nn.py 295.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
P
peizhilin 已提交
17
import os
S
sneaxiy 已提交
18
import inspect
19 20 21 22 23
import warnings

import numpy as np

import paddle
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from paddle.fluid.framework import _in_legacy_dygraph
26
from ..initializer import Normal, Constant
27 28 29 30 31 32 33 34 35 36 37 38 39
from ..framework import (
    Variable,
    OpProtoHolder,
    _non_static_mode,
    dygraph_only,
    _dygraph_tracer,
    default_main_program,
    _varbase_creator,
    static_only,
    _global_flags,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
40
from ..framework import _current_expected_place
41
from .. import dygraph_utils
Y
yangyaming 已提交
42
from ..param_attr import ParamAttr
43 44 45 46 47
from .layer_function_generator import (
    autodoc,
    templatedoc,
    _generate_doc_string_,
)
48
from .tensor import concat, assign, fill_constant, zeros, tensor_array_to_tensor
49
from . import utils
F
fengjiayi 已提交
50
from .. import unique_name
51
from functools import reduce
52
from .. import core
53
from ...utils import deprecated
54 55 56 57 58 59
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
60
from paddle.utils import deprecated
61
from paddle import _C_ops, _legacy_C_ops
62 63
from collections.abc import Iterable

Y
Yu Yang 已提交
64 65

__all__ = [
X
Xin Pan 已提交
66 67 68 69 70 71 72 73 74
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'conv2d',
    'softmax',
    'pool2d',
    'batch_norm',
    'reduce_mean',
Z
zhoukunsheng 已提交
75 76
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
77 78 79 80 81 82 83 84 85 86
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'l2_normalize',
    'matmul',
    'topk',
    'im2sequence',
    'row_conv',
    'multiplex',
    'layer_norm',
D
dengkaipeng 已提交
87
    'spectral_norm',
X
Xin Pan 已提交
88 89 90 91 92 93 94 95
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'unsqueeze',
    'lod_reset',
    'pad',
    'image_resize',
    'resize_bilinear',
K
Kaipeng Deng 已提交
96
    'resize_trilinear',
97
    'resize_nearest',
X
Xin Pan 已提交
98
    'relu',
Z
zhoukunsheng 已提交
99
    'unique',
100
    'unique_with_counts',
X
Xin Pan 已提交
101 102 103 104 105 106 107 108 109 110 111
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'gaussian_random',
    'sampling_id',
    'shape',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
M
minqiyang 已提交
112
    'hash',
D
dengkaipeng 已提交
113
    'grid_sampler',
G
gmcather 已提交
114
    'log_loss',
Q
Qiao Longfei 已提交
115
    'bilinear_tensor_product',
C
chengduo 已提交
116 117
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
118
    'temporal_shift',
S
sneaxiy 已提交
119
    'py_func',
R
ruri 已提交
120
    'pixel_shuffle',
121
    'fsp_matrix',
H
heqiaozhi 已提交
122
    'continuous_value_model',
Z
zhoukunsheng 已提交
123
    'where',
Z
zhoukunsheng 已提交
124
    'sign',
125
    'unfold',
C
cjt222 已提交
126
    'deformable_roi_pooling',
127
    'shard_index',
H
huangjun12 已提交
128
    'hard_swish',
K
Kaipeng Deng 已提交
129
    'mish',
130
    'uniform_random',
myq406450149's avatar
myq406450149 已提交
131
    'unbind',
Y
Yu Yang 已提交
132 133
]

134
OP_NAMEMAPPING = {
135 136 137 138 139 140 141 142
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
143
    'elementwise_mod': 'remainder',
144 145
}

Y
Yu Yang 已提交
146

147 148
def _get_reduce_dim(dim, input):
    """
149
    Internal function for reduce_sum, reduce_mean, reduce_prod.
150 151 152 153 154 155 156 157 158
    It computes the attribute reduce_all value based on axis.
    """
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, (tuple, range)):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
159 160 161 162
                "The type of dim must be int, list, tuple or range, but received {}".format(
                    type(axis)
                )
            )
163 164 165 166 167 168 169 170 171 172
    if dim is None:
        dim = []
    if dim == [] or len(dim) == len(input.shape):
        reduce_all = True
    else:
        reduce_all = False

    return reduce_all, dim


173
@dygraph_only
174 175 176
def _elementwise_op_in_dygraph(
    x, y, axis=-1, act=None, use_mkldnn=False, op_name=None
):
177 178 179 180
    def is_inplace(op_name):
        return op_name[-1] == "_"

    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
181
        op = getattr(_legacy_C_ops, op_name)
182 183 184
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
    else:
        if in_dygraph_mode():
185 186
            op = getattr(
                _C_ops,
187 188
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name,
            )
189 190 191
            out = op(x, y)

        if _in_legacy_dygraph():
192
            op = getattr(_legacy_C_ops, op_name)
193
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
194 195 196 197 198 199 200 201 202 203 204 205 206 207
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn
    )


def fc(
    input,
    size,
    num_flatten_dims=1,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
208
    r"""
209 210
    :api_attr: Static Graph

211
    **Fully Connected Layer**
Y
Yu Yang 已提交
212

213 214 215
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
216
    which represents a fully connected weight matrix from each input unit to
217 218 219 220
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
221
    is not None, a bias variable will be created and added to the output.
222
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
223

224
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
225

226 227 228 229
    .. math::

        Out = Act({XW + b})

230
    When the input is a list of Tensor(or LoDTensor):
231 232 233

    .. math::

234
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
235 236 237

    In the above equation:

238 239 240
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
241
    * :math:`b`: The bias parameter created by this layer (if needed).
242
    * :math:`Act`: The activation function.
243
    * :math:`Out`: The output Tensor.
244 245 246

    .. code-block:: text

247 248 249 250 251 252 253 254 255 256 257 258 259 260
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
261 262 263 264 265 266 267 268 269 270 271 272 273
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
274
    Args:
275 276 277
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
278
        size(int): The number of output units in this layer, which also means the feature size of output
279 280
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
281
            two dimensions. If this happens, the multidimensional tensor will first be flattened
282 283
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
284
            dimensions will be flatten to form the first dimension of the final matrix (height of
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
300 301

    Raises:
302
        ValueError: If dimensions of the input Tensor is less than 2.
303 304 305 306

    Examples:
        .. code-block:: python

307
          import paddle.fluid as fluid
308 309
          import paddle
          paddle.enable_static()
310
          # when input is single tensor
311
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
312
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
313 314

          # when input are multiple tensors
315 316
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
317
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
318
    """
C
caoying03 已提交
319
    helper = LayerHelper("fc", **locals())
320
    check_type(input, 'input', (list, tuple, Variable), 'fc')
321 322
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
323
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
324
    dtype = helper.input_dtype()
325 326 327
    check_dtype(
        dtype, 'input', ['float16', 'uint16', 'float32', 'float64'], 'fc'
    )
Y
Yu Yang 已提交
328
    mul_results = []
329 330
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
331 332
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
333 334 335
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
336

337 338 339
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False
        )
X
Xin Pan 已提交
340
        tmp = helper.create_variable_for_type_inference(dtype)
341 342 343 344 345 346
        helper.append_op(
            type="mul",
            inputs={"X": input_var, "Y": w},
            outputs={"Out": tmp},
            attrs={"x_num_col_dims": num_flatten_dims, "y_num_col_dims": 1},
        )
347 348 349 350
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
351
    else:
X
Xin Pan 已提交
352
        pre_bias = helper.create_variable_for_type_inference(dtype)
353 354 355 356 357 358
        helper.append_op(
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": False},
        )
359 360 361 362
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
363 364


T
tangwei12 已提交
365
@deprecated(since="2.0.0", update_to="paddle.nn.functional.embedding")
366 367 368 369 370 371 372 373 374
def embedding(
    input,
    size,
    is_sparse=False,
    is_distributed=False,
    padding_idx=None,
    param_attr=None,
    dtype='float32',
):
375
    r"""
376
    :api_attr: Static Graph
377

378 379 380 381 382 383 384 385 386 387 388 389
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

390
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
408

409 410 411 412
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
413

414
        Case 2:
415

416 417 418 419 420 421 422 423 424 425 426 427 428 429
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
430 431

    Args:
432 433 434 435 436 437
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
438
            affects the performance of the backwards gradient update. It is recommended to set
439
            True because sparse update is faster. But some optimizer does not support sparse update,
440
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
441 442 443 444 445
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
446
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
447 448 449 450 451 452
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
453
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
454
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
455
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
456 457 458
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
459

460
    Returns:
461
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
462

463 464
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
465

B
bdzhuxiaoning 已提交
466
          import paddle.fluid as fluid
467
          import numpy as np
468 469
          import paddle
          paddle.enable_static()
470

471 472
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
473
          # example 1
474 475 476 477 478 479 480 481 482
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
483
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
Y
Yu Yang 已提交
484 485 486
    """

    helper = LayerHelper('embedding', **locals())
487 488 489 490 491 492 493 494 495
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.layers.embedding'
    )
    check_dtype(
        dtype,
        'dtype',
        ['uint16', 'float16', 'float32', 'float64'],
        'fluid.layers.embedding',
    )
496 497 498 499 500 501 502 503 504

    if is_distributed:
        is_distributed = False
        warnings.warn(
            "is_distributed is go out of use, `fluid.contrib.layers.sparse_embedding` is your needed"
        )

    remote_prefetch = True if is_sparse else False

505 506 507
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
X
Xin Pan 已提交
508
    tmp = helper.create_variable_for_type_inference(dtype)
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'remote_prefetch': remote_prefetch,
            'padding_idx': padding_idx,
        },
    )
Y
Yu Yang 已提交
527 528 529
    return tmp


530 531 532 533 534 535 536 537 538 539 540
def _pull_sparse(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
541
    r"""
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
587
        'is_distributed': True,
588 589
    }
    # this is only for compatible with embedding op
590 591 592 593 594 595 596 597 598
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
599 600 601 602 603
    if len(outs) == 1:
        return outs[0]
    return outs


604 605 606 607 608 609 610 611 612 613 614
def _pull_sparse_v2(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
615
    r"""
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
661
        'is_distributed': True,
662 663
    }
    # this is only for compatible with embedding op
664 665 666 667 668 669 670 671 672
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
673
    if len(outs) == 1:
Y
yaoxuefeng 已提交
674 675 676 677
        return outs[0]
    return outs


678 679 680
def _pull_gpups_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
Y
yaoxuefeng 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
    r"""
    **Pull GpuPS Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    GpuPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int|list of int): The embedding size parameter of each input, which indicates the size of
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs, whose size are indicated by size respectively.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          slots = []
          data_1 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_1)
          data_2 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_2)
          embs = fluid.layers.pull_gpups_sparse(input=slots, size=[11, 35])
    """
    helper = LayerHelper('pull_gpups_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
714 715 716
            "GpuPS only support float type embedding now, and your type is: "
            + dtype
        )
Y
yaoxuefeng 已提交
717 718 719 720 721 722
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
723 724 725 726 727 728 729 730 731 732 733 734 735
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size[0]], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_gpups_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
Y
yaoxuefeng 已提交
736
    if len(outs) == 1:
737 738 739 740
        return outs[0]
    return outs


741 742 743
def _pull_box_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
744
    r"""
H
hutuxian 已提交
745 746 747 748 749 750 751
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
752
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
H
hutuxian 已提交
753
            contains the IDs information.
754
        size(int): The embedding size parameter, which indicates the size of
H
hutuxian 已提交
755
            each embedding vector respectively.
756
        dtype(str): The dtype refers to the data type of output tensor. Only supports
H
hutuxian 已提交
757 758 759 760 761 762 763 764 765 766 767
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
768
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])
H
hutuxian 已提交
769 770 771 772
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
773 774 775
            "BoxPS only support float type embedding now, and your type is: "
            + dtype
        )
H
hutuxian 已提交
776 777 778 779 780 781
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
782 783 784 785 786 787 788 789 790 791 792 793 794
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
H
hutuxian 已提交
795 796 797 798 799
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
800
@templatedoc()
801
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
802
    """
803 804
    :api_attr: Static Graph

Y
yuyang18 已提交
805 806 807 808 809
    Linear Chain CRF.

    ${comment}

    Args:
810
        input(${emission_type}): ${emission_comment}
Y
yuyang18 已提交
811
        label(${label_type}): ${label_comment}
812
        Length(${length_type}): ${length_comment}
813
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
814 815

    Returns:
D
dzhwinter 已提交
816 817
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
818
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
819

J
JesseyXujin 已提交
820 821 822
    Examples:
        .. code-block:: python

823 824
            import paddle.fluid as fluid
            import numpy as np
825 826
            import paddle
            paddle.enable_static()
827 828 829 830 831

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
832 833
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
834 835 836 837 838 839
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
840
                    learning_rate=0.01))
841 842 843
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
844
            exe.run(startup_program)
845 846 847 848 849
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
850
            print(loss)
851 852 853 854 855

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
856 857 858
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
859 860 861 862 863 864
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
865
                     name='crfw',
866 867 868 869 870 871
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
872

873 874 875
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
876
            ll=np.array([[3],[3],[4],[2]])
877 878
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
879
            print(loss2)
880 881 882 883 884
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

885 886 887
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
888

Y
yuyang18 已提交
889
    """
890 891 892
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'linear_chain_crf'
    )
893
    check_variable_and_dtype(label, 'label', ['int64'], 'linear_chain_crf')
Y
Yu Yang 已提交
894
    helper = LayerHelper('linear_chain_crf', **locals())
895
    size = input.shape[2] if length else input.shape[1]
896 897 898 899 900
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype(),
    )
X
Xin Pan 已提交
901
    alpha = helper.create_variable_for_type_inference(
902 903
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
904
    emission_exps = helper.create_variable_for_type_inference(
905 906
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
907
    transition_exps = helper.create_variable_for_type_inference(
908 909
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
910
    log_likelihood = helper.create_variable_for_type_inference(
911 912
        dtype=helper.input_dtype()
    )
913 914 915
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
916
        "Label": [label],
917 918
    }
    if length:
919
        this_inputs['Length'] = [length]
920 921 922 923 924 925 926 927 928 929
    helper.append_op(
        type='linear_chain_crf',
        inputs=this_inputs,
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood,
        },
    )
Y
Yu Yang 已提交
930 931 932 933

    return log_likelihood


W
wopeizl 已提交
934
@templatedoc()
935
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
936
    """
937
    :api_attr: Static Graph
938

W
wopeizl 已提交
939
    ${comment}
Y
yi.wu 已提交
940

W
wopeizl 已提交
941
    Args:
942
        input(Tensor): ${emission_comment}
Y
yi.wu 已提交
943

944 945
        param_attr (ParamAttr|None): To specify the weight parameter attribute.
            Default: None, which means the default weight parameter property is
946
            used. See usage for details in :ref:`api_paddle_fluid_param_attr_ParamAttr` .
Y
yuyang18 已提交
947

Y
Yibing Liu 已提交
948
        label(${label_type}, optional): ${label_comment}
949

Y
Yibing Liu 已提交
950
        length(${length_type}, optional): ${length_comment}
951

W
wopeizl 已提交
952
    Returns:
953
        Tensor: ${viterbi_path_comment}
Y
yi.wu 已提交
954

W
wopeizl 已提交
955 956
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
957

958 959
           import paddle
           paddle.enable_static()
960 961 962

           # LoDTensor-based example
           num_labels = 10
963 964 965
           feature = paddle.static.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
           emission = paddle.static.nn.fc(feature, size=num_labels)
966

967 968 969 970
           crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label,
                     param_attr=paddle.ParamAttr(name="crfw"))
           crf_decode = paddle.static.nn.crf_decoding(input=emission,
                     param_attr=paddle.ParamAttr(name="crfw"))
971 972 973

           # Common tensor example
           num_labels, max_len = 10, 20
974 975 976 977
           feature = paddle.static.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = paddle.static.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = paddle.static.data(name='length', shape=[-1, 1], dtype='int64')
           emission = paddle.static.nn.fc(feature, size=num_labels,
978
                                      num_flatten_dims=2)
979

980 981 982 983
           crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label, length=length,
                     param_attr=paddle.ParamAttr(name="crfw_pad"))
           crf_decode = paddle.static.nn.crf_decoding(input=emission, length=length,
                     param_attr=paddle.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
984
    """
985 986 987
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'crf_decoding'
    )
W
wopeizl 已提交
988 989 990
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
991 992
        dtype=core.VarDesc.VarType.INT64
    )
993 994 995
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
996 997 998 999 1000
    helper.append_op(
        type='crf_decoding',
        inputs=inputs,
        outputs={"ViterbiPath": [viterbi_path]},
    )
Y
Yu Yang 已提交
1001

W
wopeizl 已提交
1002
    return viterbi_path
Y
Yu Yang 已提交
1003 1004


1005
@deprecated(since="2.0.0", update_to="paddle.nn.functional.dropout")
1006 1007 1008 1009 1010 1011 1012 1013
def dropout(
    x,
    dropout_prob,
    is_test=None,
    seed=None,
    name=None,
    dropout_implementation="downgrade_in_infer",
):
1014
    """
1015

1016 1017 1018 1019
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1020
    training. The dropout operator randomly sets (according to the given dropout
1021 1022 1023
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1024 1025
    dropout op can be removed from the program to make the program more efficient.

1026
    Args:
L
lvmengsi 已提交
1027
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
1028
        dropout_prob (float): Probability of setting units to zero.
1029
        is_test (bool): A flag indicating whether it is in test phrase or not.
1030
                        Default None, in dynamic graph, it use global tracer mode; in static graph, it means False.
1031 1032 1033
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
1034
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
1035 1036
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1037 1038
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1039
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1040 1041

                                           - train: out = input * mask
C
ceci3 已提交
1042
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1043 1044 1045

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1046
                                        2. upscale_in_train, upscale the outcome at training time
1047

H
haowang101779990 已提交
1048 1049
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1050

H
haowang101779990 已提交
1051 1052
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1053

M
minqiyang 已提交
1054

1055
    Returns:
L
lvmengsi 已提交
1056
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
1057 1058

    Examples:
1059

1060 1061
        .. code-block:: python

1062
            import paddle
1063
            import paddle.fluid as fluid
1064

1065
            paddle.enable_static()
L
lvmengsi 已提交
1066
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
T
tianshuo78520a 已提交
1067
            dropped = fluid.layers.dropout(x, dropout_prob=0.5)
1068
    """
1069 1070
    if not isinstance(dropout_prob, (float, int, Variable)):
        raise TypeError(
1071 1072
            "dropout_prob argument should be a number(int|float) or Variable"
        )
1073
    # fast return for p == 0
1074
    if isinstance(dropout_prob, (int, float)) and dropout_prob == 0:
1075
        return x
1076

J
Jiabin Yang 已提交
1077
    if _non_static_mode():
1078 1079 1080
        if (
            seed is None or seed == 0
        ) and default_main_program().random_seed != 0:
1081
            seed = default_main_program().random_seed
1082 1083
        if is_test is None:
            is_test = not _dygraph_tracer()._train_mode
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
        out, mask = _legacy_C_ops.dropout(
            x,
            'dropout_prob',
            dropout_prob,
            'is_test',
            is_test,
            'fix_seed',
            seed is not None,
            'seed',
            seed if seed is not None else 0,
            'dropout_implementation',
            dropout_implementation,
        )
1097
        return out
1098

W
wanghuancoder 已提交
1099 1100 1101
    def get_attrs(prog, dropout_prob, is_test, seed):
        if (seed is None or seed == 0) and prog.random_seed != 0:
            seed = prog.random_seed
1102 1103
        if isinstance(dropout_prob, Variable) and not dropout_prob.shape != [1]:
            raise TypeError(
1104 1105 1106 1107
                "Required dropout_prob.shape == [1] if type(dropout_prob) is Variable, but received dropout_prob.shape = {}".format(
                    dropout_prob.shape
                )
            )
W
wanghuancoder 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116
        attrs = {
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
        }
        return attrs

F
fengjiayi 已提交
1117
    helper = LayerHelper('dropout', **locals())
1118 1119 1120
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'dropout'
    )
1121

X
Xin Pan 已提交
1122 1123
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
1124 1125
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
    )
C
chengduo 已提交
1126

1127
    attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed)
C
chengduo 已提交
1128

1129 1130 1131 1132 1133 1134
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out], 'Mask': [mask]},
        attrs=attrs,
    )
1135 1136 1137
    return out


1138
@deprecated(since="2.0.0", update_to="paddle.nn.functional.softmax")
1139
def softmax(input, use_cudnn=True, name=None, axis=-1):
1140
    r"""
1141
    This operator implements the softmax layer. The calculation process is as follows:
1142

1143
    1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
1144

1145 1146 1147 1148 1149 1150 1151
    2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
1152

1153
    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
1154
    are performed to restore the two-dimensional matrix to the same dimension as the ``input``.
1155

1156 1157 1158 1159 1160
    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.
1161

1162
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
1163

1164
    .. math::
1165

N
Noel 已提交
1166
        Out[i, j] = \\frac{\\exp(X[i, j])}{\\sum_j(exp(X[i, j])}
1167

1168
    Example:
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

    .. code-block:: text

        Case 1:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
1213
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]
1214

Q
qiaolongfei 已提交
1215
    Args:
N
Noel 已提交
1216
        input (Tensor): The input tensor. A multi-dimension ``Tensor`` with type float32 or float64.
1217
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn \
G
GaoWei8 已提交
1218
            library is installed. To improve performance, set use_cudnn to True by default.
1219
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Default: None.
C
chengduo 已提交
1220
            will be named automatically. Default: None.
1221
        axis (int, optional): The index of dimension to perform softmax calculations, it should
D
dengkaipeng 已提交
1222
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
N
Noel 已提交
1223
            input tensor. Default: -1. -1 means the last dimension.
Q
qiaolongfei 已提交
1224 1225

    Returns:
N
Noel 已提交
1226
        Tensor: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input`` .
Q
qiaolongfei 已提交
1227 1228 1229 1230 1231

    Examples:

        .. code-block:: python

N
Noel 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
                                [3.0, 4.0, 5.0, 6.0],
                                [7.0, 8.0, 8.0, 9.0]],
                                [[1.0, 2.0, 3.0, 4.0],
                                [5.0, 6.0, 7.0, 8.0],
                                [6.0, 7.0, 8.0, 9.0]]], dtype='float32')
            y = F.softmax(x, axis=1)
            print(y)
            # [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
            #   [0.01786798, 0.01786798, 0.04661262, 0.04661262],
            #   [0.97555870, 0.97555870, 0.93623954, 0.93623954]],
            #  [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
            #   [0.26762316, 0.26762316, 0.26762316, 0.26762316],
            #   [0.72747517, 0.72747517, 0.72747517, 0.72747517]]]
Q
qiaolongfei 已提交
1249 1250

    """
1251

H
hong 已提交
1252
    if in_dygraph_mode():
1253
        return _C_ops.softmax(input, axis)
H
hong 已提交
1254

J
Jiabin Yang 已提交
1255
    if _non_static_mode():
1256 1257 1258
        return _legacy_C_ops.softmax(
            input, 'axis', axis, 'use_cudnn', use_cudnn
        )
1259 1260 1261

    inputs = {"X": [input]}
    attrs = {"axis": axis, "use_cudnn": use_cudnn}
1262

1263
    helper = LayerHelper('softmax', **locals())
1264 1265 1266
    check_variable_and_dtype(
        input, 'input/x', ['float16', 'float32', 'float64'], 'softmax'
    )
1267

