compressor.py 46.3 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
W
whs 已提交
18
import copy
C
ceci3 已提交
19
import numpy as np
C
ceci3 已提交
20
import copy
C
ceci3 已提交
21
import inspect
C
ceci3 已提交
22
import shutil
W
whs 已提交
23
from time import gmtime, strftime
24
import platform
C
ceci3 已提交
25
import paddle
W
whs 已提交
26
import itertools
C
ceci3 已提交
27
import paddle.distributed.fleet as fleet
28
from ..quant.quanter import convert, quant_post
Z
zhouzj 已提交
29
from ..quant.reconstruction_quantization import quant_recon_static
C
ceci3 已提交
30 31
from ..common.recover_program import recover_inference_program
from ..common import get_logger
32
from ..common.patterns import get_patterns, find_final_nodes
G
Guanghua Yu 已提交
33
from ..common.load_model import load_inference_model, get_model_dir, export_onnx
34 35
from ..common.dataloader import wrap_dataloader, get_feed_vars
from ..common.config_helper import load_config
C
ceci3 已提交
36
from ..analysis import TableLatencyPredictor
Z
zhouzj 已提交
37
from .create_compressed_program import build_distill_program, build_quant_program, build_prune_program, remove_unused_var_nodes
C
ceci3 已提交
38
from .strategy_config import TrainConfig, ProgramInfo, merge_config
39
from .auto_strategy import prepare_strategy, get_final_quant_config, create_strategy_config, create_train_config
40
from .config_helpers import extract_strategy_config, extract_train_config
41
from .utils.predict import with_variable_shape
C
ceci3 已提交
42 43 44

_logger = get_logger(__name__, level=logging.INFO)

C
ceci3 已提交
45 46
try:
    if platform.system().lower() == 'linux':
C
ceci3 已提交
47
        from ..quant import post_quant_hpo
C
ceci3 已提交
48 49 50
except Exception as e:
    _logger.warning(e)

C
ceci3 已提交
51 52 53 54 55

class AutoCompression:
    def __init__(self,
                 model_dir,
                 train_dataloader,
56 57 58
                 model_filename=None,
                 params_filename=None,
                 save_dir='./output',
W
whs 已提交
59
                 config=None,
60
                 input_shapes=None,
C
ceci3 已提交
61
                 target_speedup=None,
62
                 eval_callback=None,
C
ceci3 已提交
63 64 65 66 67 68 69
                 eval_dataloader=None,
                 deploy_hardware='gpu'):
        """
        Compress inference model automatically.

        Args:
            model_dir(str): The path of inference model that will be compressed, and
C
ceci3 已提交
70
                the model and params that saved by ``paddle.static.save_inference_model``
C
ceci3 已提交
71
                are under the path.
G
Guanghua Yu 已提交
72
            train_dataloader(Python Generator, Paddle.io.DataLoader): The
73 74
                Generator or Dataloader provides train data, and it could
                return a batch every time.
C
ceci3 已提交
75 76
            model_filename(str):  The name of model file. 
            params_filename(str): The name of params file.
W
whs 已提交
77 78
            save_dir(str): The path to save compressed model. The models in this directory will be overwrited
                after calling 'compress()' function.
79 80 81 82 83 84 85
            input_shapes(dict|tuple|list): It is used when the model has implicit dimensions except batch size. 
                If it is a dict, the key is the name of input and the value is the shape. 
                Given the input shape of input "X" is [-1, 3, -1, -1] which means the batch size, hight
                and width is variable. And the input_shapes can be set {"X": [-1, 3, 512, 512]}.
                If it is a list or tuple, the number of model's inputs should be 1. And the shape of input
                will be set input_shapes. None means keeping the original shapes, then
                the compression strategies searching may be skipped. Default: None.
C
ceci3 已提交
86 87 88 89 90 91
            train_config(dict, optional): The train config in the compression process, the key can 
                reference `<https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L103>`_ . 
                Only one strategy(quant_post with hyperparameter optimization) can set train_config 
                to None. Default: None. 
            strategy_config(dict, list(dict), optional): The strategy config. You can set single config to get multi-strategy config, such as
                1. set ``Quantization`` and ``Distillation`` to get quant_aware and distillation compress config.
Z
zhouzj 已提交
92 93 94 95 96
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L55`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L107`_ .
                2. set ``QuantPost`` and ``HyperParameterOptimization`` to get quant_post and hyperparameter optimization compress config.
                    The QuantPost config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L187`_ .
                    The HyperParameterOptimization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L160`_ .
C
ceci3 已提交
97
                3. set ``ChannelPrune`` and ``Distillation`` to get channel prune and distillation compress config.
Z
zhouzj 已提交
98 99
                    The ChannelPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L254`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L107`_ .
C
ceci3 已提交
100
                4. set ``ASPPrune`` and ``Distillation`` to get asp prune and distillation compress config.
Z
zhouzj 已提交
101 102
                    The ASPPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L268`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L107`_ .
C
ceci3 已提交
103
                5. set ``TransformerPrune`` and ``Distillation`` to get transformer prune and distillation compress config.
Z
zhouzj 已提交
104 105
                    The TransformerPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L278`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L107`_ .
C
ceci3 已提交
106
                6. set ``UnstructurePrune`` and ``Distillation`` to get unstructureprune and distillation compress config.
Z
zhouzj 已提交
107 108
                    The UnstructurePrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L288`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L107`_ .
C
ceci3 已提交
109
                7. set ``Distillation`` to use one teacher modol to distillation student model.
Z
zhouzj 已提交
110
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L107`_ .
C
ceci3 已提交
111
                8. set ``MultiTeacherDistillation`` to use multi-teacher to distillation student model.
Z
zhouzj 已提交
112 113 114
                    The MultiTeacherDistillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L134`_ .
                9. set ``QuantPost`` to get quant_post compress config.
                    The QuantPost config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L187`_ .
C
ceci3 已提交
115 116 117 118

