081
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6082 6083 6084 6085 6086 6087 6088 6089 6090 6091
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6092
        input (Variable): The source input with rank>=1.
W
whs 已提交
6093 6094 6095 6096 6097 6098
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6099

W
whs 已提交
6100 6101 6102 6103 6104 6105
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6106
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6107 6108 6109 6110 6111 6112 6113 6114
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6146
    out = helper.create_variable_for_type_inference(dtype)
6147 6148 6149 6150 6151 6152 6153 6154 6155
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6206
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6207 6208 6209 6210 6211 6212 6213 6214 6215
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6229

6230 6231 6232
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6233
    """
F
stash  
fengjiayi 已提交
6234
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6235
    dtype = x.dtype
X
Xin Pan 已提交
6236
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6237
    if seed is None:
6238
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6239
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6240
    if isinstance(seed, int):
F
fengjiayi 已提交
6241 6242 6243 6244 6245
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6246 6247 6248 6249
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6250
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6251 6252
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6253 6254
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6255
    return out
W
whs 已提交
6256 6257


6258
def log(x, name=None):
W
wanghaoshuang 已提交
6259 6260 6261 6262 6263
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6264
        Out = \\ln(x)
W
wanghaoshuang 已提交
6265 6266

    Args:
6267
        x (Variable): Input tensor.
6268 6269
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6270 6271 6272 6273 6274 6275 6276 6277

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6278
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6279 6280
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6281
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6282
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6283
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6284 6285 6286
    return out


6287
def relu(x, name=None):
W
wanghaoshuang 已提交
6288 6289
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6290
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6291 6292 6293 6294
    the tensor elementwise.

    .. math::

6295
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6296 6297

    Args:
6298
        x (Variable): The input tensor.
6299 6300
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6301 6302 6303 6304 6305 6306 6307 6308

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6309
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6310 6311
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6312
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6313
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6314
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6315
    return out
6316 6317


C
chengduo 已提交
6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6359 6360 6361
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6362 6363 6364 6365
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6366
    .. math::
6367 6368

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6369

6370
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6371 6372 6373 6374 6375
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6376
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6377
                           Its shape should be the same as input.
6378
        num_classes (int): The possible number of labels.
W
whs 已提交
6379 6380 6381 6382

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6383
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6384 6385 6386 6387

    Examples:

        .. code-block:: python
6388

W
whs 已提交
6389 6390 6391 6392
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6393 6394 6395
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6396 6397
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6398 6399
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6400
        outputs={
W
whs 已提交
6401 6402 6403
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6404 6405 6406
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6481
                    isinstance(shape, Variable)):
6482 6483 6484 6485 6486
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6487
    out = helper.create_variable_for_type_inference(x.dtype)
6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6505 6506


W
whs 已提交
6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6524

W
whs 已提交
6525
              out_shape = [2, 3, 5, 5]
6526

W
whs 已提交
6527
          Step 1:
6528

W
whs 已提交
6529 6530 6531
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6532

W
whs 已提交
6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
        isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6625 6626 6627 6628 6629 6630 6631 6632
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6633

6634 6635
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6636

6637 6638 6639 6640
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6641

6642 6643 6644 6645 6646
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6647 6648 6649

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6685
    out = helper.create_variable_for_type_inference("float32")
6686 6687 6688 6689 6690 6691 6692 6693

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6694 6695


M
minqiyang 已提交
6696 6697
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6698
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6699
    which compares left score and right score passed in.
M
minqiyang 已提交
6700
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6701 6702 6703 6704 6705 6706

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6707
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6708 6709
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6710
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6711 6712 6713
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6714
       Variable: The ranking loss.
M
minqiyang 已提交
6715
    Raises:
M
minqiyang 已提交
6716
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6717 6718 6719 6720 6721 6722 6723
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6724
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6725 6726 6727 6728 6729 6730
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6731 6732
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6758