1268
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1269
    softmax_out = helper.create_variable_for_type_inference(dtype)
1270 1271 1272 1273 1274 1275
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs=attrs,
    )
1276 1277 1278
    return softmax_out


1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
def conv2d(
    input,
    num_filters,
    filter_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=None,
    param_attr=None,
    bias_attr=None,
    use_cudnn=True,
    act=None,
    name=None,
    data_format="NCHW",
):
1294
    r"""
1295 1296
    :api_attr: Static Graph

C
chengduoZH 已提交
1297
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1298
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1299
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1300
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1301 1302 1303 1304 1305 1306
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1307
    for more details.
1308 1309 1310
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1311

1312
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1313

C
chengduoZH 已提交
1314 1315
    .. math::

C
refine  
chengduoZH 已提交
1316
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1317

T
tensor-tang 已提交
1318
    Where:
C
chengduoZH 已提交
1319

L
liym27 已提交
1320
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1321 1322 1323 1324
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1325
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1326 1327 1328

    Example:

1329 1330
        - Input:

W
weixing02 已提交
1331
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1332

W
weixing02 已提交
1333
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1334

1335
        - Output:
T
tensor-tang 已提交
1336

W
weixing02 已提交
1337
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1338

C
chengduoZH 已提交
1339
        Where
1340 1341

        .. math::
C
chengduoZH 已提交
1342

W
weixing02 已提交
1343 1344
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1345 1346

    Args:
1347
        input (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
L
lvmengsi 已提交
1348
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1349
        num_filters(int): The number of filter. It is as same as the output
1350
            image channel.
1351 1352
        filter_size (int|tuple): The filter size. If filter_size
            is a tuple, it must contain two integers, (filter_size_height,
L
lvmengsi 已提交
1353 1354
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
1355 1356
        stride (int|tuple): The stride size. It means the stride in convolution.
            If stride is a tuple, it must contain two integers, (stride_height, stride_width).
L
lvmengsi 已提交
1357 1358
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
1359
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1360 1361
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
1362 1363
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
L
lvmengsi 已提交
1364
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1365 1366 1367
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1368
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
1369 1370
            points. If dilation is a tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
L
lvmengsi 已提交
1371
            Default: dilation = 1.
1372 1373 1374 1375
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1376 1377 1378 1379 1380
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1381
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1382 1383 1384 1385 1386
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1387 1388
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1389 1390
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1391 1392
        name(str|None): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
L
lvmengsi 已提交
1393
           None by default.
1394
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1395
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1396 1397
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1398 1399

    Returns:
1400 1401 1402
        A Tensor representing the conv2d, whose data type is the
        same with input. If act is None, the tensor storing the convolution
        result, and if act is not None, the tensor storing convolution
L
lvmengsi 已提交
1403
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1404

1405 1406 1407 1408 1409
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1410
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
1411 1412 1413 1414 1415 1416 1417
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1418 1419 1420
    Examples:
        .. code-block:: python

1421 1422
          import paddle
          paddle.enable_static()
1423

1424 1425 1426
          data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          conv2d = paddle.static.nn.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
          print(conv2d.shape) # [-1, 2, 30, 30]
Y
Yu Yang 已提交
1427 1428
    """

1429 1430 1431
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'conv2d'
    )
1432
    if len(input.shape) != 4:
1433 1434 1435 1436
        raise ValueError(
            "Input size should be 4, "
            "but received {}".format(len(input.shape))
        )
1437
    num_channels = input.shape[1]
L
liym27 已提交
1438
    if not isinstance(use_cudnn, bool):
1439 1440 1441 1442
        raise ValueError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s. " % str(use_cudnn)
        )
L
liym27 已提交
1443 1444 1445 1446

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1447 1448
            "Attr(data_format): %s." % str(data_format)
        )
L
liym27 已提交
1449

1450
    channel_last = data_format == "NHWC"
L
liym27 已提交
1451 1452 1453 1454
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
1455 1456
            "Received: %s." % (str(input.shape), str(num_channels))
        )
C
chengduo 已提交
1457
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1458

1459 1460 1461
    if groups is None:
        num_filter_channels = num_channels
    elif groups <= 0:
1462 1463
        raise ValueError(
            "the groups of input must be greater than 0, "
1464 1465
            "but received the groups of input is {}".format(groups)
        )
1466 1467 1468 1469 1470
    else:
        if num_channels % groups != 0:
            raise ValueError(
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
1471 1472
                ", the groups is {}".format(num_channels, input.shape, groups)
            )
1473 1474
        num_filter_channels = num_channels // groups

1475
    l_type = 'conv2d'
1476 1477 1478 1479 1480
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and not use_cudnn
    ):
1481
        l_type = 'depthwise_conv2d'
1482

1483 1484 1485 1486 1487
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and core.is_compiled_with_rocm()
    ):
1488 1489
        l_type = 'depthwise_conv2d'

1490 1491
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
    if core.is_compiled_with_npu():
1492
        if num_channels == groups and num_channels == num_filters:
1493 1494 1495 1496
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

1497 1498 1499
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

C
chengduoZH 已提交
1500 1501
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1502
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1503

L
liym27 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
1516 1517
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
1518 1519 1520 1521 1522 1523
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
1524 1525
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
1526 1527 1528
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1529 1530 1531
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
1542 1543 1544
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
                % str(padding)
            )
L
liym27 已提交
1545 1546
        if padding == "VALID":
            padding_algorithm = "VALID"
1547
            padding = [0, 0]
L
liym27 已提交
1548 1549
        elif padding == "SAME":
            padding_algorithm = "SAME"
1550
            padding = [0, 0]
L
liym27 已提交
1551 1552

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1553

M
minqiyang 已提交
1554
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1555 1556

    def _get_default_param_initializer():
C
chengduo 已提交
1557
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
1558 1559 1560 1561
        if filter_elem_num <= 0:
            raise ValueError(
                "Invalid filter number, excepted number is larger than 0, but"
                " received {}, please check the input shape and "
1562 1563 1564
                "filter size.".format(filter_elem_num)
            )
        std = (2.0 / filter_elem_num) ** 0.5
Y
Yu Yang 已提交
1565 1566 1567 1568 1569 1570
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
1571 1572
        default_initializer=_get_default_param_initializer(),
    )
Y
Yu Yang 已提交
1573

X
Xin Pan 已提交
1574
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1575

1576 1577 1578 1579 1580 1581
    if (
        core.is_compiled_with_cuda()
        and paddle.fluid.get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
1582 1583
        use_cudnn = False

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
        },
    )
Y
Yu Yang 已提交
1603

1604 1605 1606 1607
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1608 1609 1610 1611

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1612
@templatedoc()
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
def pool2d(
    input,
    pool_size=-1,
    pool_type="max",
    pool_stride=1,
    pool_padding=0,
    global_pooling=False,
    use_cudnn=True,
    ceil_mode=False,
    name=None,
    exclusive=True,
    data_format="NCHW",
):
Y
Yu Yang 已提交
1626
    """
1627

F
fengjiayi 已提交
1628
    ${comment}
1629 1630

    Args:
K
Kaipeng Deng 已提交
1631 1632 1633 1634 1635
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1636
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1637 1638
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1639
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1640 1641 1642
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1643 1644 1645 1646 1647 1648 1649
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1650
            Otherwise, the pool padding size will be a square of an int.
1651 1652 1653
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1654 1655 1656
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1657
        exclusive (bool): Whether to exclude padding points in average pooling
1658
                          mode, default is `true`.
1659
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
1660 1661
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1662

1663
    Returns:
K
Kaipeng Deng 已提交
1664
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1665 1666

    Raises:
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1679 1680 1681 1682 1683

    Examples:

        .. code-block:: python

1684
          import paddle.fluid as fluid
1685 1686 1687
          import paddle

          paddle.enable_static()
1688

K
Kaipeng Deng 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1732 1733 1734
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1735
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
1736 1737
            str(pool_type),
        )
C
chengduoZH 已提交
1738

C
chengduoZH 已提交
1739 1740
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1741
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
1742 1743
            "and be a valid value. Received pool_size: %s." % str(pool_size)
        )
1744 1745

    if not isinstance(use_cudnn, bool):
1746 1747 1748 1749
        raise TypeError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s." % str(use_cudnn)
        )
1750 1751 1752 1753

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1754 1755
            "Attr(data_format): %s." % str(data_format)
        )
C
chengduoZH 已提交
1756

C
chengduoZH 已提交
1757 1758 1759
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
1771 1772
                        "is not supported." % str(padding)
                    )
1773 1774 1775 1776 1777 1778
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
1779 1780
                        "is not supported." % str(padding)
                    )
1781 1782 1783
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1784

1785 1786
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
1798 1799
                % str(pool_padding)
            )
1800 1801
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
1802
            pool_padding = [0, 0]
1803 1804 1805
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
1806 1807
                    "Received ceil_mode: True."
                )
1808 1809
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
1810
            pool_padding = [0, 0]
1811 1812

    pool_padding = update_padding(pool_padding, data_format)
1813
    if in_dygraph_mode():
1814
        input = input._use_gpudnn(use_cudnn)
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
        return _C_ops.pool2d(
            input,
            pool_size,
            pool_stride,
            pool_padding,
            ceil_mode,
            exclusive,
            data_format,
            pool_type,
            global_pooling,
            False,
            padding_algorithm,
        )
1828 1829
    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
1830
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1831
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1832

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
    helper.append_op(
        type=op_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": exclusive,
            "data_format": data_format,
        },
    )
1851 1852 1853 1854

    return pool_out


1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
def batch_norm(
    input,
    act=None,
    is_test=False,
    momentum=0.9,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    data_layout='NCHW',
    in_place=False,
    name=None,
    moving_mean_name=None,
    moving_variance_name=None,
    do_model_average_for_mean_and_var=True,
    use_global_stats=False,
):
1871
    r"""
1872 1873
    :api_attr: Static Graph

Q
qiaolongfei 已提交
1874 1875
    **Batch Normalization Layer**

L
lvmengsi 已提交
1876
    Can be used as a normalizer function for convolution or fully_connected operations.
Q
qiaolongfei 已提交
1877
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
1878

Q
qiaolongfei 已提交
1879
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
1880

Q
qiaolongfei 已提交
1881 1882
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
1883 1884 1885
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
1898

L
lvmengsi 已提交
1899
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\
1900
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum)
L
lvmengsi 已提交
1901

1902

L
lvmengsi 已提交
1903
    moving_mean is global mean and moving_var is global variance.
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
1917
    Note:
1918
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use
L
lvmengsi 已提交
1919
        sync_batch_norm automatically.
1920
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.
L
lvmengsi 已提交
1921

1922
    Args:
1923
        input(Tensor): The rank of input Tensor can be 2, 3, 4, 5. The data type
L
lvmengsi 已提交
1924
            is float16 or float32 or float64.
Q
qiaolongfei 已提交
1925
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
1926 1927
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
1928 1929
        momentum(float|Tensor, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Tensor with
1930
            shape [1] and data type as float32. The updated formula is:
Q
qingqing01 已提交
1931 1932 1933 1934 1935
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
1936 1937
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
1938
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
1939
	     If the Initializer of the param_attr is not set, the parameter is initialized
1940
	     with Xavier. Default: None.
C
chengduo 已提交
1941 1942
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
1943 1944
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
	     If the Initializer of the bias_attr is not set, the bias is initialized zero.
1945
	     Default: None.
1946
        data_layout (str, optional): Specify the data format of the input, and the data format of the output
K
Kaipeng Deng 已提交
1947 1948 1949
             will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
             The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_height, input_width]`.
1950
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
1951 1952 1953 1954
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm
1955
            will save global mean with the string.
L
lvmengsi 已提交
1956
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
1957
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm
1958
            will save global variance with the string.
1959 1960
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
1961 1962 1963 1964 1965
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
1966
    Returns:
1967
        A Tensor which is the result after applying batch normalization on the input,
1968
        has same shape and data type with input.
Q
qiaolongfei 已提交
1969 1970 1971 1972 1973

    Examples:

        .. code-block:: python

1974
            import paddle
1975

1976
            paddle.enable_static()
1977 1978 1979 1980 1981 1982 1983
            x = paddle.static.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = paddle.static.nn.fc(x=x, size=200)
            print(hidden1.shape)
            # [3, 200]
            hidden2 = paddle.static.nn.batch_norm(input=hidden1)
            print(hidden2.shape)
            # [3, 200]
Y
Yu Yang 已提交
1984
    """
1985 1986 1987
    assert (
        bias_attr is not False
    ), "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
1988 1989
    helper = LayerHelper('batch_norm', **locals())

1990 1991 1992
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'batch_norm'
    )
1993
    dtype = helper.input_dtype()
1994

W
Wu Yi 已提交
1995 1996 1997 1998
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0),
    )
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
    )

    mean = helper.create_parameter(
        attr=ParamAttr(
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var,
        ),
        shape=param_shape,
        dtype=dtype,
    )
2031 2032
    mean.stop_gradient = True

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var,
        ),
        shape=param_shape,
        dtype=dtype,
    )
2043
    variance.stop_gradient = True
Y
Yu Yang 已提交
2044 2045 2046 2047

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
2048
    # variance and variance_out share the same memory
Y
Yu Yang 已提交
2049
    variance_out = variance
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061

    if in_dygraph_mode():
        inputs_has_MomemtumTensor = False
        attrs_has_momentum = False
        tmp_tensor_type = core.eager.Tensor
        if isinstance(momentum, tmp_tensor_type):
            inputs_has_MomemtumTensor = True
        else:
            attrs_has_momentum = True

        attrs_ = ()
        if attrs_has_momentum:
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
            attrs_ = (
                'momentum',
                momentum,
                'epsilon',
                epsilon,
                'is_test',
                is_test,
                'data_layout',
                data_layout,
                'use_mkldnn',
                False,
                'fuse_with_relu',
                False,
                'use_global_stats',
                use_global_stats,
            )
2078
        else:
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
            attrs_ = (
                'epsilon',
                epsilon,
                'is_test',
                is_test,
                'data_layout',
                data_layout,
                'use_mkldnn',
                False,
                'fuse_with_relu',
                False,
                'use_global_stats',
                use_global_stats,
            )
2093
        if inputs_has_MomemtumTensor:
2094
            batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
                input,
                scale,
                bias,
                mean,
                variance,
                momentum,
                mean_out,
                variance_out,
                *attrs_,
            )
2105
        else:
2106
            batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
                input,
                scale,
                bias,
                mean,
                variance,
                None,
                mean_out,
                variance_out,
                *attrs_,
            )
2117

2118 2119 2120
        return dygraph_utils._append_activation_in_dygraph(
            batch_norm_out, act=act, use_mkldnn=False
        )
2121

2122 2123 2124
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
2125
    saved_variance = helper.create_variable_for_type_inference(
2126 2127
        dtype=dtype, stop_gradient=True
    )
2128
    reserve_space = None
2129
    if not is_test:
2130
        reserve_space = helper.create_variable_for_type_inference(
2131 2132
            dtype=helper.input_dtype(), stop_gradient=True
        )
2133

2134 2135 2136
    batch_norm_out = (
        input if in_place else helper.create_variable_for_type_inference(dtype)
    )
Y
Yu Yang 已提交
2137

2138 2139 2140 2141 2142
    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
2143 2144
        "Variance": variance,
        "MeanOut": mean_out,
2145
        "VarianceOut": variance_out,
2146 2147 2148 2149 2150 2151 2152
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
2153
        "use_global_stats": use_global_stats,
2154 2155 2156 2157 2158
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum
2159 2160 2161 2162 2163 2164

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
2165
        "SavedVariance": saved_variance,
2166 2167 2168 2169
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

2170 2171 2172
    helper.append_op(
        type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
    )
Y
Yu Yang 已提交
2173 2174 2175 2176

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2177
@templatedoc()
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
def layer_norm(
    input,
    scale=True,
    shift=True,
    begin_norm_axis=1,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
2189
    r"""
2190 2191
    :api_attr: Static Graph

2192 2193 2194 2195
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
2196 2197 2198

    The formula is as follows:

Y
yuyang18 已提交
2199
    ..  math::
G
guosheng 已提交
2200

2201
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
2202

2203
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
2204

2205
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
2206

2207 2208 2209 2210 2211
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2212

G
guosheng 已提交
2213
    Args:
2214
        input(Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
2215 2216 2217 2218 2219
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
2220
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2221 2222 2223 2224
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2225 2226
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2227
            a default :code:`ParamAttr` would be added as scale. The
2228 2229
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2230 2231
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2232
            a default :code:`ParamAttr` would be added as bias. The
2233
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
2234
        act(str, optional): Activation to be applied to the output of layer normalization.
2235 2236
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2237 2238

    Returns:
2239
        Tensor: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
2240 2241 2242

    Examples:

2243 2244
        .. code-block:: python

2245 2246
            import paddle
            paddle.enable_static()
2247 2248 2249
            x = paddle.static.data(name='x', shape=[8, 32, 32], dtype='float32')
            output = paddle.static.nn.layer_norm(input=x, begin_norm_axis=1)
            print(output.shape)  # [8, 32, 32]
G
guosheng 已提交
2250
    """
2251 2252 2253
    assert (
        _non_static_mode() is not True
    ), "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
2254
    helper = LayerHelper('layer_norm', **locals())
2255 2256 2257
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'layer_norm'
    )
G
guosheng 已提交
2258 2259 2260 2261 2262 2263 2264
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
2265 2266 2267 2268 2269 2270 2271 2272 2273
        assert (
            param_attr is not False
        ), "param_attr should not be False when using scale."
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
G
guosheng 已提交
2274
        inputs['Scale'] = scale
2275 2276
    else:
        if param_attr:
T
tianshuo78520a 已提交
2277
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
2278
    if shift:
2279 2280 2281 2282 2283 2284
        assert (
            bias_attr is not False
        ), "bias_attr should not be False when using shift."
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
        )
G
guosheng 已提交
2285
        inputs['Bias'] = bias
2286 2287
    else:
        if bias_attr:
T
tianshuo78520a 已提交
2288
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
2289 2290

    # create output
2291 2292 2293 2294 2295 2296
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
2297
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2298

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
    )
G
guosheng 已提交
2309 2310 2311 2312

    return helper.append_activation(layer_norm_out)


D
dengkaipeng 已提交
2313
@templatedoc()
2314
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
2315
    r"""
2316 2317
    :api_attr: Static Graph

D
dengkaipeng 已提交
2318 2319
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
2320
    This operation calculates the spectral normalization value of weight parameters of
2321
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
2322 2323
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
2324

D
dengkaipeng 已提交
2325 2326 2327
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
2328
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
2329 2330

    Step 2:
T
tianshuo78520a 已提交
2331
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
2332 2333
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
2334

2335
    .. math::
D
dengkaipeng 已提交
2336 2337 2338 2339 2340 2341

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
2342
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
2343 2344 2345 2346

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
2347

D
dengkaipeng 已提交
2348
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
2349

2350

D
dengkaipeng 已提交
2351 2352 2353
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
C
Chen Long 已提交
2354
        weight(Tensor): ${weight_comment}
D
dengkaipeng 已提交
2355 2356 2357
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
2358 2359 2360
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
2361 2362

    Returns:
C
Chen Long 已提交
2363
        Tensor: A tensor of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
2364
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
2365 2366

    Examples:
K
Kaipeng Deng 已提交
2367
       .. code-block:: python
D
dengkaipeng 已提交
2368

2369
            import paddle
K
Kaipeng Deng 已提交
2370

2371
            paddle.enable_static()
C
Chen Long 已提交
2372
            weight = paddle.static.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
2373
            x = paddle.static.nn.spectral_norm(weight=weight, dim=1, power_iters=2)
C
Chen Long 已提交
2374
            print(x.shape) # [2, 8, 32, 32]
D
dengkaipeng 已提交
2375 2376
    """
    helper = LayerHelper('spectral_norm', **locals())
2377 2378 2379
    check_variable_and_dtype(
        weight, 'weight', ['float32', 'float64'], 'spectral_norm'
    )
2380 2381 2382
    check_type(dim, 'dim', int, 'spectral_norm')
    check_type(power_iters, 'power_iters', int, 'spectral_norm')
    check_type(eps, 'eps', float, 'spectral_norm')
2383
    dtype = weight.dtype
D
dengkaipeng 已提交
2384 2385

    # create intput and parameters
2386
    input_shape = weight.shape
2387
    assert weight.numel() > 0, "Any dimension of input cannot be equal to 0."
2388 2389 2390 2391 2392
    assert dim < len(input_shape), (
        "The input `dim` should be less than the "
        "rank of `weight`, but received dim="
        "{}".format(dim)
    )
2393 2394 2395
    h = input_shape[dim]
    w = np.prod(input_shape) // h

2396 2397 2398 2399 2400 2401
    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
2402
    u.stop_gradient = True
2403 2404 2405 2406 2407 2408
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
2409
    v.stop_gradient = True
D
dengkaipeng 已提交
2410

2411 2412 2413 2414 2415 2416 2417
    if in_dygraph_mode():
        return _C_ops.spectral_norm(weight, u, v, dim, power_iters, eps)

    inputs = {'Weight': weight}
    inputs['U'] = u
    inputs['V'] = v

D
dengkaipeng 已提交
2418
    # create output
2419
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
2420

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
    helper.append_op(
        type="spectral_norm",
        inputs=inputs,
        outputs={
            "Out": out,
        },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        },
    )
D
Dun 已提交
2433

2434
    return out
D
Dun 已提交
2435 2436


C
caoying03 已提交
2437
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2438
    """
2439

Y
yangyaming 已提交
2440
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2441 2442

    Args:
2443 2444 2445
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2446 2447
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2448 2449
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2450
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2451
            output Tensor. The result tensor will have one fewer dimension
2452 2453 2454 2455
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
2456 2457

    Returns:
2458 2459
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
2460

2461 2462
    Raises:
        TypeError, if out data type is different with the input data type.
2463

G
guosheng 已提交
2464 2465 2466
    Examples:
        .. code-block:: python

2467
            import paddle.fluid as fluid
2468 2469
            import paddle
            paddle.enable_static()
G
guosheng 已提交
2470 2471 2472
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
2473
            # Each example is followed by the corresponding output tensor.
2474
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
2475 2476 2477 2478
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2479

2480
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
2481 2482
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
2483
            # Each example is followed by the corresponding output tensor.
2484
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
2485 2486
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
2487

G
guosheng 已提交
2488
    """
2489 2490
    reduce_all, dim = _get_reduce_dim(dim, input)

2491
    if in_dygraph_mode():
2492
        return _C_ops.sum(input, dim, None, keep_dim)
2493
    elif _in_legacy_dygraph():
2494 2495 2496
        return _legacy_C_ops.reduce_sum(
            input, 'dim', dim, 'keep_dim', keep_dim, 'reduce_all', reduce_all
        )
2497
    attrs = {'dim': dim, 'keep_dim': keep_dim, 'reduce_all': reduce_all}
2498
    check_variable_and_dtype(
2499 2500 2501 2502 2503
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'reduce_sum',
    )
2504
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
2505
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
2506 2507 2508 2509 2510 2511
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs=attrs,
    )
G
guosheng 已提交
2512
    return out
G
guosheng 已提交
2513 2514


2515
@deprecated(since="2.0.0", update_to="paddle.mean")
C
caoying03 已提交
2516
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2517
    """
Y
Yibing Liu 已提交
2518
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
2519 2520