                If set to None, will choose a strategy automatically. Default: None.
            target_speedup(float, optional): target speedup ratio by the way of auto compress. Default: None.
            eval_callback(function, optional): eval function, define by yourself to return the metric of the inference program, can be used to judge the metric of compressed model. The documents of how to write eval function is `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/auto-compression/custom_function.rst`_ . ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
119 120 121
            eval_dataloader(paddle.io.Dataloader, optional):  The Generator or Dataloader provides eval data, and it could
                 return a batch every time. If eval_dataloader is None, will take first 5000 sample from train_dataloader 
                 as eval_dataloader, and the metric of eval_dataloader for reference only. Dafault: None.
C
ceci3 已提交
122 123
            deploy_hardware(str, optional): The hardware you want to deploy. Default: 'gpu'.
        """
G
Guanghua Yu 已提交
124
        self.model_dir = model_dir.rstrip('/')
125 126
        self.updated_model_dir, self.model_filename, self.params_filename = get_model_dir(
            model_dir, model_filename, params_filename)
C
ceci3 已提交
127

C
ceci3 已提交
128
        self.final_dir = save_dir
W
whs 已提交
129 130
        if not os.path.exists(self.final_dir):
            os.makedirs(self.final_dir)
W
whs 已提交
131 132 133 134

        # load config
        if isinstance(config, str):
            config = load_config(config)
C
ceci3 已提交
135 136 137
            self.train_config = extract_train_config(config)
        elif isinstance(config, dict):
            if 'TrainConfig' in config:
C
ceci3 已提交
138
                self.train_config = TrainConfig(**config.pop('TrainConfig'))
C
ceci3 已提交
139 140
            else:
                self.train_config = None
C
ceci3 已提交
141 142
        else:
            self.train_config = None
C
ceci3 已提交
143
        self.strategy_config = extract_strategy_config(config)
W
whs 已提交
144 145

        # prepare dataloader
G
Guanghua Yu 已提交
146
        self.feed_vars = get_feed_vars(self.model_dir, model_filename,
W
whs 已提交
147 148 149 150
                                       params_filename)
        self.train_dataloader = wrap_dataloader(train_dataloader,
                                                self.feed_vars)
        self.eval_dataloader = wrap_dataloader(eval_dataloader, self.feed_vars)
C
ceci3 已提交
151 152 153
        if self.eval_dataloader is None:
            self.eval_dataloader = self._get_eval_dataloader(
                self.train_dataloader)
W
whs 已提交
154

C
ceci3 已提交
155 156
        self.target_speedup = target_speedup
        self.eval_function = eval_callback
157
        self.deploy_hardware = deploy_hardware
158

C
ceci3 已提交
159
        paddle.enable_static()
C
ceci3 已提交
160
        self._exe, self._places = self._prepare_envs()
161
        self.default_distill_node_pair, self.model_type = self._get_model_info()
C
ceci3 已提交
162

163
        if self.train_config is not None and self.train_config.use_fleet:
C
ceci3 已提交
164 165
            fleet.init(is_collective=True)

166 167 168 169 170 171 172
        if with_variable_shape(
                self.model_dir,
                model_filename=model_filename,
                params_filename=params_filename) and input_shapes is not None:

            infer_shape_model = self.create_tmp_dir(
                self.final_dir, prefix="infer_shape_model_")
G
Guanghua Yu 已提交
173
            self._infer_shape(self.model_dir, self.model_filename,
174 175 176 177 178
                              self.params_filename, input_shapes,
                              infer_shape_model)
            self.model_dir = infer_shape_model
            self.model_filename = "infered_shape.pdmodel"
            self.params_filename = "infered_shape.pdiparams"
W
whs 已提交
179

C
ceci3 已提交
180 181
        if self.strategy_config is None:
            strategy_config = prepare_strategy(
C
ceci3 已提交
182 183 184
                self._exe, self._places, self.model_dir, self.model_filename,
                self.params_filename, self.target_speedup, self.deploy_hardware,
                self.model_type)
C
ceci3 已提交
185 186 187 188 189 190 191 192 193
            self.strategy_config = strategy_config
        elif isinstance(self.strategy_config, dict):
            self.strategy_config = [self.strategy_config]
        elif isinstance(self.strategy_config, str):
            strategy_config = create_strategy_config(self.strategy_config,
                                                     self.model_type)

        self._strategy, self._config = self._prepare_strategy(
            self.strategy_config)
C
ceci3 已提交
194
        self.train_config = self._get_final_train_config(
195 196
            self.train_config, self._strategy, self.model_type)
        _logger.info(f"Selected strategies: {self._strategy}")
C
ceci3 已提交
197 198 199

    def _get_final_train_config(self, train_config, strategy_config,
                                model_type):
200
        # If train_config is None, set default train_config
C
ceci3 已提交
201 202 203 204 205
        if train_config is None:
            train_config = create_train_config(strategy_config, model_type)