W
whs 已提交
6759 6760
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6761

W
whs 已提交
6762
      Case 0:
M
minqiyang 已提交
6763

W
whs 已提交
6764 6765 6766
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6767

W
whs 已提交
6768 6769 6770
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6771

W
whs 已提交
6772
      Case 1:
M
minqiyang 已提交
6773

W
whs 已提交
6774 6775
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6776

W
whs 已提交
6777 6778 6779
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6780

W
whs 已提交
6781
      Case 2:
M
minqiyang 已提交
6782

W
whs 已提交
6783 6784
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6785

W
whs 已提交
6786 6787 6788
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6789 6790


W
whs 已提交
6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6817
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
6844 6845 6846 6847 6848

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
6849 6850
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
6851 6852
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6853
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
6874 6875 6876 6877 6878

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
6879 6880
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
6881 6882
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6883
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
6904 6905 6906 6907 6908

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
6909 6910
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
6911 6912
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6913
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
6935 6936 6937 6938 6939

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
6940
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
6941
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
6942 6943
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6944
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
6967 6968 6969 6970 6971

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
6972 6973
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
6974 6975
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6976
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
6998 6999 7000 7001 7002

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7003 7004
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7005 7006
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7007
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7008 7009 7010 7011 7012 7013 7014 7015
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7016 7017 7018 7019
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7020
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7021 7022 7023

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7024 7025
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                       weight (alpha).
J
jerrywgz 已提交
7026 7027 7028 7029
        mode (string): The mode for weight sharing. It supports all, channel
                       and element. all: all elements share same weight
                       channel:elements in a channel share same weight
                       element:each element has a weight
J
jerrywgz 已提交
7030
        name(str|None): A name for this layer(optional). If set None, the layer
J
jerrywgz 已提交
7031
                       will be named automatically.
J
jerrywgz 已提交
7032 7033 7034 7035 7036 7037 7038 7039

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7040
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7054
        attr=helper.param_attr,
J
jerrywgz 已提交
7055 7056 7057 7058
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7059
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7060 7061 7062 7063 7064 7065 7066 7067 7068
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7069 7070 7071 7072 7073 7074 7075 7076 7077 7078
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7079
    Returns:
7080
        output(${out_type}): ${out_comment}
7081 7082 7083 7084 7085 7086 7087

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7088 7089
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7090
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7109
    Returns:
7110
        output(${out_type}): ${out_comment}
7111 7112 7113 7114 7115 7116 7117

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7118 7119
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7120
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7138
    Returns:
7139
        output(${out_type}): ${out_comment}
7140 7141 7142 7143 7144 7145 7146

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7147 7148
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7149
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7150 7151 7152 7153 7154 7155 7156 7157
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7171

7172 7173 7174 7175 7176 7177 7178 7179 7180 7181
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7182 7183
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7199
        ValueError: If axis is not in range [0, rank(x)].
7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7216 7217
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7218
    helper.append_op(
7219
        type='flatten2',
7220
        inputs={"X": x},
7221 7222
        outputs={'Out': out,
                 'XShape': x_shape},
7223 7224
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7225 7226


C
chenweihang 已提交
7227
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7228
    """
C
chenweihang 已提交
7229
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7230
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7231 7232
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7233

C
chenweihang 已提交
7234 7235 7236 7237
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7238
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7239 7240 7241 7242 7243 7244
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7245
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7246 7247 7248
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7249 7250 7251
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7263 7264
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7265 7266 7267 7268 7269 7270
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7271
    return out
7272

7273

S
sneaxiy 已提交
7274 7275 7276 7277 7278 7279 7280 7281 7282
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7283

S
sneaxiy 已提交
7284
    .. math::
7285

S
sneaxiy 已提交
7286 7287 7288
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7289
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7290 7291 7292 7293
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7294 7295 7296
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7297 7298
    Returns:
        Variable: The output sequence mask.
7299