    Args:
2521 2522 2523
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the mean is computed. If
Y
Yibing Liu 已提交
2524 2525
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
2526
            must be in the range :math:`[-rank(input), rank(input))`. If
2527
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
2528
            :math:`rank(input) + dim[i]`.
2529
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2530
            output Tensor. The result tensor will have one fewer dimension
2531
            than the :attr:`input` unless :attr:`keep_dim` is true, default
2532 2533 2534
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
2535

G
guosheng 已提交
2536
    Returns:
2537 2538
        Variable: Tensor, results of average on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
2539

2540 2541
    Raises:
        TypeError, if out data type is different with the input data type.
2542

G
guosheng 已提交
2543 2544 2545
    Examples:
        .. code-block:: python

2546
            import paddle
2547
            import paddle.fluid as fluid
2548 2549
            paddle.enable_static()

G
guosheng 已提交
2550 2551 2552
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
2553
            # Each example is followed by the corresponding output tensor.
2554
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
2555 2556 2557
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
2558
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
2559

2560
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
2561 2562
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
2563
            # Each example is followed by the corresponding output tensor.
2564
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
2565 2566
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
2567
    """
2568

2569
    return paddle.mean(x=input, axis=dim, keepdim=keep_dim, name=name)
2570 2571


Z
zhoukunsheng 已提交
2572 2573
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
2574

2575
    This OP computes the ``logical and`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
2576 2577

    Args:
2578
        input (Tensor): the input tensor, it's data type should be `bool`.
2579
        dim (list|int|optional): The dimension along which the logical and is computed.
Z
zhoukunsheng 已提交
2580 2581 2582
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
2583
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None.
Z
zhoukunsheng 已提交
2584 2585
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2586
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
2587
        name(str|None): A name for this layer(optional). If set None, the layer
2588
                       will be named automatically. The default value is None.
Z
zhoukunsheng 已提交
2589

2590
    Returns:
2591
        Tensor, the output data type is bool. : The reduced tensor variable with ``logical and`` in given dims.
Z
zhoukunsheng 已提交
2592 2593 2594

    Examples:
        .. code-block:: python
2595

2596
            import paddle
2597
            import paddle.fluid as fluid
2598 2599 2600
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
2601 2602 2603
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
2604 2605
            x = fluid.layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = fluid.layers.cast(x, 'bool')
2606

2607 2608 2609
            out = fluid.layers.reduce_all(x)  # False
            out = fluid.layers.reduce_all(x, dim=0)  # [True, False]
            out = fluid.layers.reduce_all(x, dim=-1)  # [False, True]
2610 2611
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

2612
            out = fluid.layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
2613
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
2614 2615

    """
2616 2617
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2618 2619

    if in_dygraph_mode():
2620
        return _C_ops.all(input, dim if dim is not None else [], keep_dim)
2621

2622
    check_variable_and_dtype(input, 'input', ('bool'), 'reduce_all')
Z
zhoukunsheng 已提交
2623 2624
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
2625 2626 2627 2628 2629
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
2630
            'dim': dim if dim is not None and dim != [] else [0],
2631 2632
            'keep_dim': keep_dim,
            'reduce_all': True
2633
            if dim is None or dim == [] or len(dim) == len(input.shape)
2634 2635 2636
            else False,
        },
    )
Z
zhoukunsheng 已提交
2637 2638 2639 2640 2641
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
2642
    This OP computes the ``logical or`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
2643 2644

    Args:
2645
        input (Tensor): the input tensor, it's data type should be `bool`.
2646 2647
        dim (list|int|optional): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
Z
zhoukunsheng 已提交
2648 2649
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
2650
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None.
Z
zhoukunsheng 已提交
2651 2652
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2653
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
2654
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2655

2656
    Returns:
2657
        Tensor, the output data type is bool. : The reduced tensor variable with ``logical or`` in given dims.
Z
zhoukunsheng 已提交
2658 2659 2660

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
2661

2662
            import paddle
2663
            import paddle.fluid as fluid
2664 2665 2666
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
2667 2668 2669
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
2670 2671
            x = fluid.layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = fluid.layers.cast(x, 'bool')
2672

2673 2674 2675
            out = fluid.layers.reduce_any(x)  # True
            out = fluid.layers.reduce_any(x, dim=0)  # [True, False]
            out = fluid.layers.reduce_any(x, dim=-1)  # [True, False]
2676 2677
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

2678
            out = fluid.layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
2679
                                     keep_dim=True)  # [[True], [False]]
2680
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
2681 2682

    """
2683
    check_variable_and_dtype(input, 'input', ('bool'), 'reduce_any')
Z
zhoukunsheng 已提交
2684 2685 2686 2687
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2688 2689 2690 2691 2692
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
2693
            'dim': dim if dim is not None and dim != [] else [0],
2694 2695
            'keep_dim': keep_dim,
            'reduce_all': True
2696
            if dim is None or dim == [] or len(dim) == len(input.shape)
2697 2698 2699
            else False,
        },
    )
2700 2701 2702
    return out


C
caoying03 已提交
2703
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2704
    """
2705
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
2706 2707

    Args:
2708
        input (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
2709
        num_or_sections (int|list|tuple): If ``num_or_sections`` is int, then the ``num_or_sections``
2710
            indicates the number of equal sized sub-Tensors that the ``input``
2711
            will be divided into. If ``num_or_sections`` is a list or tuple, the length of it
2712 2713 2714 2715 2716
            indicates the number of sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            dimension orderly. The length of the list mustn't be larger than the ``input`` 's size of specified dim.
        dim (int|Tensor, optional): The dimension along which to split, it can be a scalar with type ``int`` or
            a ``Tensor`` with shape [1] and data type ``int32`` or ``int64``. If :math:`dim < 0`,
            the dimension to split along is :math:`rank(input) + dim`. Default is -1.
2717
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
2718
            For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2719 2720

    Returns:
2721
        list(Tensor): The list of segmented Tensors.
G
guosheng 已提交
2722

2723
    Example:
G
guosheng 已提交
2724 2725
        .. code-block:: python

2726 2727
            import paddle.fluid as fluid

2728
            # input is a Tensor which shape is [3, 9, 5]
2729
            input = fluid.data(
2730 2731
                 name="input", shape=[3, 9, 5], dtype="float32")

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
            out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]

            out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]
2746

2747 2748 2749 2750 2751 2752
            # dim is negative, the real dim is (rank(input) + axis) which real
            # value is 1.
            out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
2753

G
guosheng 已提交
2754
    """
J
Jiabin Yang 已提交
2755
    if _non_static_mode():
2756 2757 2758
        num = None
        attrs = ()

S
songyouwei 已提交
2759 2760
        if isinstance(dim, Variable):
            dim = dim.numpy()
2761
            dim = dim.item(0)
W
wangzhen38 已提交
2762
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
S
songyouwei 已提交
2763
        dim = (len(input.shape) + dim) if dim < 0 else dim
2764
        attrs += ('axis', dim)
2765 2766 2767

        if isinstance(num_or_sections, int):
            num = num_or_sections
2768
            attrs += ('num', num_or_sections)
L
Leo Chen 已提交
2769
        elif isinstance(num_or_sections, (list, tuple)):
2770
            num = len(num_or_sections)
L
Leo Chen 已提交
2771
            if utils._contain_var(num_or_sections):
2772 2773
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
2774 2775 2776
                        num_or_sections[index] = num_or_sections[index].numpy()[
                            0
                        ]
2777
                attrs += ('sections', list(num_or_sections))
L
Leo Chen 已提交
2778
            else:
2779
                attrs += ('sections', list(num_or_sections))
2780 2781
        else:
            raise TypeError(
2782
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
2783 2784
                "received %s." % (type(num_or_sections))
            )
2785
        if in_dygraph_mode():
C
Charles-hit 已提交
2786 2787 2788 2789
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
2790 2791
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
2792
            _legacy_C_ops.split(input, out, *attrs)
2793
            return out
L
Leo Chen 已提交
2794

2795
    check_variable_and_dtype(
2796 2797 2798 2799 2800
        input,
        'input',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'split',
    )
2801 2802 2803 2804
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')
2805

G
guosheng 已提交
2806
    helper = LayerHelper('split', **locals())
2807

G
guosheng 已提交
2808
    input_shape = input.shape
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
2820
                assert isinstance(dim_size, int)
2821 2822 2823
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
2824 2825 2826
                        "be -1. But received num_or_section[%d] is also -1."
                        % idx
                    )
2827 2828
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
2829 2830 2831
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
2832 2833 2834 2835 2836 2837 2838
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
W
wangzhen38 已提交
2839
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
2840 2841 2842
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
2843 2844
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
2845
        if isinstance(dim, int) and input_shape[dim] > 0:
2846 2847 2848 2849 2850 2851
            assert input_shape[dim] % num_or_sections == 0, (
                "The input's size along the split dimension "
                "must be evenly divisible by Attr(num_or_sections). "
                "But %d is not evenly divisible by %d. "
                % (num_or_sections, input_shape[dim])
            )
G
guosheng 已提交
2852 2853
        num = num_or_sections
    else:
2854
        if isinstance(dim, int) and input_shape[dim] > 0:
2855 2856 2857
            assert (
                len(num_or_sections) <= input_shape[dim]
            ), 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
2858
        num = len(num_or_sections)
2859
        attrs['sections'] = list(
2860 2861 2862 2863 2864
            map(
                lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections,
            )
        )
L
Leo Chen 已提交
2865
        if utils._contain_var(num_or_sections):
2866
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
2867 2868
                num_or_sections
            )
2869

G
guosheng 已提交
2870
    outs = [
X
Xin Pan 已提交
2871
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
2872 2873
        for i in range(num)
    ]
2874 2875 2876
    helper.append_op(
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
    )
G
guosheng 已提交
2877
    return outs
C
caoying03 已提交
2878 2879 2880


def l2_normalize(x, axis, epsilon=1e-12, name=None):
2881
    r"""
2882

R
ruri 已提交
2883
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
2884 2885
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

2886
    .. math::
2887 2888

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
2889 2890 2891 2892 2893

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
2894
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float16, float32 or float64.
2895
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
2896 2897
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
2898
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
2899
            the default value is 1e-12.
2900
    name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
2901

C
caoying03 已提交
2902
    Returns:
R
ruri 已提交
2903
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
2904 2905

    Examples:
2906

2907 2908
    .. code-block:: python
        :name: code-example1
2909

2910
        import paddle
2911

2912 2913
        X = paddle.randn(shape=[3, 5], dtype='float64')
        out = paddle.fluid.layers.l2_normalize(X, axis=-1)
G
Guoxia Wang 已提交
2914
        print(out)
R
ruri 已提交
2915

2916 2917 2918
        # [[ 0.21558504  0.56360189  0.47466096  0.46269539 -0.44326736]
        #  [-0.70602414 -0.52745777  0.37771788 -0.2804768  -0.04449922]
        #  [-0.33972208 -0.43014923  0.31772556  0.76617881 -0.10761525]]
2919

C
caoying03 已提交
2920
    """
F
fengjiayi 已提交
2921 2922
    if len(x.shape) == 1:
        axis = 0
J
Jiabin Yang 已提交
2923
    if _non_static_mode():
2924 2925 2926
        if in_dygraph_mode():
            out, _ = _C_ops.norm(x, 1 if axis is None else axis, epsilon, False)
        elif _in_legacy_dygraph():
2927 2928 2929
            _, out = _legacy_C_ops.norm(
                x, 'axis', 1 if axis is None else axis, 'epsilon', epsilon
            )
2930 2931 2932
        return out

    check_variable_and_dtype(x, "X", ("float16", "float32", "float64"), "norm")
C
caoying03 已提交
2933

2934
    helper = LayerHelper("l2_normalize", **locals())
X
Xin Pan 已提交
2935 2936
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
2937 2938 2939 2940 2941 2942 2943 2944 2945
    helper.append_op(
        type="norm",
        inputs={"X": x},
        outputs={"Out": out, "Norm": norm},
        attrs={
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
        },
    )
C
caoying03 已提交
2946
    return out
2947 2948


S
ShenLiang 已提交
2949
@deprecated(since="2.0.0", update_to="paddle.matmul")
S
sneaxiy 已提交
2950
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
2951
    """
Y
ying 已提交
2952 2953 2954 2955
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
2956

C
chengduoZH 已提交
2957
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
2958
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
2959

2960 2961 2962 2963 2964
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
2965
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
2966

C
chengduoZH 已提交
2967
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
2968
      performs in the following way.
G
guosheng 已提交
2969

2970
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
2971
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
2972
        last two dimensions and a batched matrix multiply supporting broadcast
2973
        applies on the two tensors.
G
guosheng 已提交
2974

Y
ying 已提交
2975 2976
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
2977
    removed after matrix multiplication.
G
guosheng 已提交
2978 2979 2980

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
2981 2982 2983
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
2984
        alpha (float): The scale of output. Default 1.0.
2985
        name(str|None): A name for this layer(optional). If set None, the layer
2986
            will be named automatically.
G
guosheng 已提交
2987 2988

    Returns:
石晓伟 已提交
2989
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
2990

G
guosheng 已提交
2991 2992 2993
    Examples:
        .. code-block:: python

2994
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
2995
            # x: [B, ..., M, K], y: [B, ..., K, N]
2996
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
2997

2998
            # x: [B, M, K], y: [B, K, N]
2999
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3000

3001
            # x: [B, M, K], y: [K, N]
3002
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3003

3004
            # x: [M, K], y: [K, N]
3005
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3006 3007

            # x: [B, M, K], y: [K]
3008
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
3009

3010
            # x: [K], y: [K]
3011
            # fluid.layers.matmul(x, y)  # out: [1]
3012

Y
ying 已提交
3013
            # x: [M], y: [N]
3014 3015
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

3016
            import paddle
3017
            import paddle.fluid as fluid
3018 3019
            paddle.enable_static()

3020 3021 3022
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
3023
    """
J
Jiabin Yang 已提交
3024
    if _non_static_mode():
S
ShenLiang 已提交
3025
        out = _varbase_creator(dtype=x.dtype)
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
        _legacy_C_ops.matmul(
            x,
            y,
            out,
            'transpose_X',
            transpose_x,
            'transpose_Y',
            transpose_y,
            'alpha',
            float(alpha),
        )
S
ShenLiang 已提交
3037 3038 3039 3040 3041
        return out

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
3042 3043 3044
            check_variable_and_dtype(
                val, name, ['float16', 'float32', 'float64'], 'matmul'
            )
S
ShenLiang 已提交
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
3058 3059 3060 3061 3062 3063
            assert (x_shape[-1] == -1) or (y_shape[-2] == -1), (
                "After performing an optional transpose, Input X's width should be "
                "equal to Y's width for multiplication "
                "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                % (x_shape, y_shape)
            )
S
ShenLiang 已提交
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
3075 3076
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                    )
S
ShenLiang 已提交
3077

W
wanghuancoder 已提交
3078 3079 3080 3081 3082 3083
    attrs = {
        'transpose_X': transpose_x,
        'transpose_Y': transpose_y,
        'alpha': float(alpha),
    }

S
ShenLiang 已提交
3084 3085 3086 3087
    __check_input(x, y)

    helper = LayerHelper('matmul', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3088 3089 3090 3091 3092 3093
    helper.append_op(
        type='matmul',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs=attrs,
    )
S
ShenLiang 已提交
3094
    return out
3095 3096


3097
def topk(input, k, name=None):
Q
qingqing01 已提交
3098
    """
3099
    :alias_main: paddle.topk
3100 3101
        :alias: paddle.topk,paddle.tensor.topk,paddle.tensor.search.topk
        :old_api: paddle.fluid.layers.topk
3102

3103
    This OP is used to find values and indices of the k largest entries
Q
qingqing01 已提交
3104 3105
    for the last dimension.

3106 3107
    If the input is a 1-D Tensor, finds the k largest entries and outputs
    their values and indices.
Q
qingqing01 已提交
3108 3109 3110 3111

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3112 3113
    .. code-block:: text

3114 3115 3116 3117 3118
        Case 1:

          Input:
            input.shape = [3, 4]
            input.data = [[5, 4, 2, 3],
F
fengjiayi 已提交
3119 3120 3121 3122
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

3123
          Output:
F
fengjiayi 已提交
3124
            The first output:
3125 3126
            values.shape = [3, 2]
            values.data = [[5, 4],
F
fengjiayi 已提交
3127 3128 3129 3130
                      [10, 25],
                      [6, 10]]

            The second output:
3131 3132
            indices.shape = [3, 2]
            indices.data = [[0, 1],
F
fengjiayi 已提交
3133 3134 3135
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3136
    Args:
3137 3138 3139 3140
        input(Variable): The input tensor. Support data types: float32, float64.
        k(int | Variable): The number of top elements to look for along the last dimension
                           of input tensor.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Q
qingqing01 已提交
3141 3142

    Returns:
3143 3144
        Values (Variable): Input tensor's k largest elements along each last dimensional slice. The dimension is: :math:`input.shape[:-1]+[k]`.
        Indices (Variable): Indices of k largest elements alone the last dimension of input. The dimension is same as values.
Q
qingqing01 已提交
3145

F
fengjiayi 已提交
3146
    Raises:
3147
        ValueError: If :math:`k < 1` or :math:`k > last dimension of input`.
Q
qingqing01 已提交
3148 3149 3150 3151

    Examples:
        .. code-block:: python

3152
            import paddle.fluid as fluid
3153
            import paddle.fluid.layers as layers
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
            # set batch size=None
            input = fluid.data(name="input", shape=[None, 13, 11], dtype='float32')
            top5_values, top5_indices = layers.topk(input, k=5) # top5_values.shape[None, 13, 5], top5_indices.shape=[None, 13, 5]

            # 1D Tensor
            input1 = fluid.data(name="input1", shape=[None, 13], dtype='float32')
            top5_values, top5_indices = layers.topk(input1, k=5) #top5_values.shape=[None, 5], top5_indices.shape=[None, 5]

            # k=Variable
            input2 = fluid.data(name="input2", shape=[None, 13, 11], dtype='float32')
            vk = fluid.data(name="vk", shape=[None, 1], dtype='int32') # save k in vk.data[0]
            vk_values, vk_indices = layers.topk(input2, k=vk) #vk_values.shape=[None, 13, k], vk_indices.shape=[None, 13, k]

Q
qingqing01 已提交
3167
    """
J
Jiabin Yang 已提交
3168
    if _non_static_mode():
3169
        _k = k.numpy().item(0) if isinstance(k, Variable) else k
3170
        out, indices = _legacy_C_ops.top_k(input, 'k', _k)
3171 3172 3173
        out.stop_gradient = True
        indices.stop_gradient = True
        return out, indices
3174

3175 3176
    inputs = {"X": [input]}
    attrs = {}
S
songyouwei 已提交
3177 3178 3179 3180 3181
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}

3182 3183 3184 3185
    helper = LayerHelper("top_k", **locals())
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

3186 3187 3188 3189 3190 3191
    helper.append_op(
        type="top_k",
        inputs=inputs,
        outputs={"Out": [values], "Indices": [indices]},
        attrs=attrs,
    )
Q
qingqing01 已提交
3192 3193 3194 3195 3196
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3197 3198 3199
def ctc_greedy_decoder(
    input, blank, input_length=None, padding_value=0, name=None
):
3200
    r"""
S
SunGaofeng 已提交
3201
    This op is used to decode sequences by greedy policy by the following steps:
Y
yi.wu 已提交
3202

S
SunGaofeng 已提交
3203
    1. Get the indexes of maximum value for each row in input. a.k.a.
Y
ying 已提交
3204 3205 3206
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3207

S
SunGaofeng 已提交
3208
    This op is implemented in two modes: lod and padding, either of them can be used.
3209
    The input can be either LoDTensor or Tensor, corresponding to lod and padding
S
SunGaofeng 已提交
3210 3211
    mode respectively.

3212 3213 3214 3215 3216
    A simple example as below:

    .. code-block:: text

        Given:
S
SunGaofeng 已提交
3217
        (1) for lod mode:
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3229
        input.lod = [[4, 4]]
M
minqiyang 已提交
3230

W
whs 已提交
3231
        Computation:
3232

W
whs 已提交
3233 3234 3235 3236 3237 3238
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
3239 3240 3241 3242 3243

        output.data = [[2],
                       [1],
                       [3]]

3244
        output.lod = [[2, 1]]
3245

S
SunGaofeng 已提交
3246
        (2) for padding mode:
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262

         input.data = [[[0.6, 0.1, 0.3, 0.1],
                        [0.3, 0.2, 0.4, 0.1],
                        [0.1, 0.5, 0.1, 0.3],
                        [0.5, 0.1, 0.3, 0.1]],

                       [[0.5, 0.1, 0.3, 0.1],
                        [0.2, 0.2, 0.2, 0.4],
                        [0.2, 0.2, 0.1, 0.5],
                        [0.5, 0.1, 0.3, 0.1]]]

        input_length.data = [[4], [4]]
        input.shape = [2, 4, 4]

        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1]
3263
        step2: Change the argmax result to use padding mode, then argmax result is
3264 3265 3266 3267 3268 3269 3270 3271 3272
                [[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]]
        step3: Apply ctc_align to padding argmax result, padding_value is 0

        Finally:
        output.data = [[2, 1, 0, 0],
                       [3, 0, 0, 0]]
        output_length.data = [[2], [1]]


S
SunGaofeng 已提交
3273
    Parameters:
3274

3275 3276
        input(Variable): the probabilities of variable-length sequences. When in lod mode,
                         it is a 2-D LoDTensor with LoD information. It's shape is [Lp, num_classes + 1]
Y
ying 已提交
3277
                         where Lp is the sum of all input sequences' length and
3278 3279
                         num_classes is the true number of classes. When in padding mode,
                         it is a 3-D Tensor with padding, It's shape is [batch_size, N, num_classes + 1].
S
SunGaofeng 已提交
3280
                         (not including the blank label). The data type can be float32 or float64.
Y
ying 已提交
3281
        blank(int): the blank label index of Connectionist Temporal
S
SunGaofeng 已提交
3282
                    Classification (CTC) loss, which is in the half-opened
Y
ying 已提交
3283
                    interval [0, num_classes + 1).
S
SunGaofeng 已提交
3284 3285
        input_length(Variable, optional): 2-D LoDTensor, shape is [batch_size, 1], data type is int64.
                                 It is used for padding mode. In lod mode, input_length is None.
3286
        padding_value(int): padding value.
3287 3288 3289
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
3290 3291

    Returns:
S
SunGaofeng 已提交
3292 3293 3294 3295 3296
        For lod mode, returns the result of CTC greedy decoder, 2-D LoDTensor, shape is [Lp, 1], \
        data type is int64. 'Lp' is the sum of all output sequences' length. If all the sequences \
        in result were empty, the result LoDTensor will be [-1] with  empty \
        LoD [[]].

3297
        For padding mode, returns a tuple of (output, output_length), which was described as below:
S
SunGaofeng 已提交
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308

        output, 2-D Tensor, shape is [batch_size, N], data type is int64.

        output_length, 2-D Tensor, shape is [batch_size, 1], data type is int64. It is the length of \
                           each sequence of output for padding mode.

    Return type:
        For lod mode: Variable

        For padding mode: tuple of two Variables (output, output_length).