        train_configs = [train_config]
        for idx in range(1, len(self._strategy)):
C
ceci3 已提交
206 207 208
            if 'qat' in self._strategy[idx] or 'ptq' in self._strategy[idx]:
                ### If compress strategy more than one, the TrainConfig in the yaml only used in prune.
                ### The TrainConfig for quantization is extrapolate from above.
C
ceci3 已提交
209 210
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                ### the epoch, train_iter, learning rate of quant is 10% of the prune compress
211
                if self.model_type != 'transformer' and train_config.epochs is not None:
C
ceci3 已提交
212 213
                    tmp_train_config['epochs'] = max(
                        int(train_config.epochs * 0.1), 1)
C
ceci3 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
                if train_config.train_iter is not None:
                    tmp_train_config['train_iter'] = int(
                        train_config.train_iter * 0.1)
                if isinstance(train_config.learning_rate, float):
                    tmp_train_config[
                        'learning_rate'] = train_config.learning_rate * 0.1
                else:
                    if 'learning_rate' in train_config.learning_rate:
                        tmp_train_config['learning_rate'][
                            'learning_rate'] = train_config.learning_rate[
                                'learning_rate'] * 0.1
                    else:  ### learning rate decay is PiecewiseDecay
                        tmp_train_config['learning_rate']['values'] = list(
                            map(lambda x: x * 0.1, train_config.learning_rate[
                                'values']))
                train_cfg = TrainConfig(**tmp_train_config)
            else:
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                train_cfg = TrainConfig(**tmp_train_config)

            train_configs.append(train_cfg)
        return train_configs
236

237 238 239 240 241 242 243
    def _infer_shape(self, model_dir, model_filename, params_filename,
                     input_shapes, save_path):
        assert type(input_shapes) in [
            dict, list, tuple
        ], f'Type of input_shapes should be in [dict, tuple or list] but got {type(input_shapes)}.'
        paddle.enable_static()
        exe = paddle.static.Executor(paddle.CPUPlace())
C
ceci3 已提交
244
        [inference_program, feed_target_names,
245 246
         fetch_targets] = load_inference_model(model_dir, exe, model_filename,
                                               params_filename)
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

        if type(input_shapes) in [list, tuple]:
            assert len(
                feed_target_names
            ) == 1, f"The number of model's inputs should be 1 but got {feed_target_names}."
            input_shapes = {feed_target_names[0]: input_shapes}

        feed_vars = []
        for var_ in inference_program.list_vars():
            if var_.name in feed_target_names:
                feed_vars.append(var_)
                var_.desc.set_shape(input_shapes[var_.name])

        for block in inference_program.blocks:
            for op in block.ops:
                if op.type not in ["feed", "fetch"]:
                    op.desc.infer_shape(block.desc)

        save_path = os.path.join(save_path, "infered_shape")
        os.makedirs(save_path)
        paddle.static.save_inference_model(
            save_path, feed_vars, fetch_targets, exe, program=inference_program)
        _logger.info(f"Saved model infered shape to {save_path}")

    @property
    def deploy_hardware(self):
        return self._deploy_hardware

    @deploy_hardware.setter
    def deploy_hardware(self, value):
277 278 279 280
        supported_hardware = TableLatencyPredictor.hardware_list + [
            'gpu',  # nvidia gpu
            "cpu",  # intel cpu
        ]
281 282 283
        if value is not None:
            # Fail-fast when deploy hardware is set explicitly
            assert (
284 285
                value in supported_hardware
            ), f"Hardware should be in supported list {supported_hardware} but got {value}. Or you can set deploy_hardware None."
286 287
        self._deploy_hardware = value

288 289 290 291 292 293 294 295 296 297 298
    def _get_eval_dataloader(self, train_dataloader):
        def _gen():
            len_loader = len(list(train_dataloader()))
            ### max eval_dataloader is 5000 if use train_dataloader as eval_dataloader
            slice_len = min(5000, len_loader)
            ret = list(itertools.islice(train_dataloader(), slice_len))
            for i in ret:
                yield i

        return _gen

C
ceci3 已提交
299 300
    def _prepare_envs(self):
        devices = paddle.device.get_device().split(':')[0]
C
ceci3 已提交
301
        places = paddle.device._convert_to_place(devices)
W
whs 已提交
302
        _logger.info(f"devices: {devices}")
C
ceci3 已提交
303 304 305
        exe = paddle.static.Executor(places)
        return exe, places

306
    def _get_model_info(self):
307 308 309 310 311
        [inference_program, _, _] = (load_inference_model(
            self.model_dir,
            model_filename=self.model_filename,
            params_filename=self.params_filename,
            executor=self._exe))
312 313 314 315 316 317 318 319 320 321 322 323 324

        ### set the output of final weight node as the default distillation node
        distill_node = []
        final_weight_node = find_final_nodes(inference_program)
        for out_var in final_weight_node:
            distill_node.append('teacher_' + out_var.name())
            distill_node.append(out_var.name())

        model_type = None
        if not isinstance(self.strategy_config, dict):
            _, model_type = get_patterns(inference_program)
            _logger.info(f"Detect model type: {model_type}")

C
ceci3 已提交
325
        if self.model_filename is None:
326
            opt_model_filename = '__opt_model__'
C
ceci3 已提交
327
        else:
328
            opt_model_filename = self.model_filename
C
ceci3 已提交
329 330
        program_bytes = inference_program._remove_training_info(
            clip_extra=False).desc.serialize_to_string()
331 332 333
        with open(
                os.path.join(self.updated_model_dir, opt_model_filename),
                "wb") as f:
C
ceci3 已提交
334 335
            f.write(program_bytes)
        shutil.move(
336 337
            os.path.join(self.updated_model_dir, opt_model_filename),
            os.path.join(self.updated_model_dir, self.model_filename))
338 339

        return distill_node, model_type
C
ceci3 已提交
340 341 342 343 344 345 346 347 348 349

    def _prepare_strategy(self, strategy_config):
        if not isinstance(strategy_config, list):
            strategy_config = list(list(strategy_config))

