compressor.py 40.9 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
W
whs 已提交
18
import copy
C
ceci3 已提交
19
import numpy as np
C
ceci3 已提交
20
import copy
C
ceci3 已提交
21
import inspect
C
ceci3 已提交
22
import shutil
W
whs 已提交
23
from time import gmtime, strftime
24
import platform
C
ceci3 已提交
25
import paddle
W
whs 已提交
26
import itertools
C
ceci3 已提交
27
import paddle.distributed.fleet as fleet
28
from ..quant.quanter import convert, quant_post
C
ceci3 已提交
29 30
from ..common.recover_program import recover_inference_program
from ..common import get_logger
C
ceci3 已提交
31 32
from ..common.patterns import get_patterns
from ..analysis import TableLatencyPredictor
Z
zhouzj 已提交
33
from .create_compressed_program import build_distill_program, build_quant_program, build_prune_program, remove_unused_var_nodes
C
ceci3 已提交
34
from .strategy_config import TrainConfig, ProgramInfo, merge_config
35
from .auto_strategy import prepare_strategy, get_final_quant_config, create_strategy_config, create_train_config
W
whs 已提交
36
from .config_helpers import load_config, extract_strategy_config, extract_train_config
37
from .utils.predict import with_variable_shape
C
ceci3 已提交
38
from .utils import get_feed_vars, wrap_dataloader, load_inference_model
C
ceci3 已提交
39 40 41

_logger = get_logger(__name__, level=logging.INFO)

C
ceci3 已提交
42 43
try:
    if platform.system().lower() == 'linux':
C
ceci3 已提交
44
        from ..quant import post_quant_hpo
C
ceci3 已提交
45 46 47
except Exception as e:
    _logger.warning(e)

C
ceci3 已提交
48 49 50 51 52 53 54 55

class AutoCompression:
    def __init__(self,
                 model_dir,
                 model_filename,
                 params_filename,
                 save_dir,
                 train_dataloader,
W
whs 已提交
56
                 config=None,
57
                 input_shapes=None,
C
ceci3 已提交
58
                 target_speedup=None,
59
                 eval_callback=None,
C
ceci3 已提交
60 61 62 63 64 65 66
                 eval_dataloader=None,
                 deploy_hardware='gpu'):
        """
        Compress inference model automatically.

        Args:
            model_dir(str): The path of inference model that will be compressed, and
C
ceci3 已提交
67
                the model and params that saved by ``paddle.static.save_inference_model``
C
ceci3 已提交
68
                are under the path.
C
ceci3 已提交
69 70
            model_filename(str):  The name of model file. 
            params_filename(str): The name of params file.
W
whs 已提交
71 72
            save_dir(str): The path to save compressed model. The models in this directory will be overwrited
                after calling 'compress()' function.
C
ceci3 已提交
73 74 75
            train_data_loader(Python Generator, Paddle.io.DataLoader): The
                Generator or Dataloader provides train data, and it could
                return a batch every time.
76 77 78 79 80 81 82
            input_shapes(dict|tuple|list): It is used when the model has implicit dimensions except batch size. 
                If it is a dict, the key is the name of input and the value is the shape. 
                Given the input shape of input "X" is [-1, 3, -1, -1] which means the batch size, hight
                and width is variable. And the input_shapes can be set {"X": [-1, 3, 512, 512]}.
                If it is a list or tuple, the number of model's inputs should be 1. And the shape of input
                will be set input_shapes. None means keeping the original shapes, then
                the compression strategies searching may be skipped. Default: None.
C
ceci3 已提交
83 84 85 86 87 88 89 90 91 92 93
            train_config(dict, optional): The train config in the compression process, the key can 
                reference `<https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L103>`_ . 
                Only one strategy(quant_post with hyperparameter optimization) can set train_config 
                to None. Default: None. 
            strategy_config(dict, list(dict), optional): The strategy config. You can set single config to get multi-strategy config, such as
                1. set ``Quantization`` and ``Distillation`` to get quant_aware and distillation compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                2. set ``Quantization`` and ``HyperParameterOptimization`` to get quant_post and hyperparameter optimization compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The HyperParameterOptimization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L73`_ .
C
ceci3 已提交
94 95
                3. set ``ChannelPrune`` and ``Distillation`` to get channel prune and distillation compress config.
                    The ChannelPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
C
ceci3 已提交
96
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
97 98 99 100 101 102 103
                4. set ``ASPPrune`` and ``Distillation`` to get asp prune and distillation compress config.
                    The ASPPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                5. set ``TransformerPrune`` and ``Distillation`` to get transformer prune and distillation compress config.
                    The TransformerPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                6. set ``UnstructurePrune`` and ``Distillation`` to get unstructureprune and distillation compress config.
C
ceci3 已提交
104 105
                    The UnstructurePrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L91`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
106
                7. set ``Distillation`` to use one teacher modol to distillation student model.
C
ceci3 已提交
107
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
108
                8. set ``MultiTeacherDistillation`` to use multi-teacher to distillation student model.
C
ceci3 已提交
109 110 111 112 113
                    The MultiTeacherDistillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L56`_ .