3309 3310 3311 3312

    Examples:
        .. code-block:: python

3313
            # for lod mode
S
SunGaofeng 已提交
3314
            import paddle.fluid as fluid
S
SunGaofeng 已提交
3315
            x = fluid.data(name='x', shape=[None, 8], dtype='float32', lod_level=1)
3316
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
3317 3318

            # for padding mode
S
SunGaofeng 已提交
3319 3320
            x_pad = fluid.data(name='x_pad', shape=[10, 4, 8], dtype='float32')
            x_pad_len = fluid.data(name='x_pad_len', shape=[10, 1], dtype='int64')
3321 3322 3323
            out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0,
                            input_length=x_pad_len)

W
wanghaoshuang 已提交
3324
    """
3325 3326 3327
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'ctc_greedy_decoder'
    )
3328

3329
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3330
    _, topk_indices = topk(input, k=1)
3331 3332

    # ctc align op
X
Xin Pan 已提交
3333
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
3334 3335

    if input_length is None:
3336 3337 3338 3339 3340 3341
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [topk_indices]},
            outputs={"Output": [ctc_out]},
            attrs={"merge_repeated": True, "blank": blank},
        )
3342 3343 3344
        return ctc_out
    else:
        ctc_out_len = helper.create_variable_for_type_inference(dtype="int64")
3345
        ctc_input = paddle.squeeze(topk_indices, [2])
3346

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [ctc_input], "InputLength": [input_length]},
            outputs={"Output": [ctc_out], "OutputLength": [ctc_out_len]},
            attrs={
                "merge_repeated": True,
                "blank": blank,
                "padding_value": padding_value,
            },
        )
3357
        return ctc_out, ctc_out_len
3358 3359


3360 3361 3362 3363 3364 3365 3366 3367 3368
def im2sequence(
    input,
    filter_size=1,
    stride=1,
    padding=0,
    input_image_size=None,
    out_stride=1,
    name=None,
):
3369
    r"""
3370 3371
    :api_attr: Static Graph

3372
    Extracts image patches from the input tensor to form a tensor of shape
L
Liufang Sang 已提交
3373 3374 3375
    {input.batch_size * output_height * output_width, filter_size_height *
    filter_size_width * input.channels}. This op use filter to scan images
    and convert these images to sequences. After expanding, the number of time step are
3376 3377
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
3378 3379 3380

    .. math::

L
Liufang Sang 已提交
3381 3382 3383 3384
        output\_height  = 1 + \
            (padding\_up + padding\_down + input\_height  - filter\_size\_height  + stride\_height - 1) / stride\_height \\\\
        output\_width  = 1 + \
            (padding\_left + padding\_right + input\_width  - filter\_size\_width  + stride\_width - 1) / stride\_width
3385

L
Liufang Sang 已提交
3386
    And the dimension of each time step is filter_size_height * filter_size_width * input.channels.
3387

L
Liufang Sang 已提交
3388 3389
    Parameters:
        input (Variable): The input should be a 4-D Tensor in :math:`NCHW` format. The data type is float32.
W
wanghaoshuang 已提交
3390

L
Liufang Sang 已提交
3391 3392 3393
        filter_size(int32 | List[int32]): The filter size. If filter_size is a List,
            it must contain two integers, :math:`[filter\_size\_height, filter\_size\_width]` .
            Otherwise, the filter size will be a square :math:`[filter\_size, filter\_size]` . Default is 1.
3394

L
Liufang Sang 已提交
3395 3396
        stride(int32 | List[int32]): The stride size. If stride is a List, it must
            contain two integers, :math:`[stride\_height, stride\_width]` . Otherwise, the stride size will be a square :math:`[stride\_size, stride\_size]` . Default is 1.
3397

L
Liufang Sang 已提交
3398 3399 3400 3401 3402
        padding(int32 | List[int32]): The padding size. If padding is a List, it can
            contain four integers like :math:`[padding\_up, padding\_left, padding\_down, padding\_right]` to indicate
            paddings of four direction.  Or it can contain two integers :math:`[padding\_height, padding\_width]` which means
            padding_up = padding_down = padding_height and
            padding_left = padding_right = padding_width. Otherwise, a scalar padding means
3403
            padding_up = padding_down = padding_left = padding_right = padding.
L
Liufang Sang 已提交
3404
            Default is 0.
3405

L
Liufang Sang 已提交
3406 3407 3408 3409
        input_image_size(Variable, optional): the input contains image real size.It's dim
            is :math:`[batchsize, 2]` . It is just for batch inference when not None. Default is None.

        out_stride(int32 | List[int32]): The scaling of image through CNN. It is valid only when input_image_size is not None.
T
tianshuo78520a 已提交
3410
            If out_stride is List,  it must contain two integers,
L
Liufang Sang 已提交
3411 3412 3413 3414 3415
            :math:`[out\_stride\_height, out\_stride\_W]` . Otherwise,
            the out_stride_height = out_stride_width = out_stride. Default is 1.

        name (str, optional): The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3416 3417 3418

    Returns:
            The output is a 2-D LoDTensor with shape {input.batch\_size * output\_height * output\_width, \
L
Liufang Sang 已提交
3419 3420 3421
            filter\_size\_height * filter\_size\_width * input.channels}. The data type is float32.

    Return Type: Variable
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
3449 3450 3451
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

3464
            output.dims = {8, 8}
3465

3466
            output.lod = [[4, 4]]
3467

T
Tink_Y 已提交
3468
    Examples:
3469 3470 3471

        .. code-block:: python

B
Bai Yifan 已提交
3472
            import paddle.fluid as fluid
3473 3474
            import paddle
            paddle.enable_static()
L
Liufang Sang 已提交
3475
            data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
3476
                                     dtype='float32')
3477
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
3478 3479
                input=data, stride=[1, 1], filter_size=[2, 2])

3480 3481

    """
3482 3483 3484
    assert (
        not _non_static_mode()
    ), "sequence layer is not supported in dygraph mode yet."
W
wanghaoshuang 已提交
3485

3486 3487
    check_variable_and_dtype(input, 'input', ['float32'], 'im2sequence')

W
wanghaoshuang 已提交
3488 3489 3490 3491 3492 3493 3494 3495 3496
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
3497
    inputs = {"X": input}
3498
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
3499 3500 3501 3502 3503
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
3504
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
3505
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
3506 3507 3508
    helper.append_op(
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
3509
    return out
3510 3511


Y
yuyang18 已提交
3512
@templatedoc()
3513
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
3514
    """
3515 3516
    :api_attr: Static Graph

Y
yuyang18 已提交
3517
    ${comment}
3518 3519

    Args:
Y
yuyang18 已提交
3520
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
3521 3522
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
3523 3524 3525 3526 3527
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
3528
        ${out_comment}.
3529 3530

    Examples:
B
Bai Yifan 已提交
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542

      .. code-block:: python

        # for LodTensor inputs
        import paddle
        paddle.enable_static()
        x = paddle.static.data(name='x', shape=[9, 16],
                               dtype='float32', lod_level=1)
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
        # for Tensor inputs
        x = paddle.static.data(name='x', shape=[9, 4, 16], dtype='float32')
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
3543 3544
    """
    helper = LayerHelper('row_conv', **locals())
3545
    check_variable_and_dtype(input, 'input', ['float32'], 'row_conv')
3546
    dtype = helper.input_dtype()
3547
    filter_shape = [future_context_size + 1, input.shape[-1]]
3548 3549 3550
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype
    )
X
Xin Pan 已提交
3551
    out = helper.create_variable_for_type_inference(dtype)
3552 3553 3554 3555 3556
    helper.append_op(
        type='row_conv',
        inputs={'X': [input], 'Filter': [filter_param]},
        outputs={'Out': [out]},
    )
Y
yangyaming 已提交
3557
    return helper.append_activation(out)
3558 3559


Y
yuyang18 已提交
3560
@templatedoc()
3561
def multiplex(inputs, index, name=None):
3562
    """
Y
yuyang18 已提交
3563

3564
    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.
L
lujun 已提交
3565

3566
    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .
L
lujun 已提交
3567

3568
    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .
L
lujun 已提交
3569

3570
    For Example:
L
lujun 已提交
3571

3572
            .. code-block:: text
L
lujun 已提交
3573

3574
                Given:
L
lujun 已提交
3575

3576 3577 3578 3579
                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]
L
lujun 已提交
3580

3581
                index = [[3],[0],[1],[2]]
L
lujun 已提交
3582

3583 3584 3585 3586
                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]
L
lujun 已提交
3587 3588


3589
    Args:
3590 3591 3592 3593 3594
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
3595
    Returns:
3596
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.
X
xuezhong 已提交
3597 3598

    Examples:
3599

X
xuezhong 已提交
3600 3601
        .. code-block:: python

3602
            import paddle
3603 3604 3605
            import numpy as np
            img1 = np.array([[1, 2], [3, 4]]).astype(np.float32)
            img2 = np.array([[5, 6], [7, 8]]).astype(np.float32)
3606 3607 3608
            inputs = [paddle.to_tensor(img1), paddle.to_tensor(img2)]
            index = paddle.to_tensor(np.array([[1], [0]]).astype(np.int32))
            res = paddle.multiplex(inputs, index)
3609
            print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)]
X
xuezhong 已提交
3610

3611
    """
3612 3613

    if _in_legacy_dygraph():
3614
        return _legacy_C_ops.multiplex(index, inputs)
3615
    if in_dygraph_mode():
3616
        return _C_ops.multiplex(inputs, index)
3617 3618
    helper = LayerHelper('multiplex', **locals())

3619 3620 3621
    check_type(inputs, 'inputs', (list), 'multiplex')
    if len(inputs) < 2:
        raise ValueError(
3622 3623
            "inputs should be a list object with at least 2 elements."
        )
3624
    for id, x in enumerate(inputs):
3625 3626 3627 3628 3629 3630
        check_variable_and_dtype(
            x,
            'input[' + str(id) + ']',
            ['float32', 'float64', 'int32', 'int64'],
            'multiplex',
        )
3631
    check_variable_and_dtype(index, "index", ['int32', 'int64'], 'multiplex')
3632 3633

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
3634 3635 3636 3637 3638
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs, 'Ids': index},
        outputs={'Out': [out]},
    )
3639
    return out
X
xuezhong 已提交
3640 3641


3642 3643
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
3644

Y
Yibing Liu 已提交
3645 3646
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
3647
    For each instance, it computes the smooth L1 loss element by element first
T
tianshuo78520a 已提交
3648
    and then sums all the losses. So the shape of output Variable is
3649
    [batch_size, 1].
3650

3651 3652
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
3653
            L1 loss op with shape [batch_size, dim1, ..., dimN].
3654
            A LoDTensor or Tensor with type float32.
3655
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
3656
            L1 loss op with same shape as :attr:`x`.
3657
            A LoDTensor or Tensor with type float32.
3658
        inside_weight (Variable|None):  A tensor with rank at least 2. This
3659 3660
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
3661
            by this tensor element by element.
3662
            A Tensor with type float32.
3663
        outside_weight (Variable|None): A tensor with rank at least 2. This
3664 3665
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
3666
            element by element.
3667
            A Tensor with type float32.
3668
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
3669 3670
           scalar with default value 1.0.

3671
    Returns:
3672
        Variable: The output smooth L1 loss with shape [batch_size, 1].  A Tensor with type float32.
3673 3674 3675 3676

    Examples:
        .. code-block:: python

3677
            import paddle.fluid as fluid
3678
            import numpy as np
3679 3680
            import paddle
            paddle.enable_static()
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
            data = fluid.data(name="x", shape=[-1, 3], dtype="float32")
            label = fluid.data(name="y", shape=[-1, 3], dtype="float32")
            result = fluid.layers.smooth_l1(data,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3,3).astype("float32")
            y = np.random.rand(3,3).astype("float32")
            output= exe.run(feed={"x":x, "y":y},
                             fetch_list=[result])
            print(output)
3692

3693 3694 3695 3696
            #[array([[0.08220536],
            #       [0.36652038],
            #      [0.20541131]], dtype=float32)]

3697
    """
3698 3699
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'smooth_l1_loss')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'smooth_l1_loss')
3700

3701
    helper = LayerHelper('smooth_l1_loss', **locals())
3702

X
Xin Pan 已提交
3703 3704
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight,
        },
        outputs={'Diff': diff, 'Out': loss},
        attrs={'sigma': sigma if sigma is not None else 1.0},
    )
3716
    return loss
3717 3718


3719
@deprecated(since='2.0.0', update_to='paddle.nn.functional.one_hot')
3720
def one_hot(input, depth, allow_out_of_range=False):
3721
    """
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
3760
                        [0., 1., 0., 0.],
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
3773
            The second dimension in X is 5, which is greater than depth.
3774 3775
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
3776 3777

    Args:
3778 3779 3780
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
3781
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input
3782
            is word id, depth is generally the dictionary size.
3783
        allow_out_of_range(bool): A bool value indicating whether the input
3784 3785 3786 3787
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
3788 3789

    Returns:
3790
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
3791 3792

    Examples:
C
caoying03 已提交
3793
        .. code-block:: python
3794

3795
            import paddle
3796
            import paddle.fluid as fluid
3797 3798
            paddle.enable_static()

3799 3800 3801
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
3802
    """
J
Jiabin Yang 已提交
3803
    if _non_static_mode():
S
songyouwei 已提交
3804 3805 3806
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
3807 3808
                1,
            ), "depth of type Variable should have shape [1]"
3809
            depth = depth.item(0)
3810 3811 3812
        out = _legacy_C_ops.one_hot(
            input, 'depth', depth, 'allow_out_of_range', allow_out_of_range
        )
3813 3814
        out.stop_gradient = True
        return out
3815

3816
    helper = LayerHelper("one_hot", **locals())
3817
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'one_hot')
3818
    check_type(depth, 'depth', (int, Variable), 'one_hot')
X
Xin Pan 已提交
3819
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
3820

3821 3822
    if not isinstance(depth, Variable):
        # user attribute
3823
        inputs = {'X': input}
Y
Yi Liu 已提交
3824
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
3825
    else:
3826 3827 3828
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
3829 3830 3831
    helper.append_op(
        type="one_hot", inputs=inputs, attrs=attrs, outputs={'Out': one_hot_out}
    )
3832
    one_hot_out.stop_gradient = True
3833
    return one_hot_out
Y
Yu Yang 已提交
3834 3835


Y
Yu Yang 已提交
3836
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
3837
    """
3838 3839
    :api_attr: Static Graph

3840 3841
    Create an auto-increase variable. which will be automatically increased
    by 1 in every iteration. By default, the first return of this counter is 1,
Y
Yibing Liu 已提交
3842
    and the step size is 1.
Y
Yu Yang 已提交
3843 3844

    Args:
Y
Yibing Liu 已提交
3845 3846 3847
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
3848

3849
    Returns:
Y
Yibing Liu 已提交
3850
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
3851 3852 3853 3854

    Examples:
        .. code-block:: python

3855
           import paddle.fluid as fluid
3856 3857
           import paddle
           paddle.enable_static()
Y
yi.wu 已提交
3858
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
3859
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
3860 3861
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
3862 3863
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
3864
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
3865 3866 3867 3868
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
3869 3870
        belong_to_optimizer=True,
    )
Y
Yu Yang 已提交
3871
    if is_new_var:
3872 3873 3874
        helper.set_variable_initializer(
            counter, initializer=Constant(value=begin - 1, force_cpu=True)
        )
W
Wu Yi 已提交
3875
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
3876 3877
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
3878
            outputs={'Out': [counter]},
3879 3880
            attrs={'step': float(step)},
        )
Y
Yu Yang 已提交
3881 3882 3883
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
3884 3885


3886
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
3887
    """
3888
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
3889 3890
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
3891

M
minqiyang 已提交
3892
    For example:
H
haowang101779990 已提交
3893 3894 3895

    .. code-block:: text

M
minqiyang 已提交
3896
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
3897
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
3898

Y
Yibing Liu 已提交
3899
    Args:
3900
        input (Variable): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
3901
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
3902
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
3903 3904

    Returns:
3905
        Variable: Unsqueezed Tensor, with the same data type as input.
Y
Yibing Liu 已提交
3906 3907 3908 3909

    Examples:
        .. code-block:: python

3910 3911 3912
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
3913

Y
Yibing Liu 已提交
3914
    """
J
Jiabin Yang 已提交
3915
    if _non_static_mode():
L
Leo Chen 已提交
3916 3917 3918
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
3919
            axes = axes.numpy().tolist()
L
Leo Chen 已提交
3920 3921 3922 3923 3924
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
3925
        if _in_legacy_dygraph():
3926
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
3927
            return out
3928
        return _C_ops.unsqueeze(input, axes)
3929 3930

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
3958
        if utils._contain_var(axes):
3959
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
3960 3961 3962
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
3963 3964
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
3965 3966 3967 3968 3969 3970
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
Y
Yibing Liu 已提交
3971

3972 3973
    return out

3974

Y
yangyaming 已提交
3975
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
3976
    """
Y
Yibing Liu 已提交
3977
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
3978 3979 3980 3981
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
3982
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
3983 3984 3985 3986 3987 3988

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
3989
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
3990 3991 3992
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

3993
            target_lod: [4, 2]
Y
yangyaming 已提交
3994 3995

            then we get a 1-level LoDTensor:
3996
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
3997 3998 3999 4000 4001 4002
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4003
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4004 4005 4006 4007
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4008
                y.data = [[2, 4]]
Y
yangyaming 已提交
4009 4010 4011
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4012
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4013 4014 4015 4016 4017 4018
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4019
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4020 4021 4022 4023
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4024
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4025 4026 4027 4028
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4029
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4030 4031 4032 4033
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
4034
        x (Variable): Input variable which could be a Tensor or LoDTensor.
4035
                      The data type should be int32, int64, float32 or float64.
4036 4037
        y (Variable, optional): If provided, output's LoD would be derived from :attr:`y`.
                                If y's lod level>0, the data type can be any type.
4038 4039
                                If y's lod level=0, the data type should be int32.
        target_lod (list|tuple, optional): One level LoD which should be considered
Y
Yibing Liu 已提交
4040
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4041 4042

    Returns:
Y
Yibing Liu 已提交
4043
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4044 4045

    Raises:
Y
Yibing Liu 已提交
4046
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4047 4048 4049 4050

    Examples:
        .. code-block:: python

4051
            import paddle.fluid as fluid
4052 4053 4054
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
4055
    """
4056 4057 4058
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'lod_reset'
    )
Y
yangyaming 已提交
4059
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
4060
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
4061
    if y is not None:
4062
        check_type(y, 'y', (Variable), 'lod_reset')
4063 4064 4065 4066
        # TODO: check y.lod_level = 0 dtype
        helper.append_op(
            type="lod_reset", inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
Y
yangyaming 已提交
4067
    elif target_lod is not None:
4068 4069 4070 4071 4072 4073
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out},
        )
Y
yangyaming 已提交
4074
    else:
4075 4076 4077 4078
        raise ValueError("y and target_lod should not be both none.")
    return out


4079
def pad(x, paddings, pad_value=0.0, name=None):
4080
    r"""
4081
    :alias_main: paddle.nn.functional.pad
4082 4083
        :alias: paddle.nn.functional.pad,paddle.nn.functional.common.pad
        :old_api: paddle.fluid.layers.pad
4084

S
SunGaofeng 已提交
4085 4086
    This op will pad a tensor with a constant value given by :attr:`pad_value`, and the
    padded shape is specified by :attr:`paddings`.
G
guosheng 已提交
4087

S
SunGaofeng 已提交
4088 4089 4090 4091
    Specifically, the number of values padded before the elements of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[2*i]`, and the number
    of values padded after the elements of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[2*i+1]`.
G
guosheng 已提交
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:
            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
S
SunGaofeng 已提交
4110
        x (Variable): Tensor, data type is float32.
G
guosheng 已提交
4111
        paddings (list): A list of integers. Its elements specify the padded
S
SunGaofeng 已提交
4112
                         width before and after each dimension in turn.
4113
                         The length of :attr:`paddings` must be equal to
G
guosheng 已提交
4114 4115
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
4116 4117
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
4118
                             For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
4119 4120

    Returns:
S
SunGaofeng 已提交
4121 4122 4123 4124
        The padded tensor, with the same data type and rank as :attr:`x`

    Return Type:
        Variable
G
guosheng 已提交
4125 4126 4127

    Examples:
        .. code-block:: python
G
guosheng 已提交
4128

4129
            # x is a rank 2 tensor variable
S
SunGaofeng 已提交
4130
            import paddle.fluid as fluid
4131 4132
            x = fluid.data(name='data', shape=[300, 300], dtype='float32')
            out = fluid.layers.pad(x=x, paddings=[0, 1, 1, 2], pad_value=0.)
G
guosheng 已提交
4133
    """
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
    check_variable_and_dtype(
        x,
        'x',
        [
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        "pad",
    )
4148

4149 4150 4151 4152
    check_type(pad_value, 'pad_value', (float, int, Variable), 'pad')
    if isinstance(pad_value, int):
        pad_value = float(pad_value)

4153 4154
    helper = LayerHelper('pad', **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
4155
    out = helper.create_variable_for_type_inference(dtype)
4156 4157 4158 4159 4160 4161
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings, 'pad_value': pad_value},
    )
G
guosheng 已提交
4162
    return out
4163 4164


4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
def image_resize(
    input,
    out_shape=None,
    scale=None,
    name=None,
    resample='BILINEAR',
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCHW',
):
4176
    """
4177

R
ruri 已提交
4178
    This op resizes a batch of images.
F
stash  
fengjiayi 已提交
4179

4180 4181
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or a 4-D Tensor of the shape (num_batches, channels, in_h, in_w)
4182 4183
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
T
tianshuo78520a 已提交
4184
    and the resizing only applies on the three dimensions(depth, height and width).
4185

4186
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
4187 4188
    future and only use :attr:`out_shape` instead.

4189
    Supporting resample methods:
4190
        'LINEAR' : Linear interpolation
Q
update  
qiaolongfei 已提交
4191

4192
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
4193

K
Kaipeng Deng 已提交
4194 4195
        'TRILINEAR' : Trilinear interpolation

4196
        'NEAREST' : Nearest neighbor interpolation
4197

4198
        'BICUBIC' : Bicubic interpolation
4199 4200

    Linear interpolation is the method of using a line connecting two known quantities
4201
    to determine the value of an unknown quantity between the two known quantities.
4202

4203
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
4204
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
4205
    direction) on input tensor.
4206 4207 4208 4209 4210

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
4211 4212
    again in the other direction.