        strategy = []
        config = []
        for strategy_c in strategy_config:
            quant_config = strategy_c.get("Quantization", None)
            hpo_config = strategy_c.get("HyperParameterOptimization", None)
Z
zhouzj 已提交
350
            ptq_config = strategy_c.get("QuantPost", None)
C
ceci3 已提交
351 352 353
            prune_config = strategy_c.get("ChannelPrune", None)
            asp_config = strategy_c.get("ASPPrune", None)
            transformer_prune_config = strategy_c.get("TransformerPrune", None)
C
ceci3 已提交
354 355 356
            unstructure_prune_config = strategy_c.get("UnstructurePrune", None)
            single_teacher_distill_config = strategy_c.get("Distillation", None)
            if single_teacher_distill_config is not None and single_teacher_distill_config.teacher_model_dir is None:
C
ceci3 已提交
357 358 359
                single_teacher_distill_config.teacher_model_dir = self.model_dir
                single_teacher_distill_config.teacher_model_filename = self.model_filename
                single_teacher_distill_config.teacher_params_filename = self.params_filename
C
ceci3 已提交
360 361 362 363 364 365 366 367 368 369

            multi_teacher_distill_config = strategy_c.get(
                "MultiTeacherDistillation", None)

            assert (single_teacher_distill_config is None) or (multi_teacher_distill_config is None), \
                "Distillation and MultiTeacherDistillation cannot be set at the same time."
            self._distill_config = single_teacher_distill_config if \
                   single_teacher_distill_config is not None else \
                   multi_teacher_distill_config

C
ceci3 已提交
370
            only_distillation = True
C
ceci3 已提交
371

C
ceci3 已提交
372 373 374
            ### case1: prune_config & distill config
            if prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
375
                strategy.append('channel_prune_dis')
C
ceci3 已提交
376 377
                config.append(merge_config(prune_config, self._distill_config))

C
ceci3 已提交
378 379 380
            ### case2: asp_config & distill config
            if asp_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
381 382 383
                strategy.append('asp_prune_dis')
                config.append(merge_config(asp_config, self._distill_config))

C
ceci3 已提交
384 385 386
            ### case3: transformer_prune_config & distill config
            if transformer_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
387 388 389 390 391
                strategy.append('transformer_prune_dis')
                config.append(
                    merge_config(transformer_prune_config,
                                 self._distill_config))

C
ceci3 已提交
392 393 394
            ### case4: unstructure_config & distill config
            if unstructure_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
395 396 397 398 399
                strategy.append('unstructure_prune_dis')
                config.append(
                    merge_config(unstructure_prune_config,
                                 self._distill_config))

C
ceci3 已提交
400
            ### case5: quant_config & hpo_config ==> PTQ & HPO
Z
zhouzj 已提交
401
            if ptq_config is not None and hpo_config is not None:
C
ceci3 已提交
402 403
                only_distillation = False
                strategy.append('ptq_hpo')
Z
zhouzj 已提交
404
                config.append(merge_config(ptq_config, hpo_config))
C
ceci3 已提交
405 406

            ### case6: quant_config & distill config ==> QAT & Distill
C
ceci3 已提交
407
            if quant_config is not None and self._distill_config is not None and 'ptq_hpo' not in strategy:
C
ceci3 已提交
408 409 410 411
                only_distillation = False
                strategy.append('qat_dis')
                config.append(merge_config(quant_config, self._distill_config))

C
ceci3 已提交
412
            ### case7: distill_config
C
ceci3 已提交
413
            if only_distillation == True and self._distill_config is not None:
C
ceci3 已提交
414 415 416 417 418 419
                if single_teacher_distill_config is not None:
                    strategy.append('single_teacher_dis')
                    config.append(single_teacher_distill_config)
                else:
                    strategy.append('multi_teacher_dis')
                    config.append(multi_teacher_distill_config)
C
ceci3 已提交
420

Z
zhouzj 已提交
421 422 423 424 425
            ### case8: only qtp_config ==> PTQ
            if ptq_config is not None and hpo_config is None:
                strategy.append('quant_post')
                config.append(ptq_config)

C
ceci3 已提交
426 427 428 429 430 431 432 433 434 435 436 437
        ### NOTE: keep quantation in the last step
        idx = -1
        if 'qat_dis' in strategy and strategy.index('qat_dis') != (
                len(strategy) - 1):
            idx = strategy.index('qat_dis')
        elif 'ptq_hpo' in strategy and strategy.index('ptq_hpo') != (
                len(strategy) - 1):
            idx = strategy.index('ptq_hpo')

        if idx != -1:
            strategy = strategy[:idx] + strategy[idx + 1:] + [strategy[idx]]
            config = config[:idx] + config[idx + 1:] + [config[idx]]
C
ceci3 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

        return strategy, config

    def _prepare_fleet_strategy(train_config):
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()

        strategy = fleet.DistributedStrategy()
        strategy.build_strategy = build_strategy
        if train_config.recompute_config is not None:
            strategy.recompute = True
            strategy.recompute_configs = { ** train_config.recompute_config}
        if train_config.sharding_config is not None:
            strategy.sharding = True
            strategy.sharding_configs = { ** train_config.sharding_config}
        if train_config.amp_config is not None:
            strategy.amp = True
            strategy.amp_configs = { ** train_config.amp_config}
456 457
        if train_config.asp_config is not None:
            strategy.asp = True
C
ceci3 已提交
458 459
        return strategy