                If set to None, will choose a strategy automatically. Default: None.
            target_speedup(float, optional): target speedup ratio by the way of auto compress. Default: None.
            eval_callback(function, optional): eval function, define by yourself to return the metric of the inference program, can be used to judge the metric of compressed model. The documents of how to write eval function is `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/auto-compression/custom_function.rst`_ . ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
114 115 116
            eval_dataloader(paddle.io.Dataloader, optional):  The Generator or Dataloader provides eval data, and it could
                 return a batch every time. If eval_dataloader is None, will take first 5000 sample from train_dataloader 
                 as eval_dataloader, and the metric of eval_dataloader for reference only. Dafault: None.
C
ceci3 已提交
117 118
            deploy_hardware(str, optional): The hardware you want to deploy. Default: 'gpu'.
        """
G
Guanghua Yu 已提交
119
        self.model_dir = model_dir.rstrip('/')
C
ceci3 已提交
120

C
ceci3 已提交
121 122
        if model_filename == 'None':
            model_filename = None
C
ceci3 已提交
123
        self.model_filename = model_filename
C
ceci3 已提交
124 125
        if params_filename == 'None':
            params_filename = None
C
ceci3 已提交
126
        self.params_filename = params_filename
C
ceci3 已提交
127 128 129 130 131 132

        if params_filename is None and model_filename is not None:
            raise NotImplementedError(
                "NOT SUPPORT parameters saved in separate files. Please convert it to single binary file first."
            )

C
ceci3 已提交
133
        self.final_dir = save_dir
W
whs 已提交
134 135
        if not os.path.exists(self.final_dir):
            os.makedirs(self.final_dir)
W
whs 已提交
136 137 138 139

        # load config
        if isinstance(config, str):
            config = load_config(config)
C
ceci3 已提交
140 141 142
            self.train_config = extract_train_config(config)
        elif isinstance(config, dict):
            if 'TrainConfig' in config:
C
ceci3 已提交
143
                self.train_config = TrainConfig(**config.pop('TrainConfig'))
C
ceci3 已提交
144 145
            else:
                self.train_config = None
C
ceci3 已提交
146 147
        else:
            self.train_config = None
C
ceci3 已提交
148
        self.strategy_config = extract_strategy_config(config)
W
whs 已提交
149 150

        # prepare dataloader
G
Guanghua Yu 已提交
151
        self.feed_vars = get_feed_vars(self.model_dir, model_filename,
W
whs 已提交
152 153 154 155
                                       params_filename)
        self.train_dataloader = wrap_dataloader(train_dataloader,
                                                self.feed_vars)
        self.eval_dataloader = wrap_dataloader(eval_dataloader, self.feed_vars)
C
ceci3 已提交
156 157 158
        if self.eval_dataloader is None:
            self.eval_dataloader = self._get_eval_dataloader(
                self.train_dataloader)
W
whs 已提交
159

C
ceci3 已提交
160 161
        self.target_speedup = target_speedup
        self.eval_function = eval_callback
162
        self.deploy_hardware = deploy_hardware
163

C
ceci3 已提交
164
        paddle.enable_static()
C
ceci3 已提交
165
        self._exe, self._places = self._prepare_envs()
G
Guanghua Yu 已提交
166
        self.model_type = self._get_model_type(self._exe, self.model_dir,
C
ceci3 已提交
167
                                               model_filename, params_filename)
C
ceci3 已提交
168

169
        if self.train_config is not None and self.train_config.use_fleet:
C
ceci3 已提交
170 171
            fleet.init(is_collective=True)

172 173 174 175 176 177 178
        if with_variable_shape(
                self.model_dir,
                model_filename=model_filename,
                params_filename=params_filename) and input_shapes is not None:

            infer_shape_model = self.create_tmp_dir(
                self.final_dir, prefix="infer_shape_model_")
G
Guanghua Yu 已提交
179
            self._infer_shape(self.model_dir, self.model_filename,
180 181 182 183 184
                              self.params_filename, input_shapes,
                              infer_shape_model)
            self.model_dir = infer_shape_model
            self.model_filename = "infered_shape.pdmodel"
            self.params_filename = "infered_shape.pdiparams"
W
whs 已提交
185