S
sneaxiy 已提交
7300 7301
    """

Q
qingqing01 已提交
7302
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7303
    if name is None:
X
Xin Pan 已提交
7304
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7305
    else:
X
Xin Pan 已提交
7306
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7307

Q
qingqing01 已提交
7308 7309 7310
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7311 7312
        outputs={'Y': out},
        attrs={
7313
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7314 7315 7316
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7317 7318


X
Xin Pan 已提交
7319
def stack(x, axis=0):
S
sneaxiy 已提交
7320 7321 7322 7323
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7324 7325 7326 7327 7328 7329 7330

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7331
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7332
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7333 7334

    Args:
7335
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7336
        axis (int|None): The axis along which all inputs are stacked.
7337

S
sneaxiy 已提交
7338 7339
    Returns:
        Variable: The stacked variable.
7340

S
sneaxiy 已提交
7341 7342
    """

X
Xin Pan 已提交
7343 7344 7345 7346 7347 7348
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7349
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7350
    helper.append_op(
S
sneaxiy 已提交
7351 7352
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7353

X
Xin Pan 已提交
7354
    return out
D
dzhwinter 已提交
7355 7356 7357 7358 7359 7360 7361


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7362

D
dzhwinter 已提交
7363 7364 7365
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7366
    raised.
D
dzhwinter 已提交
7367 7368

    Args:
M
minqiyang 已提交
7369
        x (Variable): Input variable.
D
dzhwinter 已提交
7370 7371
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7372

D
dzhwinter 已提交
7373 7374
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7375

D
dzhwinter 已提交
7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7387
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7388 7389 7390 7391 7392 7393 7394 7395

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7408

W
whs 已提交
7409 7410 7411 7412
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7413

W
whs 已提交
7414
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7415

W
whs 已提交
7416
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7417

W
whs 已提交
7418 7419 7420 7421
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7422

W
whs 已提交
7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7439
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7440 7441 7442 7443 7444 7445
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7446 7447


G
fix  
gongweibao 已提交
7448 7449 7450
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7451
@templatedoc()
G
fix  
gongweibao 已提交
7452 7453 7454 7455 7456 7457 7458 7459 7460
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7461
    ${comment}
G
fix  
gongweibao 已提交
7462 7463

    Args:
G
gongweibao 已提交
7464 7465 7466
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7467
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7468 7469 7470
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7471 7472
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7473
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7474 7475 7476 7477

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7478
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7495 7496


G
gongweibao 已提交
7497
@templatedoc()
X
Xin Pan 已提交
7498
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7499
    """
G
gongweibao 已提交
7500
    ${comment}
G
fix  
gongweibao 已提交
7501 7502

    Args:
G
gongweibao 已提交
7503 7504 7505 7506
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7507 7508 7509
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7510
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7511 7512 7513 7514

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7515
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7516 7517 7518 7519 7520 7521 7522 7523 7524 7525
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7526
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7527 7528 7529 7530 7531
        })

    return out


G
gongweibao 已提交
7532
@templatedoc()
G
fix  
gongweibao 已提交
7533
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7534
    """
G
gongweibao 已提交
7535
    ${comment}
G
fix  
gongweibao 已提交
7536 7537

    Args:
G
gongweibao 已提交
7538 7539 7540 7541
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7542
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7543 7544

    Returns:
G
gongweibao 已提交
7545
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7546 7547 7548 7549

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7550
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7562
@templatedoc()
G
fix  
gongweibao 已提交
7563 7564 7565 7566 7567 7568 7569 7570 7571
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7572
    ${comment}
G
fix  
gongweibao 已提交
7573 7574

    Args:
G
gongweibao 已提交
7575 7576
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7577
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7578 7579 7580 7581
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7582
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7583 7584