C
ceci3 已提交
460
    def _prepare_program(self, program, feed_target_names, fetch_targets,
461
                         patterns, strategy, config, train_config):
C
ceci3 已提交
462 463 464 465 466
        train_program = recover_inference_program(program)
        startup_program = paddle.static.Program()
        train_program_info = ProgramInfo(startup_program, train_program,
                                         feed_target_names, fetch_targets)

C
ceci3 已提交
467
        config_dict = config.__dict__
468 469 470
        if "prune_strategy" in config_dict and config_dict[
                "prune_strategy"] == "gmp" and config_dict[
                    'gmp_config'] is None:
Z
zhouzj 已提交
471 472 473
            _logger.info(
                "Calculating the iterations per epoch……(It will take some time)")
            # NOTE:XXX: This way of calculating the iters needs to be improved.
C
ceci3 已提交
474
            if train_config.epochs:
G
Guanghua Yu 已提交
475
                iters_per_epoch = len(list(self.train_dataloader()))
C
ceci3 已提交
476 477 478
                total_iters = train_config.epochs * iters_per_epoch
            elif train_config.train_iter:
                total_iters = train_config.train_iter
G
Guanghua Yu 已提交
479 480 481
            else:
                raise RuntimeError(
                    'train_config must has `epochs` or `train_iter` field.')
Z
zhouzj 已提交
482 483
            config_dict['gmp_config'] = {
                'stable_iterations': 0,
C
ceci3 已提交
484 485
                'pruning_iterations': max(0.45 * total_iters, 30),
                'tunning_iterations': max(0.45 * total_iters, 30),
Z
zhouzj 已提交
486
                'resume_iteration': -1,
C
ceci3 已提交
487
                'pruning_steps': 100 if (0.45 * total_iters) > 1000 else 1,
Z
zhouzj 已提交
488 489
                'initial_ratio': 0.15,
            }
C
ceci3 已提交
490 491
        ### add prune program
        self._pruner = None
C
ceci3 已提交
492
        if 'prune' in strategy:
C
ceci3 已提交
493 494
            self._pruner, train_program_info = build_prune_program(
                self._exe, self._places, config_dict, train_program_info,
C
ceci3 已提交
495
                strategy, patterns, self.eval_dataloader)
C
ceci3 已提交
496

C
ceci3 已提交
497
        if train_config.use_fleet:
498
            dist_strategy = self._prepare_fleet_strategy(train_config)
C
ceci3 已提交
499 500 501 502
        else:
            dist_strategy = None

        ### add distill program
C
ceci3 已提交
503
        if 'dis' in strategy:
C
ceci3 已提交
504 505 506 507
            train_program_info, test_program_info = build_distill_program(
                self._exe,
                self._places,
                config_dict,
C
ceci3 已提交
508
                train_config.__dict__,
C
ceci3 已提交
509 510
                train_program_info,
                pruner=self._pruner,
C
ceci3 已提交
511
                dist_strategy=dist_strategy,
512
                default_distill_node_pair=self.default_distill_node_pair)
C
ceci3 已提交
513 514 515

        self._quant_config = None
        ### add quant_aware program, quant always is last step
C
ceci3 已提交
516
        if 'qat' in strategy:
C
ceci3 已提交
517 518 519
            train_program_info, test_program_info, self._quant_config = build_quant_program(
                self._exe, self._places, config_dict, train_program_info,
                test_program_info)
C
ceci3 已提交
520
        if train_config.sparse_model:
Z
zhouzj 已提交
521
            from ..prune.unstructured_pruner import UnstructuredPruner
Z
zhouzj 已提交
522
            # NOTE: The initialization parameter of this pruner doesn't work, it is only used to call the 'set_static_masks' function
Z
zhouzj 已提交
523 524 525 526 527 528
            self._pruner = UnstructuredPruner(
                train_program_info.program,
                mode='ratio',
                ratio=0.75,
                prune_params_type='conv1x1_only',
                place=self._places)
Z
zhouzj 已提交
529
            self._pruner.set_static_masks()  # Fixed model sparsity
C
ceci3 已提交
530 531 532

        self._exe.run(train_program_info.startup_program)

C
ceci3 已提交
533 534 535 536
        if (not train_config.use_fleet) and train_config.amp_config is not None:
            if hasattr(
                    train_config.amp_config,
                    'use_pure_fp16') and train_config.amp_config.use_pure_fp16:
C
ceci3 已提交
537 538 539
                train_program_info.optimizer.amp_init(
                    self._places, scope=paddle.static.global_scope())

C
ceci3 已提交
540
        if 'asp' in strategy:
C
ceci3 已提交
541 542 543
            ### prune weight in scope
            self._pruner.prune_model(train_program_info.program)

C
ceci3 已提交
544
        if not train_config.use_fleet:
C
ceci3 已提交
545
            train_program_info = self._compiled_program(train_program_info,
C
ceci3 已提交
546
                                                        strategy)
C
ceci3 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
            test_program_info = self._compiled_program(test_program_info,
                                                       self._strategy)
        return train_program_info, test_program_info

    def _compiled_program(self, program_info, strategy):
        compiled_prog = paddle.static.CompiledProgram(program_info.program)
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()
        if 'qat' in strategy:
            build_strategy.memory_optimize = False
            build_strategy.enable_inplace = False
            build_strategy.fuse_all_reduce_ops = False
            build_strategy.sync_batch_norm = False

        compiled_prog = compiled_prog.with_data_parallel(
            loss_name=program_info.fetch_targets[0].name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)
        program_info.program = compiled_prog
        return program_info