4213 4214 4215
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
K
Kaipeng Deng 已提交
4216
    The linear interpolation is performed on three directions.
4217

4218 4219 4220 4221
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
K
Kaipeng Deng 已提交
4222

4223
    Align_corners and align_mode are optional parameters,the calculation method
4224 4225 4226 4227
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
4228
    .. code-block:: text
4229

T
Tink_Y 已提交
4230
        For scale:
4231

T
Tink_Y 已提交
4232
            if align_corners = True && out_size > 1 :
4233

T
Tink_Y 已提交
4234
              scale_factor = (in_size-1.0)/(out_size-1.0)
4235

T
Tink_Y 已提交
4236
            else:
4237

T
Tink_Y 已提交
4238
              scale_factor = float(in_size/out_size)
4239 4240


T
Tink_Y 已提交
4241
        Nearest neighbor interpolation:
4242

T
Tink_Y 已提交
4243 4244
          if:
              align_corners = False
4245

T
Tink_Y 已提交
4246 4247
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
4248

T
Tink_Y 已提交
4249 4250
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
4251

T
Tink_Y 已提交
4252 4253
          else:
              align_corners = True
4254

T
Tink_Y 已提交
4255 4256
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
4257

T
Tink_Y 已提交
4258 4259
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
4260

4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
        linear interpolation:

          if:
              align_corners = False , align_mode = 0

              input : (N,C,W_in)
              output: (N,C,W_out) where:

              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,W_in)
              output: (N,C,H_out,W_out) where:

              W_out = W_{in} * scale_{factor}

T
Tink_Y 已提交
4278 4279 4280 4281
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
4282

T
Tink_Y 已提交
4283 4284
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
4285

T
Tink_Y 已提交
4286 4287
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
4288

T
Tink_Y 已提交
4289
          else:
4290

T
Tink_Y 已提交
4291 4292
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
4293

T
Tink_Y 已提交
4294 4295
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
4296

K
Kaipeng Deng 已提交
4297 4298 4299 4300
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
4301

K
Kaipeng Deng 已提交
4302 4303
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
4304

K
Kaipeng Deng 已提交
4305 4306 4307 4308 4309 4310
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
4311

K
Kaipeng Deng 已提交
4312 4313 4314 4315
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
4316

4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
K
Kaipeng Deng 已提交
4329 4330
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
4331

4332

4333 4334
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
4335

4336
    For details of nearest neighbor interpolation, please refer to Wikipedia:
4337
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
4338

4339
    For details of bilinear interpolation, please refer to Wikipedia:
4340
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
4341

4342
    For details of trilinear interpolation, please refer to Wikipedia:
K
Kaipeng Deng 已提交
4343
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
4344

4345 4346
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
4347

R
ruri 已提交
4348
    Parameters:
4349
        input (Variable): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
4350
                          its data format is specified by :attr:`data_format`.
4351
        out_shape (list|tuple|Variable|None): Output shape of image resize
4352 4353
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
4354
             Default: None. If a list, each element can be an integer or a Tensor Variable of shape: [1].
4355
             If a Tensor Variable, its dimensions size should be a 1.
4356 4357 4358
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
4359
             Default: None.
4360 4361
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4362
        resample(str): The resample method. It supports 'LINEAR', 'BICUBIC', 'BILINEAR', 'TRILINEAR'
K
Kaipeng Deng 已提交
4363
                       and 'NEAREST' currently. Default: 'BILINEAR'
4364 4365 4366
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
4367
                                :attr:`out_shape` and :attr:`scale` specifying
4368 4369
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
4370 4371 4372 4373 4374
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
4375
                                errors would be occurred in graph constructing stage.
4376
                                Default: None
4377 4378
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
4379 4380
                               corner pixels.
                               Default: True
4381 4382
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the fomula in the
                            the example code above, it can be \'0\' for src_idx = scale*(dst_indx+0.5)-0.5 ,
4383
                            can be \'1\' for src_idx = scale*dst_index.
4384
        data_format (str, optional): Specify the data format of the input, and the data format of the output
4385
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
4386
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
4387
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
4388
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
4389 4390

    Returns:
4391
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
4392 4393
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
4394

4395 4396 4397
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
4398 4399
        ValueError: The 'resample' of image_resize can only be 'LINEAR', 'BILINEAR',
                    'TRILINEAR', 'BICUBIC' or 'NEAREST' currently.
4400
        ValueError: 'LINEAR' only support 3-D tensor.
4401
        ValueError: 'BICUBIC', 'BILINEAR' and 'NEAREST' only support 4-D tensor.
K
Kaipeng Deng 已提交
4402
        ValueError: 'TRILINEAR' only support 5-D tensor.
4403
        ValueError: One of out_shape and scale must not be None.
4404
        ValueError: out_shape length should be 1 for input 3-D tensor.
K
Kaipeng Deng 已提交
4405 4406
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
4407
        ValueError: scale should be greater than zero.
T
tianshuo78520a 已提交
4408
        TypeError: align_corners should be a bool value
4409
        ValueError: align_mode can only be '0' or '1'
4410
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
4411

4412 4413
    Examples:
        .. code-block:: python
4414

4415 4416 4417 4418 4419 4420
            #declarative mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
4421

4422 4423
            #1
            output = fluid.layers.image_resize(input=input,out_shape=[12,12])
R
ruri 已提交
4424

4425 4426 4427 4428 4429
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1])
R
ruri 已提交
4430

4431 4432 4433 4434 4435
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor)
R
ruri 已提交
4436

4437 4438 4439 4440 4441
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.image_resize(input=input,scale=scale_tensor)
R
ruri 已提交
4442

4443 4444 4445
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4446

4447
            input_data = np.random.rand(2,3,6,10).astype("float32")
4448

4449
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
4450 4451 4452
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
4453

4454
            print(output_data[0].shape)
4455

4456 4457 4458 4459 4460 4461 4462 4463
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
4464

4465 4466
            #imperative mode
            import paddle.fluid.dygraph as dg
4467

4468 4469 4470 4471
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.image_resize(input=input, out_shape=[12,12])
                print(output.shape)
4472

4473
                # [2L, 3L, 12L, 12L]
4474

4475
    """
4476
    resample_methods = {
4477
        'LINEAR': 'linear',
4478
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
4479
        'TRILINEAR': 'trilinear',
4480
        'NEAREST': 'nearest',
4481
        'LINEAR': 'linear',
4482
    }
4483
    resample = resample.upper()
4484 4485
    if resample not in resample_methods:
        raise ValueError(
4486
            "The 'resample' of image_resize can only be 'LINEAR', 'BILINEAR', 'TRILINEAR' "
4487 4488
            "or 'NEAREST' currently."
        )
4489
    resample_type = resample_methods[resample]
4490

4491 4492 4493
    if resample == 'LINEAR' and len(input.shape) != 3:
        raise ValueError("'LINER only support 3-D tensor.")
    elif resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
K
Kaipeng Deng 已提交
4494
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
4495
    elif resample == 'TRILINEAR' and len(input.shape) != 5:
K
Kaipeng Deng 已提交
4496 4497
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

4498 4499 4500 4501 4502
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

4503
    if out_shape is None and scale is None:
4504
        raise ValueError("One of out_shape and scale must not be None.")
4505
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
4506
    dtype = helper.input_dtype()
4507

4508
    if len(input.shape) == 3 and data_format not in ['NCW', 'NWC']:
4509
        raise ValueError(
4510 4511 4512 4513
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCW` or `NWC` supported for 3-D input."
        )
4514
    elif len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
4515
        raise ValueError(
4516 4517 4518 4519
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCHW` or `NHWC` supported for 4-D input."
        )
4520 4521
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
4522 4523 4524 4525
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCDHW` or `NDHWC` supported for 5-D input."
        )
4526

4527
    def _is_list_or_turple_(data):
4528
        return isinstance(data, list) or isinstance(data, tuple)
4529

4530
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
4531
        data_layout = 'NCHW'
4532
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
4533 4534
        data_layout = 'NHWC'

4535
    inputs = {"X": input}
D
dengkaipeng 已提交
4536
    attrs = {
4537 4538 4539
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
4540 4541
        "interp_method": resample_type,
        "align_corners": align_corners,
4542
        "align_mode": align_mode,
4543
        "data_layout": data_layout,
D
dengkaipeng 已提交
4544 4545
    }

4546
    if out_shape is not None:
4547
        if isinstance(out_shape, Variable) and not _non_static_mode():
4548
            out_shape.stop_gradient = True
4549
            inputs['OutSize'] = out_shape
4550
        else:
4551 4552 4553 4554 4555 4556 4557 4558
            if _non_static_mode():
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
                else:
                    out_shape = list(out_shape)
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
4559
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
4560
                raise TypeError(
4561 4562
                    "out_shape should be a list or tuple or Variable."
                )
4563 4564 4565 4566 4567 4568
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
4569 4570 4571
                assert (
                    dim_size > 0
                ), "Each dimension size given in out_shape must be greater than 0."
4572 4573 4574 4575 4576 4577 4578 4579 4580 4581

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
4582
                        assert isinstance(dim, int)
4583
                        temp_out = helper.create_variable_for_type_inference(
4584 4585 4586 4587 4588
                            'int32'
                        )
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out
                        )
4589 4590 4591 4592
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

4593 4594
            if len(input.shape) == 3:
                if len(out_shape) != 1:
4595 4596 4597
                    raise ValueError(
                        "out_shape length should be 1 for " "input 3-D tensor."
                    )
4598 4599 4600 4601 4602 4603
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
            elif len(input.shape) == 4:
K
Kaipeng Deng 已提交
4604
                if len(out_shape) != 2:
4605 4606 4607
                    raise ValueError(
                        "out_shape length should be 2 for " "input 4-D tensor."
                    )
4608 4609 4610 4611 4612 4613 4614
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
4615 4616
            if len(input.shape) == 5:
                if len(out_shape) != 3:
4617 4618 4619
                    raise ValueError(
                        "out_shape length should be 3 for " "input 5-D tensor."
                    )
4620 4621 4622 4623 4624 4625 4626 4627 4628
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
4629

4630
    else:
4631 4632 4633
        if _non_static_mode() and isinstance(scale, Variable):
            scale = scale.numpy()
        elif isinstance(scale, Variable):
4634 4635
            scale.stop_gradient = True
            inputs["Scale"] = scale
4636
        elif isinstance(scale, float) or isinstance(scale, int):
4637
            if scale <= 0:
4638
                raise ValueError("Attr(scale) should be greater than zero.")
4639
            attrs['scale'] = float(scale)
4640 4641
        else:
            raise TypeError(
4642 4643
                "Attr(scale)'s type should be float, int or Variable."
            )
4644

4645
    if isinstance(actual_shape, Variable):
4646 4647 4648 4649 4650
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
4651 4652 4653
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")
4654 4655 4656 4657 4658 4659 4660 4661 4662

    if _non_static_mode():
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
4663
            out = _legacy_C_ops.linear_interp(input, actual_shape, *dy_attr)
4664
        elif resample_type == "bilinear":
4665
            out = _legacy_C_ops.bilinear_interp(input, actual_shape, *dy_attr)
4666
        elif resample_type == "trilinear":
4667
            out = _legacy_C_ops.trilinear_interp(input, actual_shape, *dy_attr)
4668
        elif resample_type == "nearest":
4669
            out = _legacy_C_ops.nearest_interp(input, actual_shape, *dy_attr)
4670
        elif resample_type == "bicubic":
4671
            out = _legacy_C_ops.bicubic_interp(input, actual_shape, *dy_attr)
4672 4673
        return out

X
Xin Pan 已提交
4674
    out = helper.create_variable_for_type_inference(dtype)
4675 4676 4677 4678 4679 4680
    helper.append_op(
        type='{}_interp'.format(resample_type),
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs,
    )
4681
    return out
F
stash  
fengjiayi 已提交
4682 4683


4684
@templatedoc(op_type="bilinear_interp")
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
def resize_bilinear(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCHW',
):
4695
    """
4696

R
ruri 已提交
4697
    This op resizes the input by performing bilinear interpolation based on given
4698
    output shape which specified by actual_shape, out_shape and scale
4699 4700
    in priority order.

4701
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in
4702 4703
    the future and only use :attr:`out_shape` instead.

4704 4705 4706 4707
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
4708 4709
    again in the other direction.

4710
    For details of bilinear interpolation, please refer to Wikipedia:
4711
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
4712

4713
    Align_corners and align_mode are optional parameters,the calculation
4714 4715 4716 4717
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
4718
    .. code-block:: text
4719

T
Tink_Y 已提交
4720
        For scale:
4721

T
Tink_Y 已提交
4722
            if align_corners = True && out_size > 1 :
4723

T
Tink_Y 已提交
4724
              scale_factor = (in_size-1.0)/(out_size-1.0)
4725

T
Tink_Y 已提交
4726
            else:
4727

4728
              scale_factor = float(in_size/out_size)
4729

T
Tink_Y 已提交
4730 4731 4732 4733
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
4734

T
Tink_Y 已提交
4735 4736
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
4737

T
Tink_Y 已提交
4738 4739
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
4740

T
Tink_Y 已提交
4741
          else:
T
tink2123 已提交
4742

T
Tink_Y 已提交
4743 4744 4745 4746
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
4747

R
ruri 已提交
4748 4749
    Parameters:
        input(Variable): 4-D Tensor(NCHW), its data type is float32, float64, or uint8,
4750
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
4751
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
4752 4753
            layer, the shape is (out_h, out_w).Default: None. If a list, each
            element can be an integer or a Tensor Variable with shape: [1]. If a
4754
            Tensor Variable, its dimension size should be 1.
4755
        scale(float|Variable|None): The multiplier for the input height or width. At
4756 4757
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
4758
             Default: None.
4759 4760 4761
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
4762
                                :attr:`out_shape` and :attr:`scale` specifying
4763 4764
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
4765 4766 4767 4768 4769
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
4770
                                errors would be occurred in graph constructing stage.
4771
                                Default: None
4772 4773
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
4774
        data_format (str, optional): Specify the data format of the input, and the data format of the output
4775 4776 4777
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
R
ruri 已提交
4778
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Y
yuyang18 已提交
4779 4780

    Returns:
4781
        Variable: 4-D tensor(NCHW or NHWC).
4782

4783 4784
    Examples:
        .. code-block:: python
4785

4786 4787 4788 4789 4790 4791
            #declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
4792

4793 4794
            #1
            output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12])
R
ruri 已提交
4795

4796 4797 4798 4799 4800
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1])
R
ruri 已提交
4801

4802 4803 4804 4805 4806
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor)
R
ruri 已提交
4807

4808 4809 4810 4811 4812
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor)
R
ruri 已提交
4813

4814 4815 4816
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4817

4818
            input_data = np.random.rand(2,3,6,10).astype("float32")
4819

4820
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
4821 4822 4823
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
4824

4825
            print(output_data[0].shape)
4826

4827 4828 4829 4830 4831 4832 4833 4834
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
4835

4836 4837
            #imperative mode
            import paddle.fluid.dygraph as dg
4838

4839 4840 4841 4842
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12])
                print(output.shape)
4843

4844
                # [2L, 3L, 12L, 12L]
4845

4846 4847
    """

4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'BILINEAR',
        actual_shape,
        align_corners,
        align_mode,
        data_format,
    )
4859 4860


K
Kaipeng Deng 已提交
4861
@templatedoc(op_type="trilinear_interp")
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
def resize_trilinear(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCDHW',
):
K
Kaipeng Deng 已提交
4872
    """
4873

R
ruri 已提交
4874
    This op resizes the input by performing trilinear interpolation based on given
K
Kaipeng Deng 已提交
4875 4876 4877
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

4878
    **Warning:** the parameter :attr:`actual_shape` will be deprecated
4879 4880
    in the future and only use :attr:`out_shape` instead.

4881 4882 4883
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
K
Kaipeng Deng 已提交
4884 4885 4886 4887 4888
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

4889
    Align_corners and align_mode are optional parameters,the calculation
K
Kaipeng Deng 已提交
4890 4891 4892 4893 4894 4895 4896
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
4897

K
Kaipeng Deng 已提交
4898 4899 4900
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
4901

K
Kaipeng Deng 已提交
4902
            else:
4903 4904

              scale_factor = float(in_size/out_size)
K
Kaipeng Deng 已提交
4905 4906 4907 4908

        Bilinear interpolation:

          if:
4909

K
Kaipeng Deng 已提交
4910
              align_corners = False , align_mode = 0
4911

K
Kaipeng Deng 已提交
4912 4913
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
4914

K
Kaipeng Deng 已提交
4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

R
ruri 已提交
4928
    Parameters:
4929 4930
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
4931
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1.
4932
        scale(float|Variable|None): The multiplier for the input depth, height or width.
4933 4934
             At least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
K
Kaipeng Deng 已提交
4935
             Default: None.
R
ruri 已提交
4936
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
K
Kaipeng Deng 已提交
4937 4938 4939 4940 4941 4942
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
4943 4944 4945 4946 4947
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
4948
                                errors would be occurred in graph constructing stage.
K
Kaipeng Deng 已提交
4949 4950 4951
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
4952
        data_format (str, optional): Specify the data format of the input, and the data format of the output
4953 4954 4955
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
K
Kaipeng Deng 已提交
4956 4957

    Returns:
4958
        Variable: A 5-D Tensor(NCDHW or NDHWC)
K
Kaipeng Deng 已提交
4959 4960 4961

    Examples:
        .. code-block:: python
4962

4963 4964 4965 4966 4967 4968
            #declarative mode
            import paddle.fluid as fluid
            import paddle
            import numpy as np
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,8,10])
R
ruri 已提交
4969

4970 4971
            #1
            output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12])
R
ruri 已提交
4972

4973 4974 4975 4976 4977
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4])
R
ruri 已提交
4978

4979 4980 4981 4982 4983
            #3
            #x = np.array([3,12,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor)
R
ruri 已提交
4984

4985 4986 4987 4988 4989
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor)
R
ruri 已提交
4990

4991 4992 4993
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4994

4995
            input_data = np.random.rand(2,3,6,8,10).astype("float32")
K
Kaipeng Deng 已提交
4996

4997
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
4998 4999 5000
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
5001

5002
            print(output_data[0].shape)
R
ruri 已提交
5003

5004 5005 5006 5007 5008 5009 5010 5011
            #1
            # (2, 3, 12, 12, 12)
            #2
            # (2, 3, 12, 2, 4)
            #3
            # (2, 3, 3, 12, 12)
            #4
            # (2, 3, 3, 4, 5)
R
ruri 已提交
5012

5013 5014
            #imperative mode
            import paddle.fluid.dygraph as dg
5015

5016 5017 5018 5019
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12])
                print(output.shape)
5020

5021
                # [2L, 3L, 12L, 12L, 12L]
5022 5023 5024



K
Kaipeng Deng 已提交
5025 5026
    """

5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'TRILINEAR',
        actual_shape,
        align_corners,
        align_mode,
        data_format,
    )
K
Kaipeng Deng 已提交
5038 5039


5040
@templatedoc(op_type="nearest_interp")
5041 5042 5043 5044 5045 5046 5047 5048 5049
def resize_nearest(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    data_format='NCHW',
):
5050
    """
5051

R
ruri 已提交
5052
    This op resizes the input by performing nearest neighbor interpolation in both the
5053
    height direction and the width direction based on given output shape
5054
    which is specified by actual_shape, out_shape and scale in priority order.
5055

5056
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
5057 5058
    future and only use :attr:`out_shape` instead.

5059 5060
    Example:

T
Tink_Y 已提交
5061 5062 5063
    .. code-block:: text

        For scale:
5064

T
Tink_Y 已提交
5065 5066
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
5067

T
Tink_Y 已提交
5068
            else:
5069

T
Tink_Y 已提交
5070
              scale_factor = float(in_size/out_size)
5071

T
Tink_Y 已提交
5072
        Nearest neighbor interpolation:
5073

T
Tink_Y 已提交
5074 5075
          if:
              align_corners = False
5076

T
Tink_Y 已提交
5077 5078
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
5079

T
Tink_Y 已提交
5080 5081
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
5082

T
Tink_Y 已提交
5083 5084
          else:
              align_corners = True
5085

T
Tink_Y 已提交
5086 5087
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
5088

T
Tink_Y 已提交
5089 5090
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
5091 5092


5093
    For details of nearest neighbor interpolation, please refer to Wikipedia:
5094
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
5095

R
ruri 已提交
5096
    Parameters:
5097 5098
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
5099
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_h, out_w). Default: None. Every element should be an integer or a tensor Variable with shape: [1] if it is a list. If it is a tensor Variable, its dimension size should be 1.
5100
        scale(float|Variable|None): The multiplier for the input height or width. At
5101 5102 5103
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
             Default: None.
R
ruri 已提交
5104
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
5105
        actual_shape(Variable): An optional input to specify output shape
5106 5107
                                dynamically. If provided, image resize
                                according to this given shape rather than
5108
                                :attr:`out_shape` and :attr:`scale` specifying
5109 5110
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
5111 5112 5113 5114 5115
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
5116
                                errors would be occurred in graph constructing stage.
5117
                                Default: None
5118
        align_corners(bool): ${align_corners_comment}
5119
        data_format (str, optional): Specify the data format of the input, and the data format of the output
5120 5121 5122
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
yuyang18 已提交
5123 5124

    Returns:
5125
        Variable: 4-D tensor(NCHW or NHWC).
5126 5127 5128

    Examples:
        .. code-block:: python
5129

5130 5131 5132 5133 5134
            #declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            paddle.enable_static()
5135

5136
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
5137

5138 5139
            #1
            output = fluid.layers.resize_nearest(input=input,out_shape=[12,12])
R
ruri 已提交
5140

5141 5142 5143 5144 5145
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_nearest(input=input,out_shape=[12,dim1])
R
ruri 已提交
5146

5147 5148 5149 5150 5151
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_nearest(input=input,out_shape=shape_tensor)
R
ruri 已提交
5152

5153 5154 5155 5156 5157
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_nearest(input=input,scale=scale_tensor)
R
ruri 已提交
5158

5159 5160 5161
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
5162

5163
            input_data = np.random.rand(2,3,6,10).astype("float32")
5164

5165
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
5166 5167 5168
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
5169

5170
            print(output_data[0].shape)
R
ruri 已提交
5171

5172 5173 5174 5175 5176 5177 5178 5179
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
5180

5181 5182
            #imperative mode
            import paddle.fluid.dygraph as dg
5183

5184 5185 5186 5187
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_nearest(input=input, out_shape=[12,12])
                print(output.shape)
R
ruri 已提交
5188

5189
                # [2L, 3L, 12L, 12L]
5190 5191 5192



5193 5194
    """

5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format,
    )
5206 5207


5208
@deprecated(since="2.0.0", update_to="paddle.nn.functional.relu")
5209
def relu(x, name=None):
W
wanghaoshuang 已提交
5210
    """
Z
zhupengyang 已提交
5211
    ${comment}
W
wanghaoshuang 已提交
5212 5213

    Args:
Z
zhupengyang 已提交
5214 5215 5216 5217
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
5218 5219

    Returns:
Z
zhupengyang 已提交
5220
        Variable: ${out_comment}
W
wanghaoshuang 已提交
5221 5222 5223 5224 5225

    Examples:

        .. code-block:: python

5226
            import paddle.fluid as fluid
Z
zhupengyang 已提交
5227 5228 5229 5230 5231 5232 5233
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
5234
                #  [1.  2.6]]"""
5235 5236

    if in_dygraph_mode():
W
wanghuancoder 已提交
5237
        return _C_ops.relu(x)
5238 5239
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu(x)
5240

5241 5242
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')

5243
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
5244
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5245
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5246
    out = helper.create_variable_for_type_inference(dtype)
5247 5248 5249
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out}
    )
W
wanghaoshuang 已提交
5250
    return out
5251 5252


G
fix  
gongweibao 已提交
5253 5254 5255
from paddle.fluid.framework import convert_np_dtype_to_dtype_


5256
@deprecated(since="2.0.0", update_to="paddle.normal")
G
gongweibao 已提交
5257
@templatedoc()
5258 5259 5260
def gaussian_random(
    shape, mean=0.0, std=1.0, seed=0, dtype='float32', name=None
):
G
fix  
gongweibao 已提交
5261
    """
5262 5263
    This OP returns a Tensor filled with random values sampled from a Gaussian
    distribution, with ``shape`` and ``dtype``.
G
fix  
gongweibao 已提交
5264 5265