    Returns:
G
gongweibao 已提交
7585
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7586 7587 7588
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7589
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7608
@templatedoc()
X
Xin Pan 已提交
7609
def sum(x):
G
fix  
gongweibao 已提交
7610
    """
G
gongweibao 已提交
7611
    ${comment}
G
fix  
gongweibao 已提交
7612 7613

    Args:
G
gongweibao 已提交
7614
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7615 7616

    Returns:
G
gongweibao 已提交
7617
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7618 7619 7620
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7621 7622
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7623 7624 7625 7626
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7627
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7628 7629 7630 7631

    return out


G
gongweibao 已提交
7632
@templatedoc()
G
fix  
gongweibao 已提交
7633 7634
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7635
    ${comment}
G
fix  
gongweibao 已提交
7636 7637

    Args:
G
gongweibao 已提交
7638 7639 7640 7641
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7642 7643

    Returns:
G
gongweibao 已提交
7644
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7645 7646 7647 7648

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7649 7650
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7662
@templatedoc()
G
fix  
gongweibao 已提交
7663 7664
def shape(input):
    """
G
gongweibao 已提交
7665
    ${comment}
G
fix  
gongweibao 已提交
7666 7667

    Args:
G
gongweibao 已提交
7668
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7669 7670

    Returns:
G
gongweibao 已提交
7671
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7672 7673 7674 7675

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7676 7677
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7678
    helper.append_op(
G
fix  
gongweibao 已提交
7679
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7680 7681

    return out
G
merge  
gongweibao 已提交
7682 7683


S
sneaxiy 已提交
7684 7685 7686 7687 7688 7689 7690 7691
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7692 7693
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7694
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7695 7696 7697
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7698

S
sneaxiy 已提交
7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7710
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7711 7712 7713 7714 7715 7716 7717 7718
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7719
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7720
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7721 7722 7723 7724 7725 7726

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7727
    if name is None:
X
Xin Pan 已提交
7728
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7729 7730 7731
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7732 7733 7734 7735 7736 7737 7738 7739 7740 7741

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7742
    return helper.append_activation(out)
S
sneaxiy 已提交
7743 7744


X
Xin Pan 已提交
7745
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7746 7747 7748
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7749
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7750 7751 7752
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7753
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7754 7755 7756
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7757
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7758 7759 7760
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7761
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7762 7763 7764
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7765
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7766 7767 7768
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7769
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7781 7782
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7783
        ])
M
minqiyang 已提交
7784 7785


7786
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7787 7788
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7789 7790
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7791 7792 7793

    if out is None:
        if name is None:
X
Xin Pan 已提交
7794
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7810
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7822 7823 7824 7825 7826 7827 7828 7829 7830

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
7831 7832 7833 7834 7835 7836 7837
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7838
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7850 7851 7852 7853 7854 7855 7856 7857 7858

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
7859 7860 7861 7862 7863 7864 7865
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7866
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7878 7879 7880 7881 7882 7883 7884 7885 7886

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
7887 7888 7889 7890 7891 7892 7893
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7894
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7895 7896 7897 7898 7899 7900 7901 7902 7903 7904
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7905 7906 7907 7908 7909 7910 7911

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
7912 7913 7914 7915
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7931 7932 7933 7934 7935 7936 7937

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
7938 7939 7940 7941 7942
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
7943 7944 7945 7946
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7970 7971 7972 7973 7974 7975 7976

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
7977 7978 7979 7980 7981
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
7982 7983 7984 7985
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7986 7987 7988 7989 7990 7991 7992 7993

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8012
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8042
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8043 8044 8045 8046 8047 8048 8049 8050 8051
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8052 8053
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8076
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8106
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8107 8108 8109 8110 8111 8112 8113 8114 8115 8116
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8117 8118


J
JiabinYang 已提交
8119
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8120
    """
J
JiabinYang 已提交
8121
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8122 8123 8124

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8125
    The attr blocksize indicates the input block size.
8126 8127

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8128
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8129 8130

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8131
    (but keeping all data)
J
JiabinYang 已提交
8132