568
    def create_tmp_dir(self, base_dir, prefix="tmp"):
W
whs 已提交
569
        # create a new temp directory in final dir
570 571
        s_datetime = strftime("%Y_%m_%d_%H_%M", gmtime())
        tmp_base_name = "_".join([prefix, str(os.getppid()), s_datetime])
572 573 574 575
        tmp_dir = os.path.join(base_dir, tmp_base_name)
        if not os.path.exists(tmp_dir):
            os.makedirs(tmp_dir)
        return tmp_dir
W
whs 已提交
576

577
    def compress(self):
578
        assert len(self._strategy) > 0
579
        self.tmp_dir = self.create_tmp_dir(self.final_dir)
580 581 582 583
        strategy = None
        config = None
        train_config = None
        strategy_idx = None
Z
zhouzj 已提交
584
        self.final_metric = -1.0
C
ceci3 已提交
585
        for strategy_idx, (
C
ceci3 已提交
586 587 588 589
                strategy, config, train_config
        ) in enumerate(zip(self._strategy, self._config, self.train_config)):
            self.single_strategy_compress(strategy, config, strategy_idx,
                                          train_config)
C
ceci3 已提交
590 591 592

        if strategy == 'ptq_hpo' and config.max_quant_count == 1 and platform.system(
        ).lower() == 'linux':
C
ceci3 已提交
593
            ptq_loss = post_quant_hpo.g_min_emd_loss
C
ceci3 已提交
594

C
ceci3 已提交
595 596
            final_quant_config = get_final_quant_config(ptq_loss,
                                                        self.model_type)
C
ceci3 已提交
597 598 599 600
            if final_quant_config is not None:
                quant_strategy, quant_config = self._prepare_strategy(
                    final_quant_config)
                self.single_strategy_compress(quant_strategy[0],
C
ceci3 已提交
601 602
                                              quant_config[0], strategy_idx,
                                              train_config)
C
ceci3 已提交
603
        if paddle.distributed.get_rank() == 0:
604 605 606
            tmp_model_path = os.path.join(
                self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1)))
            final_model_path = os.path.join(self.final_dir)
W
whs 已提交
607 608 609 610
            for _file in os.listdir(tmp_model_path):
                _file_path = os.path.join(tmp_model_path, _file)
                if os.path.isfile(_file_path):
                    shutil.copy(_file_path, final_model_path)
W
whs 已提交
611
            shutil.rmtree(self.tmp_dir)
Z
zhouzj 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624

            if self.eval_function is not None and self.final_metric < 0.0:
                [inference_program, feed_target_names, fetch_targets]= load_inference_model( \
                    final_model_path, \
                    model_filename=self.model_filename, params_filename=self.params_filename,
                    executor=self._exe)
                self.final_metric = self.eval_function(
                    self._exe, inference_program, feed_target_names,
                    fetch_targets)
            if self.eval_function is not None:
                _logger.info("==> The metric of final model is {:.4f}".format(
                    self.final_metric))

C
ceci3 已提交
625
            _logger.info(
G
Guanghua Yu 已提交
626
                "==> The ACT compression has been completed and the final model is saved in `{}`".
C
ceci3 已提交
627
                format(final_model_path))
C
ceci3 已提交
628

C
ceci3 已提交
629 630
    def single_strategy_compress(self, strategy, config, strategy_idx,
                                 train_config):
631 632
        # start compress, including train/eval model
        # TODO: add the emd loss of evaluation model.
C
ceci3 已提交
633 634 635 636 637 638 639
        if strategy_idx == 0:
            model_dir = self.model_dir
        else:
            model_dir = os.path.join(self.tmp_dir,
                                     'strategy_{}'.format(str(strategy_idx)))

        if self.updated_model_dir != model_dir:
G
Guanghua Yu 已提交
640 641
            # If model is ONNX, convert it to inference model firstly.
            load_inference_model(
C
ceci3 已提交
642
                model_dir,
G
Guanghua Yu 已提交
643 644 645
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                executor=self._exe)
646
        if strategy == 'quant_post':
Z
zhouzj 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
            if config.recon_level is None:
                quant_post(
                    self._exe,
                    model_dir=self.updated_model_dir,
                    quantize_model_path=os.path.join(
                        self.tmp_dir,
                        'strategy_{}'.format(str(strategy_idx + 1))),
                    data_loader=self.train_dataloader,
                    model_filename=self.model_filename,
                    params_filename=self.params_filename,
                    save_model_filename=self.model_filename,
                    save_params_filename=self.params_filename,
                    batch_size=config.batch_size,
                    batch_nums=config.batch_nums,
                    algo=config.algo,
                    bias_correction=config.bias_correction,
                    hist_percent=config.hist_percent,
                    quantizable_op_type=config.quantize_op_types,
                    is_full_quantize=config.is_full_quantize,
                    weight_bits=config.weight_bits,
                    activation_bits=config.activation_bits,
                    activation_quantize_type=config.activation_quantize_type,
                    weight_quantize_type=config.weight_quantize_type,
                    onnx_format=config.onnx_format)
            else:
                quant_recon_static(
                    executor=self._exe,
                    model_dir=self.updated_model_dir,
                    quantize_model_path=os.path.join(
                        self.tmp_dir,
                        'strategy_{}'.format(str(strategy_idx + 1))),
                    data_loader=self.train_dataloader,
                    model_filename=self.model_filename,
                    params_filename=self.params_filename,
                    batch_size=config.batch_size,
                    batch_nums=config.batch_nums,
                    algo=config.algo,
                    hist_percent=config.hist_percent,
                    quantizable_op_type=config.quantize_op_types,
                    is_full_quantize=config.is_full_quantize,
                    bias_correction=config.bias_correction,
                    onnx_format=config.onnx_format,
                    weight_bits=config.weight_bits,
                    activation_bits=config.activation_bits,
                    weight_quantize_type=config.weight_quantize_type,
                    activation_quantize_type=config.activation_quantize_type,
                    recon_level=config.recon_level,
                    simulate_activation_quant=config.simulate_activation_quant,
                    regions=config.regions,
                    region_weights_names=config.region_weights_names,
                    skip_tensor_list=config.skip_tensor_list,
                    epochs=config.epochs,
                    lr=config.lr)
700 701