    Args:
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        mean(float|int, optional): Mean of the output tensor, default is 0.0.
        std(float|int, optional): Standard deviation of the output tensor, default
            is 1.0.
        seed(int, optional): ${seed_comment}
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output Tensor. Supported data types: float32, float64.
            Default is float32.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
G
fix  
gongweibao 已提交
5281 5282

    Returns:
5283 5284
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``.
G
fix  
gongweibao 已提交
5285

5286
    Examples:
5287
       .. code-block:: python
5288

5289
            import paddle
5290
            import paddle.fluid as fluid
5291
            paddle.enable_static()
5292 5293

            # example 1:
5294
            # attr shape is a list which doesn't contain Tensor.
5295
            result_1 = fluid.layers.gaussian_random(shape=[3, 4])
5296 5297 5298
            # [[-0.31261674,  1.8736548,  -0.6274357,   0.96988016],
            #  [-0.12294637,  0.9554768,   1.5690808,  -1.2894802 ],
            #  [-0.60082096, -0.61138713,  1.5345167,  -0.21834975]]
5299 5300

            # example 2:
5301 5302 5303
            # attr shape is a list which contains Tensor.
            dim_1 = fluid.layers.fill_constant([1], "int64", 2)
            dim_2 = fluid.layers.fill_constant([1], "int32", 3)
5304
            result_2 = fluid.layers.gaussian_random(shape=[dim_1, dim_2])
5305 5306
            # [[ 0.51398206, -0.3389769,   0.23597084],
            #  [ 1.0388143,  -1.2015356,  -1.0499583 ]]
5307 5308

            # example 3:
5309
            # attr shape is a Tensor, the data type must be int64 or int32.
5310 5311
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
            result_3 = fluid.layers.gaussian_random(var_shape)
5312 5313 5314 5315
            # if var_shape's value is [2, 3]
            # result_3 is:
            # [[-0.12310527,  0.8187662,   1.923219  ]
            #  [ 0.70721835,  0.5210541,  -0.03214082]]
5316

5317
       .. code-block:: python
5318

5319 5320
           # declarative mode
           # required: skiptest
5321 5322
           import numpy as np
           from paddle import fluid
5323

5324
           x = fluid.layers.gaussian_random((2, 3), std=2., seed=10)
5325

5326 5327 5328 5329
           place = fluid.CPUPlace()
           exe = fluid.Executor(place)
           start = fluid.default_startup_program()
           main = fluid.default_main_program()
5330

5331 5332
           exe.run(start)
           x_np, = exe.run(main, feed={}, fetch_list=[x])
5333

5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
           x_np
           # array([[2.3060477, 2.676496 , 3.9911983],
           #        [0.9990833, 2.8675377, 2.2279181]], dtype=float32)

       .. code-block:: python

           # imperative mode
           import numpy as np
           from paddle import fluid
           import paddle.fluid.dygraph as dg
5344

5345 5346 5347
           place = fluid.CPUPlace()
           with dg.guard(place) as g:
               x = fluid.layers.gaussian_random((2, 4), mean=2., dtype="float32", seed=10)
5348
               x_np = x.numpy()
5349 5350 5351
           x_np
           # array([[2.3060477 , 2.676496  , 3.9911983 , 0.9990833 ],
           #        [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
G
fix  
gongweibao 已提交
5352
    """
5353 5354
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
5355

5356 5357 5358
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
5359
        return _C_ops.gaussian(
5360 5361
            shape, float(mean), float(std), seed, dtype, place
        )
5362 5363

    if _in_legacy_dygraph():
5364
        shape = utils.convert_shape_to_list(shape)
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
        return _legacy_C_ops.gaussian_random(
            'shape',
            shape,
            'mean',
            float(mean),
            'std',
            float(std),
            'seed',
            seed,
            'dtype',
            dtype,
        )
5377 5378 5379

    check_type(shape, 'shape', (list, tuple, Variable), 'gaussian_random/randn')
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'gaussian_random/randn')
5380 5381

    inputs = {}
5382 5383 5384 5385
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
5386
        'dtype': dtype,
5387
        'use_mkldnn': False,
5388
    }
5389 5390 5391
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='gaussian_random/randn'
    )
5392

5393 5394
    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_variable_for_type_inference(dtype)
5395 5396 5397
    helper.append_op(
        type='gaussian_random', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
G
fix  
gongweibao 已提交
5398 5399 5400 5401

    return out


G
gongweibao 已提交
5402
@templatedoc()
G
fix  
gongweibao 已提交
5403
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
5404
    """
R
ruri 已提交
5405
    This op is used for sampling id from multinomial distribution from the input, sampling one id for one sample.
G
fix  
gongweibao 已提交
5406

R
ruri 已提交
5407 5408 5409 5410
    Parameters:
        x (Variable): 2-D tensor, [batch_size, input_feature_dimensions]
        min (Float): minimum , default 0.0.
        max (Float): maximum, default 1.0.
5411
        seed (Float): Random seed, default 0. if seed is not 0, will generate same number every time.
G
fix  
gongweibao 已提交
5412
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
5413 5414

    Returns:
R
ruri 已提交
5415
        Variable: sampling tensor.
G
fix  
gongweibao 已提交
5416

5417 5418 5419
    Examples:
        .. code-block:: python

5420
            import paddle.fluid as fluid
R
ruri 已提交
5421
            x = fluid.data(
5422 5423
                name="X",
                shape=[13, 11],
R
ruri 已提交
5424
                dtype='float32')
5425

Y
Yibing Liu 已提交
5426
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
5427 5428 5429
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
5430
    out = helper.create_variable_for_type_inference(dtype)
5431 5432 5433 5434 5435 5436
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min, 'max': max, 'seed': seed},
    )
G
fix  
gongweibao 已提交
5437 5438 5439 5440 5441 5442

    return out


def shape(input):
    """
5443
    :alias_main: paddle.shape
5444 5445
        :alias: paddle.shape,paddle.tensor.shape,paddle.tensor.attribute.shape
        :old_api: paddle.fluid.layers.shape
5446

C
chengduozh 已提交
5447 5448
    **Shape Layer**

C
fix doc  
chengduozh 已提交
5449
    Get the shape of the input.
G
fix  
gongweibao 已提交
5450

5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
    .. code-block:: text

        Case1:
            Given N-D Tensor:
                input = [ [1, 2, 3, 4], [5, 6, 7, 8] ]

            Then:
                input.shape = [2, 4]

        Case2:
            Given SelectedRows:
                input.rows = [0, 4, 19]
                input.height = 20
                input.value = [ [1, 2], [3, 4], [5, 6] ]  # inner tensor
            Then:
                input.shape = [3, 2]

G
fix  
gongweibao 已提交
5468
    Args:
5469
        input (Variable): The input can be N-D Tensor or SelectedRows with data type bool, float16, float32, float64, int32, int64.
5470
                          If input variable is type of SelectedRows, returns the shape of it's inner tensor.
G
fix  
gongweibao 已提交
5471 5472

    Returns:
5473
        Variable (Tensor): The shape of the input variable.
G
fix  
gongweibao 已提交
5474

5475 5476 5477
    Examples:
        .. code-block:: python

5478
            import paddle.fluid as fluid
5479
            import numpy as np
W
Wilber 已提交
5480 5481
            import paddle
            paddle.enable_static()
5482

5483
            inputs = fluid.data(name="x", shape=[3, 100, 100], dtype="float32")
5484 5485 5486 5487 5488 5489 5490 5491 5492
            output = fluid.layers.shape(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.ones((3, 100, 100)).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([  3, 100, 100], dtype=int32)]
G
fix  
gongweibao 已提交
5493
    """
5494
    if in_dygraph_mode():
5495
        out = _C_ops.shape(input)
5496 5497 5498
        out.stop_gradient = True
        return out
    if _in_legacy_dygraph():
5499
        out = _legacy_C_ops.shape(input)
W
Wilber 已提交
5500 5501 5502
        out.stop_gradient = True
        return out

5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
    check_variable_and_dtype(
        input,
        'input',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'shape',
    )
G
fix  
gongweibao 已提交
5518
    helper = LayerHelper('shape', **locals())
5519
    out = helper.create_variable_for_type_inference(dtype='int32')
5520 5521 5522 5523 5524 5525
    helper.append_op(
        type='shape',
        inputs={'Input': input},
        outputs={'Out': out},
        stop_gradient=True,
    )
G
fix  
gongweibao 已提交
5526 5527

    return out
G
merge  
gongweibao 已提交
5528 5529


S
sneaxiy 已提交
5530 5531 5532 5533
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
5534

S
sneaxiy 已提交
5535 5536
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
5537
    check_variable_and_dtype(
5538 5539 5540 5541 5542
        x,
        'x',
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
        op_type,
    )
5543
    check_variable_and_dtype(
5544 5545 5546 5547 5548
        y,
        'y',
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
        op_type,
    )
5549

S
sneaxiy 已提交
5550 5551
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
5552
    name = helper.kwargs.get('name', None)
5553
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
5554

5555 5556 5557 5558 5559 5560
    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
S
sneaxiy 已提交
5561 5562 5563
    return helper.append_activation(out)


X
Xin Pan 已提交
5564
def elementwise_add(x, y, axis=-1, act=None, name=None):
5565
    """
5566

5567
    Examples:
5568

5569
        .. code-block:: python
5570

5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_add(x, y)
            # z = x + y
5584

5585 5586 5587 5588
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5589

5590
            print(z_value) # [3., 8., 6.]
5591 5592


5593
        .. code-block:: python
5594

5595 5596 5597
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5598

5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_add(x, y, axis=1)
            # z = x + y
5609

5610 5611
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5612

5613 5614
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5615

5616
            print(z_value) # z.shape=[2,3,4,5]
5617 5618


5619
        ..  code-block:: python
5620

5621 5622 5623
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5624

5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_add(x, y, axis=3)
            # z = x + y
5635

5636 5637
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5638

5639 5640 5641
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
5642 5643

    """
J
Jiabin Yang 已提交
5644
    if _non_static_mode():
5645
        return _elementwise_op_in_dygraph(
5646 5647 5648 5649 5650
            x,
            y,
            axis=axis,
            act=act,
            op_name='elementwise_add',
5651 5652
            use_mkldnn=_global_flags()["FLAGS_use_mkldnn"],
        )
5653

S
sneaxiy 已提交
5654 5655 5656
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


5657
@deprecated(since="2.0.0", update_to="paddle.divide")
X
Xin Pan 已提交
5658
def elementwise_div(x, y, axis=-1, act=None, name=None):
5659
    """
5660

5661
    Examples:
5662

5663
        .. code-block:: python
5664

5665 5666 5667
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5668

5669 5670 5671 5672 5673 5674 5675 5676 5677 5678
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_div(x, y)
            # z = x / y
5679

5680 5681 5682 5683
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5684

5685
            print(z_value) # [2., 0.6, 2.]
5686 5687


5688
        .. code-block:: python
5689

5690 5691 5692
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5693

5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_div(x, y, axis=1)
            # z = x / y
5704

5705 5706
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5707

5708 5709
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5710

5711
            print(z_value) # z.shape=[2,3,4,5]
5712 5713


5714
        ..  code-block:: python
5715

5716 5717 5718
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5719

5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_div(x, y, axis=3)
            # z = x / y
5730

5731 5732
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5733

5734 5735 5736
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
5737 5738

    """
J
Jiabin Yang 已提交
5739
    if _non_static_mode():
5740 5741 5742
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_div'
        )
5743

S
sneaxiy 已提交
5744 5745 5746
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
5747
def elementwise_sub(x, y, axis=-1, act=None, name=None):
5748
    """
5749

5750
    Examples:
5751

5752
        .. code-block:: python
5753

5754 5755 5756
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5757

5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y)
            # z = x - y
5768

5769 5770 5771 5772
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5773

5774
            print(z_value) # [1., -2., 2.]
5775 5776


5777
        .. code-block:: python
5778

5779 5780 5781
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5782

5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y, axis=1)
            # z = x - y
5793

5794 5795
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5796

5797 5798
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5799

5800
            print(z_value) # z.shape=[2,3,4,5]
5801 5802


5803
        ..  code-block:: python
5804

5805 5806 5807
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5808

5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y, axis=3)
            # z = x - y
5819

5820 5821
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5822

5823 5824 5825
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
5826 5827

    """
J
Jiabin Yang 已提交
5828
    if _non_static_mode():
5829 5830 5831
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub'
        )
5832

S
sneaxiy 已提交
5833 5834 5835
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


5836
@deprecated(since="2.0.0", update_to="paddle.multiply")
X
Xin Pan 已提交
5837
def elementwise_mul(x, y, axis=-1, act=None, name=None):
5838
    """
5839

5840
    Examples:
5841

5842
        .. code-block:: python
5843

5844 5845 5846
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5847

5848 5849 5850 5851 5852 5853 5854 5855 5856 5857
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y)
            # z = x * y
5858

5859 5860 5861 5862
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5863

5864
            print(z_value) # [2., 15., 8.]
5865 5866


5867
        .. code-block:: python
5868

5869 5870 5871
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5872

5873 5874 5875 5876 5877 5878 5879 5880 5881 5882
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y, axis=1)
            # z = x * y
5883

5884 5885
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5886

5887 5888
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5889

5890
            print(z_value) # z.shape=[2,3,4,5]
5891 5892


5893
        ..  code-block:: python
5894

5895 5896 5897
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5898

5899 5900 5901 5902 5903 5904 5905 5906 5907 5908
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y, axis=3)
            # z = x * y
5909

5910 5911
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5912

5913 5914 5915
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
5916

5917
    """
J
Jiabin Yang 已提交
5918
    if _non_static_mode():
5919 5920 5921
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mul'
        )
5922

S
sneaxiy 已提交
5923 5924 5925 5926
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


for func in [
5927 5928 5929 5930
    elementwise_add,
    elementwise_div,
    elementwise_sub,
    elementwise_mul,
5931 5932
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
5933 5934

    # insert the c++ doc string on top of python doc string
5935 5936 5937 5938 5939
    func.__doc__ = (
        _generate_doc_string_(
            op_proto,
            additional_args_lines=[
                "axis (int32, optional): If X.dimension != Y.dimension, \
5940 5941
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
5942
                "act (string, optional): Activation applied to the output. \
5943
            Default is None. Details: :ref:`api_guide_activations_en` ",
5944
                "name (string, optional): Name of the output. \
5945
            Default is None. It's used to print debug info for developers. Details: \
5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
            :ref:`api_guide_Name` ",
            ],
            skip_attrs_set={
                "x_data_format",
                "y_data_format",
                "axis",
                "use_quantizer",
                "mkldnn_data_type",
                "Scale_x",
                "Scale_y",
                "Scale_out",
            },
        )
        + """\n"""
        + str(func.__doc__)
    )
5962

5963 5964 5965
    doc_list = func.__doc__.splitlines()

    for idx, val in enumerate(doc_list):
5966 5967 5968 5969 5970
        if (
            val.startswith("Warning: ")
            and val.endswith(" instead.")
            and "and will be removed in future versions." in val
        ):
5971 5972 5973 5974
            doc_list.insert(0, doc_list.pop(idx))
            func.__doc__ = "\n" + "\n".join(i for i in doc_list)
            break

5975
for func in []:
S
sneaxiy 已提交
5976 5977 5978 5979
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
5980
            "act (basestring|None): Activation applied to the output.",
5981 5982 5983 5984 5985 5986
            "name (basestring|None): Name of the output.",
        ],
    )
    func.__doc__ = (
        func.__doc__
        + """
5987 5988 5989

Examples:
  .. code-block:: python
5990

5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
6021 6022 6023 6024 6025 6026 6027 6028 6029 6030
    """
        % (
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
        )
    )
M
minqiyang 已提交
6031 6032


6033
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
J
Jiabin Yang 已提交
6034
    if _non_static_mode():
6035
        op = getattr(_legacy_C_ops, op_name)
6036 6037 6038 6039
        if binary_op:
            return op(x, y)
        else:
            return op(x)
6040
    check_variable_and_dtype(
6041 6042
        x,
        "x",
6043
        ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
6044 6045
        op_name,
    )
6046
    if y is not None:
6047
        check_variable_and_dtype(
6048 6049
            y,
            "y",
6050
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
6051 6052
            op_name,
        )
6053
    if out is not None:
6054
        check_type(out, "out", Variable, op_name)
6055

M
minqiyang 已提交
6056 6057
    helper = LayerHelper(op_name, **locals())

6058 6059 6060
    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
6061 6062
            % (op_name, x.dtype, y.dtype)
        )
M
minqiyang 已提交
6063 6064

    if out is None:
6065
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
6066 6067

    if binary_op:
6068 6069 6070
        helper.append_op(
            type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
M
minqiyang 已提交
6071 6072 6073 6074 6075 6076
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


6077 6078 6079
@templatedoc()
def clip(x, min, max, name=None):
    """
6080
        :old_api: paddle.fluid.layers.clip
6081

6082 6083 6084 6085
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
6086 6087
        min(float): ${min_comment}
        max(float): ${max_comment}
6088 6089
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
6090
                             For more information, please refer to :ref:`api_guide_Name`
6091 6092

    Returns:
S
SunGaofeng 已提交
6093 6094 6095 6096
        ${out_comment}

    Return Type:
        ${out_type}
6097 6098 6099 6100

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
6101
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6102
            input = fluid.data(
6103 6104
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
6105 6106 6107
    """

    helper = LayerHelper("clip", **locals())
6108
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'clip')
6109 6110

    if name is None:
6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min, "max": max},
        outputs={"Out": out},
    )
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
6137 6138 6139
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
6140 6141

    Returns:
6142
        Tensor:
W
wangguanzhong 已提交
6143

6144
        out(${out_type}): ${out_comment}
6145

W
wangguanzhong 已提交
6146

6147 6148 6149
    Examples:
        .. code-block:: python

6150
            import paddle
6151
            import paddle.fluid as fluid
6152

6153 6154 6155
            input = paddle.to_tensor([[2.0, 2.0], [2.0, 2.0]], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
            # [[0.5, 0.5], [0.5, 0.5]]
6156 6157
    """

L
lyq 已提交
6158
    if in_dygraph_mode():
6159
        return _C_ops.clip_by_norm(x, max_norm)
J
Jiabin Yang 已提交
6160
    if _non_static_mode():
6161
        return _legacy_C_ops.clip_by_norm(x, 'max_norm', max_norm)
6162

6163
    helper = LayerHelper("clip_by_norm", **locals())
6164
    check_variable_and_dtype(x, 'X', ['float32', 'float16'], 'clip_by_norm')
6165
    check_type(max_norm, 'max_norm', (float), 'clip_by_norm')
6166 6167

    if name is None:
6168 6169 6170
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )
S
sneaxiy 已提交
6171

6172 6173 6174
    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )
6175

6176 6177 6178 6179 6180 6181
    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out},
    )
6182 6183

    return out
X
Xin Pan 已提交
6184 6185


6186
@deprecated(since="2.0.0", update_to="paddle.mean")
X
Xin Pan 已提交
6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
6198 6199 6200 6201

    Examples:
        .. code-block:: python

6202
            import paddle
6203
            import paddle.fluid as fluid
6204 6205
            paddle.enable_static()

6206 6207
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
6208
            mean = paddle.mean(input)
X
Xin Pan 已提交
6209
    """
6210

6211
    if _in_legacy_dygraph():
6212
        return _legacy_C_ops.mean(x)
6213
    if in_dygraph_mode():
6214
        return _C_ops.mean_all(x)
X
Xin Pan 已提交
6215 6216

    helper = LayerHelper("mean", **locals())
6217
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean')
6218
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
6219

6220 6221 6222
    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out}
    )
X
Xin Pan 已提交
6223 6224 6225 6226

    return out


C
chengduo 已提交
6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
6238 6239 6240 6241

    Examples:
        .. code-block:: python

6242
            import paddle.fluid as fluid
6243 6244 6245 6246 6247
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
6248
    """
6249 6250 6251
    if in_dygraph_mode():
        return _C_ops.merge_selected_rows(x)

6252
    if _non_static_mode():
6253
        return _legacy_C_ops.merge_selected_rows(x)
C
chengduo 已提交
6254 6255 6256

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6257 6258 6259 6260 6261 6262
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out},
    )
C
chengduo 已提交
6263 6264 6265
    return out


X
Xin Pan 已提交
6266 6267
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
6268 6269 6270 6271 6272 6273 6274 6275
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
6276 6277

    Args:
L
liu zhengxi 已提交
6278 6279
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
6280 6281 6282
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1.
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1.
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
X
Xin Pan 已提交
6283 6284

    Returns:
L
liu zhengxi 已提交
6285
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
6286 6287

    Examples:
L
liu zhengxi 已提交
6288
        ..  code-block:: python
6289

6290
            import paddle.fluid as fluid
6291 6292
            import paddle
            paddle.enable_static()
6293 6294 6295 6296 6297
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
6298

6299

X
Xin Pan 已提交
6300
    """
J
Jiabin Yang 已提交
6301
    if _non_static_mode():
6302 6303 6304 6305 6306 6307 6308 6309
        return _legacy_C_ops.mul(
            x,
            y,
            'x_num_col_dims',
            x_num_col_dims,
            'y_num_col_dims',
            y_num_col_dims,
        )
X
Xin Pan 已提交
6310

6311 6312
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
X
Xin Pan 已提交
6313
    helper = LayerHelper("mul", **locals())
6314 6315
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
6316
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
6317

6318 6319 6320
    helper.append_op(
        type="mul", inputs={"X": x, "Y": y}, attrs=attrs, outputs={"Out": out}
    )
X
Xin Pan 已提交
6321 6322 6323
    return out


M
minqiyang 已提交
6324 6325
def hash(input, hash_size, num_hash=1, name=None):
    """
6326

Z
zhupengyang 已提交
6327
    This OP hash the input to an integer less than the hash_size.
M
minqiyang 已提交
6328 6329
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
6330 6331

    Args:
Z
zhupengyang 已提交
6332 6333 6334 6335 6336 6337
        input(Variable): A **Two-Dimensional** LoDTensor with type int32, int64.
             **Only support LoDTensor**.
        num_hash(int, optional): The times of hash, default is 1.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
M
minqiyang 已提交
6338 6339

    Returns:
Z
zhupengyang 已提交
6340
       Variable: A LoDTensor with the same data type as input.
M
minqiyang 已提交
6341 6342

    Examples:
Z
zhupengyang 已提交
6343
        .. code-block:: python
H
haowang101779990 已提交
6344

6345
            import paddle.fluid as fluid
Z
zhupengyang 已提交
6346
            import numpy as np
6347 6348
            import paddle
            paddle.enable_static()
6349

Z
zhupengyang 已提交
6350
            place = fluid.core.CPUPlace()
6351

6352 6353
            x = fluid.data(name="x", shape=[2,2], dtype="int32", lod_level=1)
            res = fluid.layers.hash(name="res", input=x, hash_size=1000, num_hash=4)
6354