J
JiabinYang 已提交
8133
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8134
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8135 8136 8137 8138 8139
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8140
    Args:
J
JiabinYang 已提交
8141
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8142
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8143 8144

    Returns:
J
JiabinYang 已提交
8145
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8146 8147

    Raises:
J
JiabinYang 已提交
8148
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8149 8150 8151 8152 8153 8154

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8155
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8156
                x=data, blocksize=2)
J
JiabinYang 已提交
8157 8158
    """

J
JiabinYang 已提交
8159
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8160

J
JiabinYang 已提交
8161 8162
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8163 8164

    if name is None:
J
JiabinYang 已提交
8165 8166
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8167 8168 8169 8170 8171
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8172
        type="space_to_depth",
J
JiabinYang 已提交
8173
        inputs={"X": x},
J
JiabinYang 已提交
8174
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8175
        outputs={"Out": out})
J
JiabinYang 已提交
8176 8177
    return out

J
JiabinYang 已提交
8178

S
sneaxiy 已提交
8179 8180
@templatedoc()
def sequence_reverse(x, name=None):
8181
    """
S
sneaxiy 已提交
8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8193
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8194 8195 8196 8197 8198 8199 8200 8201 8202 8203
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8204 8205


8206 8207 8208 8209 8210 8211
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8212

8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8232
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8245 8246


B
barrierye 已提交
8247
def similarity_focus(input, axis, indexes, name=None):
8248
    """
B
barrierye 已提交
8249
    SimilarityFocus Operator
B
barrierye 已提交
8250 8251

    Generate a similarity focus mask with the same shape of input using the following method:
8252 8253 8254
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8255
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8256 8257 8258 8259 8260 8261 8262
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8263
       each index.
B
barrierye 已提交
8264 8265 8266 8267
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8317
    Args:
8318
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8319
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8320
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8321
            1, 2 or 3.
B
barrierye 已提交
8322
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8323 8324

    Returns:
8325
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8326
            as the input.
8327

B
barrierye 已提交
8328 8329 8330
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8331 8332
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8345 8346 8347 8348 8349
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8350 8351 8352 8353 8354 8355 8356
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8357 8358


M
minqiyang 已提交
8359 8360
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8361 8362
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8363 8364
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8403
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8404
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8405 8406 8407 8408 8409 8410 8411 8412 8413

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8414 8415
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8416 8417
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8418 8419 8420 8421 8422 8423 8424
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8425 8426


D
dengkaipeng 已提交
8427
@templatedoc()
8428 8429
def grid_sampler(x, grid, name=None):
    """
8430
    This operation samples input X by using bilinear interpolation based on
8431
    flow field grid, which is usually gennerated by affine_grid. The grid of
8432 8433 8434 8435
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8436
    interpolation value of 4 nearest corner points.
8437 8438 8439 8440 8441 8442 8443 8444

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8445
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8475 8476

    Args:
8477 8478 8479
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8480 8481

    Returns:
8482
        out(Variable): Output of shape [N, C, H, W] data samples input X
8483 8484 8485 8486 8487 8488 8489 8490 8491
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8492 8493 8494 8495 8496 8497 8498 8499 8500
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8501
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8502 8503
    ipts = {'X': x, 'Grid': grid}

8504
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8505 8506 8507
    return out


G
gmcather 已提交
8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8602 8603 8604 8605 8606 8607 8608 8609 8610 8611


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8612
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8613

Q
Qiao Longfei 已提交
8614
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8615 8616 8617
    For example:

    .. math::
8618
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8619

Q
Qiao Longfei 已提交
8620
    In this formula:
8621 8622
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8623
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8624
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8625 8626 8627
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8628 8629
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8630 8631 8632
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8633
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8634
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8635
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8636 8637 8638 8639
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8640
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8641 8642 8643 8644

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
8645
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8646 8647
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8648
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8649 8650 8651 8652

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
8653
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)