        elif strategy == 'ptq_hpo':
702 703 704
            if platform.system().lower() != 'linux':
                raise NotImplementedError(
                    "post-quant-hpo is not support in system other than linux")
C
ceci3 已提交
705 706 707 708 709
            if self.eval_function is None:
                # If eval function is None, ptq_hpo will use emd distance to eval the quantized model, so need the dataloader without label
                eval_dataloader = self.train_dataloader
            else:
                eval_dataloader = self.eval_dataloader
C
ceci3 已提交
710
            post_quant_hpo.quant_post_hpo(
C
ceci3 已提交
711 712
                self._exe,
                self._places,
Z
zhouzj 已提交
713
                model_dir=self.updated_model_dir,
C
ceci3 已提交
714
                quantize_model_path=os.path.join(
W
whs 已提交
715
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
C
ceci3 已提交
716
                train_dataloader=self.train_dataloader,
C
ceci3 已提交
717
                eval_dataloader=eval_dataloader,
C
ceci3 已提交
718 719 720 721 722
                eval_function=self.eval_function,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
C
ceci3 已提交
723 724 725 726 727 728 729 730
                quantizable_op_type=config.quantize_op_types,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                weight_quantize_type=config.weight_quantize_type,
                is_full_quantize=config.is_full_quantize,
                algo=config.ptq_algo,
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
C
ceci3 已提交
731
                batch_size=[1],
C
ceci3 已提交
732
                batch_num=config.batch_num,
C
ceci3 已提交
733
                onnx_format=config.onnx_format,
C
ceci3 已提交
734
                runcount_limit=config.max_quant_count)
C
ceci3 已提交
735 736

        else:
C
ceci3 已提交
737 738
            assert 'dis' in strategy, "Only support optimizer compressed model by distillation loss."

C
ceci3 已提交
739 740
            [inference_program, feed_target_names, fetch_targets]= load_inference_model( \
                model_dir, \
C
ceci3 已提交
741 742 743 744
                model_filename=self.model_filename, params_filename=self.params_filename,
                executor=self._exe)

            ### used to check whether the dataloader is right
C
ceci3 已提交
745
            self.metric_before_compressed = None
C
ceci3 已提交
746
            if self.eval_function is not None and train_config.origin_metric is not None:
C
ceci3 已提交
747
                _logger.info("start to test metric before compress")
C
ceci3 已提交
748 749 750 751
                metric = self.eval_function(self._exe, inference_program,
                                            feed_target_names, fetch_targets)
                _logger.info("metric of compressed model is: {}".format(metric))
                buf = 0.05
C
ceci3 已提交
752 753
                if metric < (float(train_config.origin_metric) - buf) or \
                        metric > (float(train_config.origin_metric) + buf):
C
ceci3 已提交
754 755 756 757
                    raise RuntimeError("target metric of pretrained model is {}, \
                          but now is {}, Please check the format of evaluation dataset \
                          or check the origin_metric in train_config"
                                                                     .format(\
C
ceci3 已提交
758
                          train_config.origin_metric, metric))
C
ceci3 已提交
759 760
                self.metric_before_compressed = metric

761 762 763
            patterns = None
            if 'transformer' in strategy:
                patterns, _ = get_patterns(inference_program)
C
ceci3 已提交
764
            train_program_info, test_program_info = self._prepare_program(
C
ceci3 已提交
765
                inference_program, feed_target_names, fetch_targets, patterns,
766
                strategy, config, train_config)
Z
zhouzj 已提交
767 768 769
            if 'unstructure' in self._strategy:
                test_program_info.program._program = remove_unused_var_nodes(
                    test_program_info.program._program)
C
ceci3 已提交
770 771
            test_program_info = self._start_train(
                train_program_info, test_program_info, strategy, train_config)
772 773
            if paddle.distributed.get_rank() == 0:
                self._save_model(test_program_info, strategy, strategy_idx)
C
ceci3 已提交
774

C
ceci3 已提交
775 776
    def _start_train(self, train_program_info, test_program_info, strategy,
                     train_config):
C
ceci3 已提交
777
        best_metric = -1.0
C
ceci3 已提交
778
        total_epochs = train_config.epochs if train_config.epochs else 100
G
Guanghua Yu 已提交
779
        total_train_iter = 0
780
        stop_training = False
G
Guanghua Yu 已提交
781
        for epoch_id in range(total_epochs):
782 783
            if stop_training:
                break
C
ceci3 已提交
784 785 786 787
            for batch_id, data in enumerate(self.train_dataloader()):
                np_probs_float, = self._exe.run(train_program_info.program, \
                    feed=data, \
                    fetch_list=train_program_info.fetch_targets)
788 789
                if not isinstance(train_program_info.learning_rate, float):
                    train_program_info.learning_rate.step()
C
ceci3 已提交
790
                if 'unstructure' in strategy:
C
ceci3 已提交
791 792
                    self._pruner.step()