Z
zhupengyang 已提交
6355 6356 6357 6358
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            in1 = np.array([[1,2],[3,4]]).astype("int32")
            print(in1)
6359
            x_i = fluid.create_lod_tensor(in1, [[0, 2]], place)
Z
zhupengyang 已提交
6360 6361 6362 6363 6364 6365 6366 6367 6368 6369
            res = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res], return_numpy=False)
            print(np.array(res[0]))
            # [[[722]
            #   [407]
            #   [337]
            #   [395]]
            #  [[603]
            #   [590]
            #   [386]
            #   [901]]]
M
minqiyang 已提交
6370
    """
6371
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'hash')
6372 6373
    check_type(hash_size, 'hash_size', int, 'hash')
    check_type(num_hash, 'num_hash', int, 'hash')
M
minqiyang 已提交
6374
    helper = LayerHelper('hash', **locals())
6375 6376 6377 6378 6379 6380 6381 6382 6383
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True
    )
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash, 'mod_by': hash_size},
    )
M
minqiyang 已提交
6384
    return out
G
gmcather 已提交
6385 6386


D
dengkaipeng 已提交
6387
@templatedoc()
6388 6389
def grid_sampler(x, grid, name=None):
    """
6390

6391
    This operation samples input X by using bilinear interpolation based on
T
tianshuo78520a 已提交
6392
    flow field grid, which is usually generated by :code:`affine_grid` . The grid of
K
Kaipeng Deng 已提交
6393 6394
    shape [N, H, W, 2] is the concatenation of (x, y) coordinates
    with shape [N, H, W] each, where x is indexing the 4th dimension
T
tianshuo78520a 已提交
6395 6396
    (in width dimension) of input data x and y is indexing the 3rd
    dimension (in height dimension), finally results is the bilinear
6397
    interpolation value of 4 nearest corner points. The output tensor
K
Kaipeng Deng 已提交
6398
    shape will be [N, C, H, W].
6399

H
haowang101779990 已提交
6400
    .. code-block:: text
6401

H
haowang101779990 已提交
6402 6403
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
6404

K
Kaipeng Deng 已提交
6405 6406 6407 6408
        .. code-block:: text

            grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
            grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
6409

H
haowang101779990 已提交
6410 6411 6412
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
6413

H
haowang101779990 已提交
6414 6415 6416 6417 6418 6419 6420 6421 6422
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
6423

H
haowang101779990 已提交
6424 6425 6426 6427
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
6428

H
haowang101779990 已提交
6429 6430 6431 6432
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
6433

H
haowang101779990 已提交
6434 6435 6436 6437
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
6438

H
haowang101779990 已提交
6439 6440
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
6441 6442

    Args:
K
Kaipeng Deng 已提交
6443 6444 6445 6446 6447 6448 6449 6450 6451
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Variable): Input grid tensor of shape [N, H, W, 2]. The
                        data type is float32 or float64.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
6452 6453

    Returns:
H
haowang101779990 已提交
6454
        Variable: Output of shape [N, C, H, W] data samples input X
K
Kaipeng Deng 已提交
6455 6456
                  using bilnear interpolation based on input grid.
                  The data type is same as input tensor.
6457

H
haowang101779990 已提交
6458 6459 6460 6461
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
6462
            import paddle.fluid as fluid
6463 6464
            import paddle.fluid as fluid
            import paddle
K
Kaipeng Deng 已提交
6465

6466
            paddle.enable_static()
K
Kaipeng Deng 已提交
6467 6468
            # use with affine_grid
            x = fluid.data(name='x', shape=[None, 10, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
6469 6470
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
6471
            out = fluid.layers.grid_sampler(x=x, grid=grid)
6472

D
dengkaipeng 已提交
6473 6474 6475
    """
    helper = LayerHelper("grid_sampler", **locals())

6476
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sampler')
6477 6478 6479
    check_variable_and_dtype(
        grid, 'grid', ['float32', 'float64'], 'grid_sampler'
    )
D
dengkaipeng 已提交
6480 6481 6482 6483 6484 6485
    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

6486
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
6487 6488
    ipts = {'X': x, 'Grid': grid}

6489 6490
    attrs = {'use_cudnn': False} if core.is_compiled_with_rocm() else {}

6491 6492 6493
    helper.append_op(
        type='grid_sampler', inputs=ipts, outputs={'Output': out}, attrs=attrs
    )
6494 6495 6496
    return out


G
gmcather 已提交
6497
def log_loss(input, label, epsilon=1e-4, name=None):
6498
    r"""
6499

G
gmcather 已提交
6500 6501 6502 6503 6504 6505 6506
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

6507 6508
        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}
G
gmcather 已提交
6509 6510

    Args:
6511
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
G
gmcather 已提交
6512
                                batch size. This input is a probability computed
Y
Yibing Liu 已提交
6513
                                by the previous operator. Data type float32.
6514
        label (Tensor|list):  The ground truth which is a 2-D tensor with
6515
                                shape [N x 1], where N is the batch size.
Y
Yibing Liu 已提交
6516 6517
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
6518
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
6519
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
G
gmcather 已提交
6520 6521

    Returns:
6522
        Tensor, which shape is [N x 1], data type is float32.
G
gmcather 已提交
6523 6524 6525 6526

    Examples:
        .. code-block:: python

6527 6528 6529 6530 6531 6532
          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
G
gmcather 已提交
6533
    """
6534
    return paddle.nn.functional.log_loss(input, label, epsilon, name)
G
gmcather 已提交
6535 6536


6537 6538 6539
def bilinear_tensor_product(
    x, y, size, act=None, name=None, param_attr=None, bias_attr=None
):
6540
    r"""
6541 6542
    :api_attr: Static Graph

Y
Yibing Liu 已提交
6543
    **Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
6544

Q
Qiao Longfei 已提交
6545
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
6546 6547 6548
    For example:

    .. math::
H
haowang101779990 已提交
6549
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
6550

Q
Qiao Longfei 已提交
6551
    In this formula:
6552 6553
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Y
Yibing Liu 已提交
6554
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N].
H
haowang101779990 已提交
6555
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
6556 6557 6558
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
6559
        x (Variable): 2-D input tensor with shape [batch_size, M]. Data type
Y
Yibing Liu 已提交
6560
            is float32 or float64.
6561
        y (Variable): 2-D input tensor with shape [batch_size, N]. Data type
Y
Yibing Liu 已提交
6562
            should be same as **x**.
Q
Qiao Longfei 已提交
6563
        size (int): The dimension of this layer.
Y
Yibing Liu 已提交
6564
        act (str|None): Activation to be applied to the output of this layer. Default None.
6565
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
6566
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
6567 6568
        param_attr (ParamAttr|None): To specify the weight parameter attribute.
            Default: None, which means the default weight parameter property is
Y
Yibing Liu 已提交
6569
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
6570 6571
        bias_attr (ParamAttr|None): To specify the bias parameter attribute.
            Default: None, which means the default bias parameter property is
Y
Yibing Liu 已提交
6572
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Q
Qiao Longfei 已提交
6573
    Returns:
Y
Yibing Liu 已提交
6574
        Variable: A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**.
Q
Qiao Longfei 已提交
6575 6576 6577 6578

    Examples:
        .. code-block:: python

6579 6580 6581 6582 6583
            import paddle
            paddle.enable_static()
            layer1 = paddle.static.data("t1", shape=[-1, 5], dtype="float32")
            layer2 = paddle.static.data("t2", shape=[-1, 4], dtype="float32")
            tensor = paddle.static.nn.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
6584 6585
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
6586
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
6587 6588 6589

    param_shape = [size, x.shape[1], y.shape[1]]

6590 6591 6592
    w = helper.create_parameter(
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False
    )
6593
    out = helper.create_variable_for_type_inference(dtype=dtype)
Q
Qiao Longfei 已提交
6594 6595 6596 6597

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
6598 6599 6600
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True
        )
Q
Qiao Longfei 已提交
6601
        inputs["Bias"] = bias
6602 6603 6604
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out}
    )
Q
Qiao Longfei 已提交
6605 6606 6607

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
6608 6609 6610 6611 6612


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
6613 6614 6615 6616 6617 6618 6619 6620 6621
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

6622
        Output is LoDTensor:
6623 6624 6625 6626 6627 6628
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
6629 6630

    Args:
6631 6632 6633
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
6634 6635

    Returns:
6636
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
6637 6638 6639

    Examples:
        .. code-block:: python
6640

B
bdzhuxiaoning 已提交
6641 6642 6643 6644
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
6645 6646
    """

6647 6648 6649 6650 6651
    check_type(x, 'x', Variable, 'get_tensor_from_selected_rows')
    if x.type != core.VarDesc.VarType.SELECTED_ROWS:
        raise TypeError(
            "The type of 'x' in get_tensor_from_selected_rows must be SELECTED_ROWS."
        )
C
chengduo 已提交
6652 6653
    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6654 6655 6656 6657 6658 6659
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={},
    )
C
chengduo 已提交
6660
    return out
6661 6662


6663
@templatedoc()
6664
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None, data_format="NCHW"):
6665
    """
6666

6667
    **Temporal Shift Operator**
6668

6669
    ${comment}
6670 6671

    Args:
6672
        x(Tensor): ${x_comment}
6673
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
6674
        shift_ratio(float): ${shift_ratio_comment}
K
Kaipeng Deng 已提交
6675 6676 6677
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
6678 6679
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".
6680 6681

    Returns:
6682
        out(Tensor): The temporal shifting result is a tensor with the
K
Kaipeng Deng 已提交
6683
        same shape and same data type as the input.
6684 6685 6686 6687 6688 6689 6690

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

6691 6692 6693 6694
            import paddle
            import paddle.nn.functional as F

            input = paddle.randn([6, 4, 2, 2])
6695
            out = F.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
6696
    """
6697 6698 6699
    return paddle.nn.functional.temporal_shift(
        x, seg_num, shift_ratio, name, data_format
    )
6700 6701


6702
class PyFuncRegistry:
S
sneaxiy 已提交
6703 6704 6705
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
6706
        if func is None or not callable(func):
S
sneaxiy 已提交
6707 6708 6709
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
6710
        # find named args using reflection
6711
        args = inspect.getfullargspec(self._func)
S
sneaxiy 已提交
6712 6713 6714 6715 6716 6717
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
6718 6719 6720
        '''
        Why record self here?

M
minqiyang 已提交
6721 6722
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
6723
           to find the registered function corresponding
M
minqiyang 已提交
6724
           to :code:`idx`.
S
sneaxiy 已提交
6725

M
minqiyang 已提交
6726 6727
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
6728
           whose reference count is 1 would cause
M
minqiyang 已提交
6729
           segmentation fault error in C++ side.
S
sneaxiy 已提交
6730 6731
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
6732
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
6747 6748 6749 6750 6751 6752 6753 6754 6755
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
6756

S
sneaxiy 已提交
6757
        if not isinstance(func_ret, (list, tuple)):
6758
            func_ret = (func_ret,)
S
sneaxiy 已提交
6759 6760

        ret = []
S
sneaxiy 已提交
6761 6762 6763
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
6764 6765
                continue

S
sneaxiy 已提交
6766 6767
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
6768

S
sneaxiy 已提交
6769 6770 6771
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
6772

S
sneaxiy 已提交
6773
        return tuple(ret)
S
sneaxiy 已提交
6774 6775


6776
@static_only
S
sneaxiy 已提交
6777 6778 6779
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
6780 6781
    :api_attr: Static Graph

6782 6783
    This OP is used to register customized Python OP to Paddle. The design
    principe of py_func is that Tensor and numpy array can be converted to each
6784 6785
    other easily. So you can use Python and numpy API to register a python OP.

6786 6787
    The forward function of the registered OP is ``func`` and the backward function
    of that is ``backward_func``. Paddle will call ``func`` at forward runtime and
6788
    call ``backward_func`` at backward runtime(if ``backward_func`` is not  None).
6789 6790
    ``x`` is the input of ``func``, whose type must be Tensor; ``out`` is
    the output of ``func``, whose type can be either Tensor or numpy array.
6791

6792
    The input of the backward function ``backward_func`` is ``x``, ``out`` and
6793 6794 6795
    the gradient of ``out``. If ``out`` have no gradient, the relevant input of
    ``backward_func`` is None. If ``x`` do not have a gradient, the user should
    return None in ``backward_func``.
6796

6797 6798
    The data type and shape of ``out`` should also be set correctly before this
    API is called, and the data type and shape of the gradient of ``out`` and
6799 6800 6801 6802 6803 6804 6805
    ``x`` will be inferred automatically.

    This API can also be used to debug the neural network by setting the ``func``
    as a function that only print variables.

    Args:
        func (callable): The forward function of the registered OP. When the network
6806 6807
            is running, the forward output ``out`` will be calculated according to this
            function and the forward input ``x``. In ``func`` , it's suggested that we
6808
            actively convert Tensor into a numpy array, so that we can use Python and
6809
            numpy API arbitrarily. If not, some operations of numpy may not be compatible.
6810 6811 6812 6813 6814 6815 6816
        x (Tensor|tuple(Tensor)|list[Tensor]): The input of the forward function ``func``.
            It can be Tensor|tuple(Tensor)|list[Tensor]. In addition, Multiple Tensor
            should be passed in the form of tuple(Tensor) or list[Tensor].
        out (T|tuple(T)|list[T]): The output of the forward function ``func``, it can be
            T|tuple(T)|list[T], where T can be either Tensor or numpy array. Since Paddle
            cannot automatically infer the shape and type of ``out``, you must create
            ``out`` in advance.
6817 6818 6819
        backward_func (callable, optional): The backward function of the registered OP.
            Its default value is None, which means there is no reverse calculation. If
            it is not None, ``backward_func`` is called to calculate the gradient of
6820
            ``x`` when the network is at backward runtime.
6821 6822
        skip_vars_in_backward_input (Tensor, optional): It's used to limit the input
            list of ``backward_func``, and it can be Tensor|tuple(Tensor)|list[Tensor].
6823
            It must belong to either ``x`` or ``out``. The default  value is None, which means
6824 6825
            that no tensors need to be removed from ``x`` and ``out``. If it is not None,
            these tensors will not be the input of ``backward_func``. This parameter is only
6826
            useful when ``backward_func`` is not None.
6827 6828

    Returns:
6829
        Tensor|tuple(Tensor)|list[Tensor]: The output ``out`` of the forward function ``func``.
S
sneaxiy 已提交
6830 6831

    Examples:
6832
        .. code-block:: python
6833

6834
            # example 1:
6835
            import paddle
6836
            import numpy as np
6837

6838 6839 6840
            paddle.enable_static()

            # Creates a forward function, Tensor can be input directly without
6841
            # being converted into numpy array.
6842 6843 6844
            def tanh(x):
                return np.tanh(x)

6845
            # Skip x in backward function and return the gradient of x
6846
            # Tensor must be actively converted to numpy array, otherwise,
6847
            # operations such as +/- can't be used.
6848 6849
            def tanh_grad(y, dy):
                return np.array(dy) * (1 - np.square(np.array(y)))
6850

6851
            # Creates a forward function for debugging running networks(print value)
6852 6853
            def debug_func(x):
                print(x)
6854

6855
            def create_tmp_var(name, dtype, shape):
6856
                return paddle.static.default_main_program().current_block().create_var(
6857
                    name=name, dtype=dtype, shape=shape)
6858 6859 6860

            def simple_net(img, label):
                hidden = img
6861
                for idx in range(4):
6862
                    hidden = paddle.static.nn.fc(hidden, size=200)
6863 6864 6865
                    new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
                        dtype=hidden.dtype, shape=hidden.shape)

6866
                    # User-defined forward and backward
6867
                    hidden = paddle.static.py_func(func=tanh, x=hidden,
6868 6869 6870
                        out=new_hidden, backward_func=tanh_grad,
                        skip_vars_in_backward_input=hidden)

6871
                    # User-defined debug functions that print out the input Tensor
6872
                    paddle.static.py_func(func=debug_func, x=hidden, out=None)
6873

6874
                prediction = paddle.static.nn.fc(hidden, size=10, activation='softmax')
6875 6876 6877 6878
                ce_loss = paddle.nn.loss.CrossEntropyLoss()
                return ce_loss(prediction, label)

            x = paddle.static.data(name='x', shape=[1,4], dtype='float32')
6879
            y = paddle.static.data(name='y', shape=[1], dtype='int64')
6880 6881 6882 6883 6884
            res = simple_net(x, y)

            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            input1 = np.random.random(size=[1,4]).astype('float32')
6885
            input2 = np.random.randint(1, 10, size=[1], dtype='int64')
6886 6887 6888 6889 6890 6891
            out = exe.run(paddle.static.default_main_program(),
                          feed={'x':input1, 'y':input2},
                          fetch_list=[res.name])
            print(out)

        .. code-block:: python
6892

6893
            # example 2:
6894
            # This example shows how to turn Tensor into numpy array and
6895
            # use numpy API to register an Python OP
6896
            import paddle
6897 6898
            import numpy as np

6899 6900
            paddle.enable_static()

6901
            def element_wise_add(x, y):
6902
                # Tensor must be actively converted to numpy array, otherwise,
6903
                # numpy.shape can't be used.
6904
                x = np.array(x)
6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917
                y = np.array(y)

                if x.shape != y.shape:
                    raise AssertionError("the shape of inputs must be the same!")

                result = np.zeros(x.shape, dtype='int32')
                for i in range(len(x)):
                    for j in range(len(x[0])):
                        result[i][j] = x[i][j] + y[i][j]

                return result

            def create_tmp_var(name, dtype, shape):
6918
                return paddle.static.default_main_program().current_block().create_var(
6919 6920 6921
                            name=name, dtype=dtype, shape=shape)

            def py_func_demo():
6922 6923
                start_program = paddle.static.default_startup_program()
                main_program = paddle.static.default_main_program()
6924 6925

                # Input of the forward function
6926 6927
                x = paddle.static.data(name='x', shape=[2,3], dtype='int32')
                y = paddle.static.data(name='y', shape=[2,3], dtype='int32')
6928

6929 6930 6931 6932
                # Output of the forward function, name/dtype/shape must be specified
                output = create_tmp_var('output','int32', [3,1])

                # Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
6933
                paddle.static.py_func(func=element_wise_add, x=[x,y], out=output)
6934

6935
                exe=paddle.static.Executor(paddle.CPUPlace())
6936 6937 6938 6939 6940
                exe.run(start_program)

                # Feed numpy array to main_program
                input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
6941
                out = exe.run(main_program,
6942 6943 6944 6945 6946 6947 6948 6949 6950
                            feed={'x':input1, 'y':input2},
                            fetch_list=[output.name])
                print("{0} + {1} = {2}".format(input1, input2, out))

            py_func_demo()

            # Reference output:
            # [[5, 9, 9]   + [[7, 8, 4]  =  [array([[12, 17, 13]
            #  [7, 5, 2]]     [1, 3, 3]]            [8, 8, 5]], dtype=int32)]
S
sneaxiy 已提交
6951
    """
S
sneaxiy 已提交
6952
    helper = LayerHelper('py_func', **locals())
6953
    check_type(x, 'X', (list, tuple, Variable, type(None)), 'py_func')
S
sneaxiy 已提交
6954 6955 6956
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
6957
        x = [x]
6958 6959 6960
    elif isinstance(x, tuple):
        x = list(x)
    elif not isinstance(x, (list, tuple, Variable)):
S
sneaxiy 已提交
6961
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
6962
    check_type(out, 'Out', (list, tuple, Variable, type(None)), 'py_func')
S
sneaxiy 已提交
6963 6964 6965
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
6966
        out_list = [out]
6967 6968
    elif isinstance(out, tuple):
        out_list = list(out)
6969 6970 6971
    elif isinstance(out, list):
        out_list = out
    else:
S
sneaxiy 已提交
6972
        raise TypeError(
6973 6974
            'Output must be Variable/list(Variable)/tuple(Variable)'
        )
S
sneaxiy 已提交
6975

S
sneaxiy 已提交
6976
    fwd_func_id = PyFuncRegistry(func).id
6977 6978 6979
    bwd_func_id = (
        PyFuncRegistry(backward_func).id if backward_func is not None else -1
    )
S
sneaxiy 已提交
6980 6981

    for each_out in out_list:
S
sneaxiy 已提交
6982 6983
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
6984 6985
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
6986

S
sneaxiy 已提交
6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
6999 7000 7001 7002
                    'Variable {} is not found in forward inputs and outputs'.format(
                        v.name
                    )
                )
S
sneaxiy 已提交
7003
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
7004

7005 7006 7007 7008 7009 7010 7011 7012 7013 7014
    helper.append_op(
        type='py_func',
        inputs={'X': x},
        outputs={'Out': out_list},
        attrs={
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars),
        },
    )
S
sneaxiy 已提交
7015
    return out
S
sneaxiy 已提交
7016 7017 7018


# For debug usage
S
sneaxiy 已提交
7019 7020 7021 7022
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


R
ruri 已提交
7023 7024 7025
def pixel_shuffle(x, upscale_factor):
    """

R
ruri 已提交
7026
    This op rearranges elements in a tensor of shape [N, C, H, W]
R
ruri 已提交
7027 7028 7029
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
7030
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution
R
ruri 已提交
7031 7032 7033
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

R
ruri 已提交
7034
    Parameters:
R
ruri 已提交
7035

R
ruri 已提交
7036 7037
        x(Variable): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
R
ruri 已提交
7038 7039

    Returns:
7040
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
7041 7042 7043 7044 7045 7046 7047

    Raises:
        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:
        .. code-block:: python

7048 7049 7050 7051 7052 7053 7054 7055
            # declarative mode
            import paddle.fluid as fluid
            import numpy as np
            input = fluid.data(name="input", shape=[2,9,4,4])
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
7056

7057 7058
            input_data = np.random.rand(2,9,4,4).astype("float32")
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
7059 7060 7061
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
7062

7063 7064
            # print(output.shape)
            # (2L, 1L, 12L, 12L)
R
ruri 已提交
7065 7066 7067

    """

R
ruri 已提交
7068
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pixel_shuffle')
R
ruri 已提交
7069 7070 7071 7072 7073 7074 7075
    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

7076 7077 7078 7079 7080 7081
    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor},
    )
R
ruri 已提交
7082 7083 7084
    return out


7085 7086 7087 7088 7089
def fsp_matrix(x, y):
    """

    **FSP matrix op**

7090
    This op is used to calculate the flow of solution procedure (FSP) matrix of two 4-D Tensor feature maps.
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

7102 7103 7104
        x (Variable): A 4-D Tensor feature map with shape [batch_size, x_channel, height, width].
                      A Tensor with type float32, float64.
        y (Variable): A 4-D Tensor feature map with shape [batch_size, y_channel, height, width].
7105
                      The y_channel can be different with the x_channel of Input(X)
7106 7107
                      while the other dimensions must be the same with Input(X)'s. A Tensor with
                      type float32, float64.
7108 7109 7110 7111

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
7112 7113
        The x_channel is the channel of x and the y_channel is the channel of y. A Tensor with
        type float32, float64.
7114 7115 7116 7117 7118

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
7119
            import paddle.fluid as fluid
B
Bai Yifan 已提交
7120
            data = fluid.data(name='data', shape=[None, 3, 32, 32])
B
Bai Yifan 已提交
7121 7122 7123 7124
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
7125 7126 7127
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
7128 7129
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fsp_matrix')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'fsp_matrix')
7130
    helper = LayerHelper('fsp_matrix', **locals())
7131 7132 7133
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype(input_param_name='x')
    )
7134 7135
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
7136 7137 7138


def continuous_value_model(input, cvm, use_cvm=True):
7139
    r"""
H
fix doc  
heqiaozhi 已提交
7140

H
heqiaozhi 已提交
7141
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
7142

Z
zhoushiyu 已提交
7143
    Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`.
H
fix doc  
heqiaozhi 已提交
7144