C
ceci3 已提交
793
                if train_config.logging_iter is None:
C
ceci3 已提交
794 795
                    logging_iter = 10
                else:
C
ceci3 已提交
796
                    logging_iter = train_config.logging_iter
C
ceci3 已提交
797
                if batch_id % int(logging_iter) == 0:
G
Guanghua Yu 已提交
798 799 800 801 802
                    _logger.info(
                        "Total iter: {}, epoch: {}, batch: {}, loss: {}".format(
                            total_train_iter, epoch_id, batch_id,
                            np_probs_float))
                total_train_iter += 1
C
ceci3 已提交
803 804
                if total_train_iter % int(
                        train_config.eval_iter) == 0 and total_train_iter != 0:
C
ceci3 已提交
805 806 807
                    if self.eval_function is not None:

                        # GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation. 
C
ceci3 已提交
808
                        if 'unstructure' in strategy:
C
ceci3 已提交
809 810 811 812 813 814 815 816 817 818
                            self._pruner.update_params()

                        metric = self.eval_function(
                            self._exe, test_program_info.program,
                            test_program_info.feed_target_names,
                            test_program_info.fetch_targets)

                        if metric > best_metric:
                            paddle.static.save(
                                program=test_program_info.program._program,
W
whs 已提交
819
                                model_path=os.path.join(self.tmp_dir,
C
ceci3 已提交
820
                                                        'best_model'))
C
ceci3 已提交
821
                            best_metric = metric
822 823 824
                            _logger.info(
                                "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
                                format(epoch_id, metric, best_metric))
C
ceci3 已提交
825 826 827 828
                            if self.metric_before_compressed is not None and float(
                                    abs(best_metric -
                                        self.metric_before_compressed)
                            ) / self.metric_before_compressed <= 0.005:
829
                                _logger.info(
Z
zhouzj 已提交
830
                                    "The error rate between the compressed model and original model is less than 0.5%. The training process ends."
831 832
                                )
                                stop_training = True
C
ceci3 已提交
833
                                break
834 835 836 837
                        else:
                            _logger.info(
                                "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
                                format(epoch_id, metric, best_metric))
C
ceci3 已提交
838 839
                        if train_config.target_metric is not None:
                            if metric > float(train_config.target_metric):
840 841 842 843
                                stop_training = True
                                _logger.info(
                                    "The metric of compressed model has reached the target metric. The training process ends."
                                )
C
ceci3 已提交
844
                                break
C
ceci3 已提交
845 846

                    else:
847 848 849
                        _logger.warning(
                            "Not set eval function, so unable to test accuracy performance."
                        )
850 851
                if (train_config.train_iter and total_train_iter >=
                        train_config.train_iter) or stop_training:
Z
zhouzj 已提交
852
                    stop_training = True
G
Guanghua Yu 已提交
853
                    break
Z
zhouzj 已提交
854
        self.final_metric = best_metric
C
ceci3 已提交
855
        if 'unstructure' in self._strategy or train_config.sparse_model:
Z
zhouzj 已提交
856 857
            self._pruner.update_params()

C
ceci3 已提交
858 859
        return test_program_info

C
ceci3 已提交
860
    def _save_model(self, test_program_info, strategy, strategy_idx):
C
ceci3 已提交
861 862 863
        test_program = test_program_info.program._program if isinstance(
            test_program_info.program,
            paddle.static.CompiledProgram) else test_program_info.program
C
ceci3 已提交
864

W
whs 已提交
865
        if os.path.exists(os.path.join(self.tmp_dir, 'best_model.pdparams')):
866
            paddle.static.load(test_program,
W
whs 已提交
867 868 869 870
                               os.path.join(self.tmp_dir, 'best_model'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdmodel'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdopt'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdparams'))
C
ceci3 已提交
871

W
whs 已提交
872
        model_dir = os.path.join(self.tmp_dir,
C
ceci3 已提交
873 874 875
                                 'strategy_{}'.format(str(strategy_idx + 1)))
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
876 877 878 879 880 881

        if 'qat' in strategy:
            test_program = convert(
                test_program,
                self._places,
                self._quant_config,
882 883
                scope=paddle.static.global_scope(),
                save_clip_ranges_path=self.final_dir)
884

C
ceci3 已提交
885 886 887 888 889
        feed_vars = [
            test_program.global_block().var(name)
            for name in test_program_info.feed_target_names
        ]

890 891 892 893 894 895 896 897
        model_name = None
        if self.model_filename is None:
            model_name = "model"
        elif self.model_filename.endswith(".pdmodel"):
            model_name = self.model_filename.rsplit(".", 1)[0]
        else:
            model_name = self.model_filename

C
ceci3 已提交
898
        path_prefix = os.path.join(model_dir, model_name)
C
ceci3 已提交
899
        paddle.static.save_inference_model(
C
ceci3 已提交
900
            path_prefix=path_prefix,
C
ceci3 已提交
901 902
            feed_vars=feed_vars,
            fetch_vars=test_program_info.fetch_targets,
C
ceci3 已提交
903
            executor=self._exe,
C
ceci3 已提交
904
            program=test_program)
G
Guanghua Yu 已提交
905 906 907 908

    def export_onnx(self,
                    model_name='quant_model.onnx',
                    deploy_backend='tensorrt'):
909 910 911 912 913 914 915 916 917 918 919 920 921 922
        if paddle.distributed.get_rank() == 0:
            infer_model_path = os.path.join(self.final_dir, self.model_filename)
            assert os.path.exists(
                infer_model_path), 'Not found {}, please check it.'.format(
                    infer_model_path)
            onnx_save_path = os.path.join(self.final_dir, 'ONNX')
            if not os.path.exists(onnx_save_path):
                os.makedirs(onnx_save_path)
            export_onnx(
                self.final_dir,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_file_path=os.path.join(onnx_save_path, model_name),
                deploy_backend=deploy_backend)