Z
zhoushiyu 已提交
7145 7146
    :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ).
    Show and click at first two dims of embedding vector D.
T
tianshuo78520a 已提交
7147
    If :attr:`use_cvm` is True, it will calculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` .
Z
zhoushiyu 已提交
7148 7149
    If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` .
    :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` .
H
fix doc  
heqiaozhi 已提交
7150

Z
zhoushiyu 已提交
7151 7152 7153 7154 7155 7156 7157
    Args:
        input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` .
        A Tensor with type float32, float64.
        cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click.
        A Tensor with type float32, float64.
        use_cvm  (bool):  Use show_click or not. if use, the output dim is the same as input.
                          if not use, the output dim is `input dim - 2` (remove show and click)
H
fix doc  
heqiaozhi 已提交
7158

H
heqiaozhi 已提交
7159
    Returns:
H
fix doc  
heqiaozhi 已提交
7160

Z
zhoushiyu 已提交
7161 7162
        Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \
        A Tensor with same type as input.
H
fix doc  
heqiaozhi 已提交
7163

H
heqiaozhi 已提交
7164
    Examples:
H
fix doc  
heqiaozhi 已提交
7165

H
heqiaozhi 已提交
7166
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
7167

7168
          import paddle.fluid as fluid
Z
zhoushiyu 已提交
7169 7170
          input = fluid.data(name="input", shape=[64, 1], dtype="int64")
          label = fluid.data(name="label", shape=[64, 1], dtype="int64")
H
heqiaozhi 已提交
7171 7172 7173 7174 7175 7176 7177 7178
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
7179

H
heqiaozhi 已提交
7180 7181 7182
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
7183 7184 7185 7186 7187 7188 7189 7190 7191
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'cvm'
    )
    helper.append_op(
        type='cvm',
        inputs={'X': [input], 'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm},
    )
H
heqiaozhi 已提交
7192
    return out
Z
zhoukunsheng 已提交
7193 7194 7195 7196 7197 7198 7199


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Args:
7200
        condition(Variable): A bool tensor with rank at least 1, the data type is bool.
Z
zhoukunsheng 已提交
7201 7202

    Returns:
7203
        Variable, the output data type is int64. : The tensor variable storing a 2-D tensor, which involves all coordinate.
Z
zhoukunsheng 已提交
7204 7205 7206 7207

    Examples:
        .. code-block:: python

7208
             import paddle.fluid as fluid
7209 7210 7211
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
7212
             # condition is a tensor [True, False, True]
7213 7214 7215
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
7216 7217

             # condition is a tensor [[True, False], [False, True]]
7218 7219 7220
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
7221 7222

             # condition is a tensor [False, False, False]
7223 7224 7225 7226
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
7227
    """
H
hong 已提交
7228 7229

    if in_dygraph_mode():
7230
        return _C_ops.nonzero(condition)
7231 7232
    if _in_legacy_dygraph():
        return _legacy_C_ops.where_index(condition)
7233

W
wanghuancoder 已提交
7234 7235
    helper = LayerHelper("where_index", **locals())

Z
zhoukunsheng 已提交
7236
    out = helper.create_variable_for_type_inference(
7237 7238 7239 7240 7241 7242 7243 7244
        dtype=core.VarDesc.VarType.INT64
    )

    helper.append_op(
        type='where_index',
        inputs={'Condition': condition},
        outputs={'Out': [out]},
    )
Z
zhoukunsheng 已提交
7245
    return out
Z
zhoukunsheng 已提交
7246 7247


W
WangXi 已提交
7248
@deprecated(since="2.0.0", update_to="paddle.sign")
Z
zhoukunsheng 已提交
7249
def sign(x):
7250
    r"""
7251
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Z
zhoukunsheng 已提交
7252 7253

    Args:
7254 7255
        x(Variable|numpy.ndarray): The input variable could be N-D tensor or N-D numpy array, \
            the input data type is float32 or float64.
Z
zhoukunsheng 已提交
7256 7257

    Returns:
7258
        Variable, the output data type is the same as input data type. : The output sign tensor with identical shape to input :attr:`x`.
Z
zhoukunsheng 已提交
7259 7260 7261 7262

    Examples:
        .. code-block:: python

7263 7264 7265
          import paddle.fluid as fluid
          import numpy as np

7266
          # [1.0, 0.0, -1.0]
7267
          data = fluid.layers.sign(np.array([3.0, 0.0, -2.0], dtype='float32'))
Z
zhoukunsheng 已提交
7268 7269 7270
    """

    helper = LayerHelper("sign", **locals())
7271 7272 7273 7274
    check_type(x, 'x', (Variable, np.ndarray), 'sign')
    if isinstance(x, np.ndarray):
        x = assign(x)
    check_dtype(x.dtype, 'x', ['float16', 'float32', 'float64'], 'sign')
Z
zhoukunsheng 已提交
7275 7276 7277 7278 7279
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
7280 7281


Z
zhoukunsheng 已提交
7282
def unique(x, dtype='int32'):
7283
    r"""
Z
zhoukunsheng 已提交
7284 7285 7286
    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
Z
Zhang Ting 已提交
7287 7288
        x(Tensor): A 1-D input tensor, it's data type should be float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The type of index tensor: int32, int64. Default: int32.
Z
zhoukunsheng 已提交
7289 7290 7291 7292 7293 7294 7295 7296 7297 7298

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
W
wawltor 已提交
7299
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
Z
zhoukunsheng 已提交
7300 7301 7302
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

7303 7304 7305
    check_variable_and_dtype(
        x, "x", ['float32', 'float64', 'int32', 'int64'], "unique"
    )
Z
zhoukunsheng 已提交
7306 7307 7308 7309 7310 7311
    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

7312 7313 7314 7315 7316 7317
    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out], 'Index': [index]},
    )
Z
zhoukunsheng 已提交
7318 7319 7320 7321

    return out, index


7322
def unique_with_counts(x, dtype='int32'):
7323
    r"""
T
tianshuo78520a 已提交
7324
    This OP return a unique tensor for `x` , and count tensor that the count of unique result in raw input, \
7325
    and an index tensor pointing to this unique tensor.
7326

7327
    **NOTICE**: This op support the variable type of Tensor only.
7328 7329

    Args:
7330
        x(Variable): A 1-D input tensor with input shape of :math:`[N]` , the input data type is float32, float64, int32, int64.
7331
        dtype(np.dtype|core.VarDesc.VarType|str): The type of count and index tensor, it could be int32, int64. Default value is int32.
7332

7333
    Returns:
7334 7335 7336
        tuple, the variable type in tuple is Tensor, the output :attr:`out` data type is the same as input :attr:`x`, \
        and data type of output :attr:`index` and :attr:`count` will be int32 or int64.: The :attr:`out` is unique tensor for input :attr:`x`,\
        the data shape is :math:`[K]`, the `K` may be different to the `N` in shape of :attr:`x`. :attr:`index` is an index tensor pointing\
T
tianshuo78520a 已提交
7337
        to :attr:`out`, the data shape is :math:`[N]` , the data shape is the same as input :attr:`x`. :attr:`count` is count of unique element in\
7338
        the :attr:`x`, the data shape is :math:`[K]`, the data shape is the same as output :attr:`out`.
7339 7340 7341 7342 7343 7344 7345 7346 7347

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
7348
            # x.shape=(6,) out.shape=(4,), index.shape=(6,), count.shape=(4,)
7349
    """
7350 7351 7352
    check_variable_and_dtype(
        x, "x", ['float32', 'float64', 'int32', 'int64'], "unique_with_counts"
    )
7353 7354
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
7355 7356
            "Op unique_with_counts, index dtype must be int32 or int64"
        )
7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

7371 7372 7373 7374 7375 7376
    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out], 'Index': [index], 'Count': [count]},
    )
7377 7378 7379 7380

    return out, index, count


7381
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
7382
    r"""
7383

S
SunGaofeng 已提交
7384
    This op returns a col buffer of sliding local blocks of input x, also known
7385
    as im2col for batched 2D image tensors. For each block under the convolution filter,
T
tianshuo78520a 已提交
7386
    all element will be rearranged as a column. While the convolution filter sliding over
7387 7388
    the input feature map, a series of such columns will be formed.

S
SunGaofeng 已提交
7389
    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
7390 7391 7392 7393
    can be calculated as following.

    .. math::

7394
        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1
7395

7396
        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1
7397

7398
        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1
7399

7400
        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1
7401

7402
        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]
7403

7404
        Lout &= hout \times wout
7405 7406


S
SunGaofeng 已提交
7407
    Parameters:
7408
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
S
SunGaofeng 已提交
7409
                                  data type can be float32 or float64
7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
T
tianshuo78520a 已提交
7422
        dilations(int|list):      the dilations of convolution kernel, should be
T
tianshuo78520a 已提交
7423
                                  [dilation_h, dilation_w], or an integer dilation treated as
7424
                                  [dilation, dilation]. For default, it will be [1, 1].
7425 7426
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
7427
                             For more information, please refer to :ref:`api_guide_Name`
7428

7429

7430
    Returns:
7431
        The tensor corresponding to the sliding local blocks.
7432 7433 7434
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
S
SunGaofeng 已提交
7435 7436 7437
        The data type of output is the same as the input :math:`x`

    Return Type:
7438
        Tensor
7439 7440 7441 7442 7443

    Examples:

        .. code-block:: python

7444 7445 7446 7447 7448
            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
7449 7450
    """

7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470
    return paddle.nn.functional.unfold(
        x, kernel_sizes, strides, paddings, dilations, name
    )


def deformable_roi_pooling(
    input,
    rois,
    trans,
    no_trans=False,
    spatial_scale=1.0,
    group_size=[1, 1],
    pooled_height=1,
    pooled_width=1,
    part_size=None,
    sample_per_part=1,
    trans_std=0.1,
    position_sensitive=False,
    name=None,
):
7471
    r"""
7472

7473
    Deformable ROI Pooling Layer
7474

7475
    Performs deformable region-of-interest pooling on inputs. As described
7476
    in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after
7477
    roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling.
7478

7479
    The operation has three steps:
7480

7481
    1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height.
7482

7483 7484
    2. Add offset to pixel in ROI to get new location and the new value which are computed directly through
       bilinear interpolation with four nearest pixel.
7485

7486
    3. Sample several points in each bin to get average values as output.
7487 7488


7489 7490 7491 7492 7493 7494 7495 7496 7497
    Args:
        input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is
                         [N, C, H, W]. Where N is batch size, C is number of input channels,
                         H is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be
                         a 2-D LoDTensor of shape (num_rois, 4), and the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates, which value type is float32.
7498 7499 7500
        trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where
                          N is number of ROIs, C is number of channels, which indicate the offset distance
                          in the x and y directions, H is pooled height, and W is pooled width.
7501 7502 7503 7504
        no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False.
                         If value is True, no offset will be added in operation. Default: False.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32.
                         Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
7505
        group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels
7506
                          is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output
T
tianshuo78520a 已提交
7507
                          channels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
7508 7509 7510 7511 7512 7513 7514
        pooled_height (int): The pooled output height which value type is int32. Default: 1.
        pooled_width (int): The pooled output width which value type is int32. Default: 1.
        part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \
                         and pooled_width. Default: if None, default value is [pooled_height, pooled_width].
        sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1.
        trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1.
        position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \
T
tianshuo78520a 已提交
7515
                                   If value is True, input dimension should be output dimension * pooled_height * pooled_width. Default: False.
7516 7517 7518 7519
        name (str|None): Name of layer. Default: None.
    Returns:
        Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\
                  input dimension should be the result of output dimension divided by pooled height and pooled width.
C
cjt222 已提交
7520 7521 7522 7523

    Examples:
      .. code-block:: python

7524 7525
        # position_sensitive=True
        import paddle.fluid as fluid
C
chengjuntao 已提交
7526
        input = fluid.data(name="input",
7527 7528
                           shape=[2, 192, 64, 64],
                           dtype='float32')
C
chengjuntao 已提交
7529 7530
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
7531
                          dtype='float32',
C
chengjuntao 已提交
7532 7533
                          lod_level=1)
        trans = fluid.data(name="trans",
7534 7535 7536 7537 7538
                           shape=[2, 384, 64, 64],
                           dtype='float32')
        x = fluid.layers.deformable_roi_pooling(input=input,
                                                rois=rois,
                                                trans=trans,
C
chengjuntao 已提交
7539
                                                no_trans=False,
7540
                                                spatial_scale=1.0,
C
chengjuntao 已提交
7541 7542 7543 7544
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
7545
                                                sample_per_part=4,
C
chengjuntao 已提交
7546 7547
                                                trans_std=0.1,
                                                position_sensitive=True)
7548

7549
        # position_sensitive=False
7550
        import paddle.fluid as fluid
C
chengjuntao 已提交
7551
        input = fluid.data(name="input",
7552 7553
                           shape=[2, 192, 64, 64],
                           dtype='float32')
C
chengjuntao 已提交
7554 7555
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
7556
                          dtype='float32',
C
chengjuntao 已提交
7557 7558
                          lod_level=1)
        trans = fluid.data(name="trans",
7559 7560 7561 7562 7563
                           shape=[2, 384, 64, 64],
                           dtype='float32')
        x = fluid.layers.deformable_roi_pooling(input=input,
                                                rois=rois,
                                                trans=trans,
C
chengjuntao 已提交
7564
                                                no_trans=False,
7565
                                                spatial_scale=1.0,
C
chengjuntao 已提交
7566 7567 7568 7569
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
7570
                                                sample_per_part=4,
C
chengjuntao 已提交
7571 7572
                                                trans_std=0.1,
                                                position_sensitive=False)
C
cjt222 已提交
7573 7574
    """

7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_variable_and_dtype(
        rois, 'rois', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_variable_and_dtype(
        trans, 'trans', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_type(
        group_size, 'group_size', (list, tuple), 'deformable_roi_pooling'
    )
7587
    if part_size is not None:
7588 7589 7590
        check_type(
            part_size, 'part_size', (list, tuple), 'deformable_roi_pooling'
        )
7591

C
cjt222 已提交
7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607
    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input, "ROIs": rois, "Trans": trans},
        outputs={"Output": output, "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std,
        },
    )
C
cjt222 已提交
7624
    return output
7625 7626


7627
@deprecated(since="2.0.0", update_to="paddle.shard_index")
7628 7629
def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
L
lilong12 已提交
7630 7631 7632 7633 7634 7635 7636 7637 7638
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
7639 7640
    ::

7641
        shard_size = (index_num + nshards - 1) // nshards
7642

L
lilong12 已提交
7643 7644 7645
    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
7646

L
lilong12 已提交
7647 7648 7649 7650
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.
7651 7652

    Args:
L
lilong12 已提交
7653 7654
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
7655 7656 7657
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.
7658 7659

    Returns:
L
lilong12 已提交
7660
        Tensor.
7661 7662 7663 7664

    Examples:
        .. code-block:: python

7665 7666 7667 7668 7669 7670 7671 7672
            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
7673
    """
H
hong 已提交
7674
    if in_dygraph_mode():
7675 7676 7677
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
H
hong 已提交
7678

B
Baibaifan 已提交
7679
    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
7680 7681 7682
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
7683 7684 7685
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
7686 7687

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
7700
    return out
H
huangjun12 已提交
7701 7702 7703 7704


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
7705
    r"""
7706 7707 7708
    This operator implements the hard_swish activation function.
    Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
H
huangjun12 已提交
7709

7710
    The formula is as follows:
H
huangjun12 已提交
7711

7712
    .. math::
H
huangjun12 已提交
7713

7714
        out = \\frac{x * (min(max(0, x+offset), threshold))}{scale}
H
huangjun12 已提交
7715

7716 7717 7718 7719 7720 7721 7722 7723 7724
    In the above equation:

    ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters.

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64.
        threshold (float, optional): The threshold in Relu function. Default: 6.0
        scale (float, optional): The scale factor. Default: 6.0
        offset (float, optional): The offset factor. Default: 3.0
7725 7726
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

7727 7728
    Returns:
        Variable: The output tensor with the same shape and data type as input.
7729 7730


7731
    Examples:
7732

7733
    .. code-block:: python
7734

7735
        import paddle.fluid as fluid
7736
        import paddle
7737
        import numpy as np
7738
        paddle.enable_static()
7739

7740
        DATATYPE='float32'
7741

7742
        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)
7743

7744 7745
        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.hard_swish(x)
7746

7747 7748 7749 7750 7751
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667,3., 4.]]
H
huangjun12 已提交
7752
    """
J
Jiabin Yang 已提交
7753
    if _non_static_mode():
7754 7755 7756
        return _legacy_C_ops.hard_swish(
            x, 'threshold', threshold, 'scale', scale, 'offset', offset
        )
7757

7758 7759 7760
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hard_swish'
    )
7761

H
huangjun12 已提交
7762 7763
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7764 7765 7766 7767 7768 7769
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold, 'scale': scale, 'offset': offset},
    )
H
huangjun12 已提交
7770
    return out
R
ruri 已提交
7771 7772


K
Kaipeng Deng 已提交
7773 7774
@templatedoc()
def mish(x, threshold=20, name=None):
7775
    r"""
K
Kaipeng Deng 已提交
7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832
    This operator implements the mish activation function.
    Refer to `Mish: A Self Regularized Non-Monotonic Neural
    Activation Function <https://arxiv.org/abs/1908.08681>`_


    The formula is as follows if :attr:`threshold` is :code:`None` or negative:

    .. math::

        out = x * \\tanh(\\ln(1 + e^{x}))

    The formula is as follows if :attr:`threshold` is set as positive value:

    .. math::

	out = \\begin{cases}
		x \\ast \\tanh(x), \\text{if } x > \\text{threshold} \\\\
		x \\ast \\tanh(e^{x}), \\text{if } x < -\\text{threshold} \\\\
		x \\ast \\tanh(\\ln(1 + e^{x})),  \\text{otherwise}
	      \\end{cases}

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type
                      should be float16, float32 or float64.
        threshold (float|None): threshold for softplus in Mish operator.
                Approximate value of softplus will be used if absolute value
                of input is greater than :attr:threshold and :attr:threshold
                is set as positive value. For none or negative threshold,
                approximate value is not used. Default 20.
        name (str, optional): The default value is None. Normally there is no
                need for user to set this property. For more information, please
                refer to :ref:`api_guide_Name`

    Returns:
        Variable: The output tensor with the same shape and data type as input.


    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        DATATYPE='float32'

        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)

        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.mish(x)

        place = fluid.CPUPlace()
        # place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667, 3., 4.]]
    """
7833
    if in_dygraph_mode():
7834
        return _C_ops.mish(x, threshold)
7835
    if _in_legacy_dygraph():
7836
        return _legacy_C_ops.mish(x, 'threshold', threshold)
7837

K
Kaipeng Deng 已提交
7838 7839
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'mish')
    check_type(threshold, 'threshold', (float, int), 'mish')
7840 7841 7842 7843 7844
    assert (
        threshold > 0
    ), "threshold of mish should be greater than 0, " "but got {}".format(
        threshold
    )
K
Kaipeng Deng 已提交
7845 7846 7847

    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7848 7849 7850 7851 7852 7853
    helper.append_op(
        type='mish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
K
Kaipeng Deng 已提交
7854 7855 7856
    return out


7857
@deprecated(since="2.0.0", update_to="paddle.uniform")
7858
@templatedoc()
7859 7860 7861
def uniform_random(
    shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None
):
7862
    """
7863 7864
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
7865 7866 7867

    Examples:
    ::
7868

7869 7870
        Input:
          shape = [1, 2]
7871

7872 7873 7874 7875
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output Tensor. Supported data types: float32, float64.
            Default is float32.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. 0 means
7889 7890
            use a seed generated by the system. Note that if seed is not 0,
            this operator will always generate the same random numbers every
7891
            time. Default is 0.
7892 7893 7894
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
7895

7896
    Returns:
7897 7898
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
7899

7900
    Raises:
7901 7902
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.
7903

7904 7905 7906
    Examples:
        .. code-block:: python

7907
            import paddle
7908
            import paddle.fluid as fluid
7909
            paddle.enable_static()
7910 7911

            # example 1:
7912
            # attr shape is a list which doesn't contain Tensor.
7913
            result_1 = fluid.layers.uniform_random(shape=[3, 4])
7914 7915 7916
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357],
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249],
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]]
7917 7918

            # example 2:
7919 7920 7921
            # attr shape is a list which contains Tensor.
            dim_1 = fluid.layers.fill_constant([1], "int64", 2)
            dim_2 = fluid.layers.fill_constant([1], "int32", 3)
7922
            result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
7923 7924
            # [[-0.9951253,   0.30757582, 0.9899647 ],
            #  [ 0.5864527,   0.6607096,  -0.8886161 ]]
7925 7926

            # example 3:
7927
            # attr shape is a Tensor, the data type must be int64 or int32.
7928
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
7929
            result_3 = fluid.layers.uniform_random(var_shape)
7930 7931 7932 7933
            # if var_shape's value is [2, 3]
            # result_3 is:
            # [[-0.8517412,  -0.4006908,   0.2551912 ],
            #  [ 0.3364414,   0.36278176, -0.16085452]]
7934

7935 7936 7937
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
7938

7939 7940
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
7941
        return _C_ops.uniform(
7942 7943 7944 7945 7946 7947 7948
            shape,
            dtype,
            float(min),
            float(max),
            seed,
            _current_expected_place(),
        )
7949
    elif _in_legacy_dygraph():
7950
        shape = utils.convert_shape_to_list(shape)
7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962
        return _legacy_C_ops.uniform_random(
            'shape',
            shape,
            'min',
            float(min),
            'max',
            float(max),
            'seed',
            seed,
            'dtype',
            dtype,
        )
7963

7964
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random/rand')
7965 7966 7967
    check_dtype(
        dtype, 'dtype', ('float32', 'float64', 'uint16'), 'uniform_random/rand'
    )
7968 7969
    check_type(min, 'min', (float, int, Variable), 'uniform_random/rand')
    check_type(max, 'max', (float, int, Variable), 'uniform_random/rand')
7970 7971

    inputs = dict()
7972
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
7973 7974 7975
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random/rand'
    )
7976

7977
    helper = LayerHelper("uniform_random", **locals())
7978
    out = helper.create_variable_for_type_inference(dtype)
7979 7980 7981
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs, outputs={"Out": out}
    )
7982
    utils.try_set_static_shape_tensor(out, shape)
7983
    return out
myq406450149's avatar
myq406450149 已提交
7984 7985 7986 7987 7988 7989 7990


def unbind(input, axis=0):
    """
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
    Args:
        input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
7991

myq406450149's avatar
myq406450149 已提交
7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the
            dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
    Returns:
        list(Variable): The list of segmented Tensor variables.

    Example:
        .. code-block:: python
            import paddle
            # input is a variable which shape is [3, 4, 5]
            input = paddle.fluid.data(
                 name="input", shape=[3, 4, 5], dtype="float32")
            [x0, x1, x2] = paddle.tensor.unbind(input, axis=0)
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
            [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1)
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
8017 8018 8019
    check_dtype(
        dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'], 'unbind'
    )
myq406450149's avatar
myq406450149 已提交
8020
    if not isinstance(axis, (int)):
8021 8022 8023
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )
myq406450149's avatar
myq406450149 已提交
8024 8025 8026 8027 8028 8029 8030 8031 8032 8033
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]

8034 8035 8036 8037 8038 8039
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis},
    )
myq406450149's avatar
myq406450149 已提交
8040
    return outs