C
ceci3 已提交
186 187
        if self.strategy_config is None:
            strategy_config = prepare_strategy(
C
ceci3 已提交
188 189 190
                self._exe, self._places, self.model_dir, self.model_filename,
                self.params_filename, self.target_speedup, self.deploy_hardware,
                self.model_type)
C
ceci3 已提交
191 192 193 194 195 196 197 198 199 200
            self.strategy_config = strategy_config
        elif isinstance(self.strategy_config, dict):
            self.strategy_config = [self.strategy_config]
        elif isinstance(self.strategy_config, str):
            strategy_config = create_strategy_config(self.strategy_config,
                                                     self.model_type)

        self._strategy, self._config = self._prepare_strategy(
            self.strategy_config)

C
ceci3 已提交
201
        self.train_config = self._get_final_train_config(
202 203
            self.train_config, self._strategy, self.model_type)
        _logger.info(f"Selected strategies: {self._strategy}")
C
ceci3 已提交
204 205 206

    def _get_final_train_config(self, train_config, strategy_config,
                                model_type):
207
        # If train_config is None, set default train_config
C
ceci3 已提交
208 209 210 211 212
        if train_config is None:
            train_config = create_train_config(strategy_config, model_type)

        train_configs = [train_config]
        for idx in range(1, len(self._strategy)):
C
ceci3 已提交
213 214 215
            if 'qat' in self._strategy[idx] or 'ptq' in self._strategy[idx]:
                ### If compress strategy more than one, the TrainConfig in the yaml only used in prune.
                ### The TrainConfig for quantization is extrapolate from above.
C
ceci3 已提交
216 217
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                ### the epoch, train_iter, learning rate of quant is 10% of the prune compress
C
ceci3 已提交
218 219 220
                if self.model_type != 'transformer':
                    tmp_train_config['epochs'] = max(
                        int(train_config.epochs * 0.1), 1)
C
ceci3 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
                if train_config.train_iter is not None:
                    tmp_train_config['train_iter'] = int(
                        train_config.train_iter * 0.1)
                if isinstance(train_config.learning_rate, float):
                    tmp_train_config[
                        'learning_rate'] = train_config.learning_rate * 0.1
                else:
                    if 'learning_rate' in train_config.learning_rate:
                        tmp_train_config['learning_rate'][
                            'learning_rate'] = train_config.learning_rate[
                                'learning_rate'] * 0.1
                    else:  ### learning rate decay is PiecewiseDecay
                        tmp_train_config['learning_rate']['values'] = list(
                            map(lambda x: x * 0.1, train_config.learning_rate[
                                'values']))
                train_cfg = TrainConfig(**tmp_train_config)
            else:
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                train_cfg = TrainConfig(**tmp_train_config)

            train_configs.append(train_cfg)
        return train_configs
243

244 245 246 247 248 249 250
    def _infer_shape(self, model_dir, model_filename, params_filename,
                     input_shapes, save_path):
        assert type(input_shapes) in [
            dict, list, tuple
        ], f'Type of input_shapes should be in [dict, tuple or list] but got {type(input_shapes)}.'
        paddle.enable_static()
        exe = paddle.static.Executor(paddle.CPUPlace())
C
ceci3 已提交
251 252 253
        [inference_program, feed_target_names,
         fetch_targets] = (load_inference_model(model_dir, exe, model_filename,
                                                params_filename))
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

        if type(input_shapes) in [list, tuple]:
            assert len(
                feed_target_names
            ) == 1, f"The number of model's inputs should be 1 but got {feed_target_names}."
            input_shapes = {feed_target_names[0]: input_shapes}

        feed_vars = []
        for var_ in inference_program.list_vars():
            if var_.name in feed_target_names:
                feed_vars.append(var_)
                var_.desc.set_shape(input_shapes[var_.name])

        for block in inference_program.blocks:
            for op in block.ops:
                if op.type not in ["feed", "fetch"]:
                    op.desc.infer_shape(block.desc)

        save_path = os.path.join(save_path, "infered_shape")
        os.makedirs(save_path)
        paddle.static.save_inference_model(
            save_path, feed_vars, fetch_targets, exe, program=inference_program)
        _logger.info(f"Saved model infered shape to {save_path}")

    @property
    def deploy_hardware(self):
        return self._deploy_hardware

    @deploy_hardware.setter
    def deploy_hardware(self, value):
284 285 286 287
        supported_hardware = TableLatencyPredictor.hardware_list + [
            'gpu',  # nvidia gpu
            "cpu",  # intel cpu
        ]
288 289 290
        if value is not None:
            # Fail-fast when deploy hardware is set explicitly
            assert (
291 292
                value in supported_hardware
            ), f"Hardware should be in supported list {supported_hardware} but got {value}. Or you can set deploy_hardware None."
293 294
        self._deploy_hardware = value

295 296 297 298 299 300 301 302 303 304 305
    def _get_eval_dataloader(self, train_dataloader):
        def _gen():
            len_loader = len(list(train_dataloader()))
            ### max eval_dataloader is 5000 if use train_dataloader as eval_dataloader
            slice_len = min(5000, len_loader)
            ret = list(itertools.islice(train_dataloader(), slice_len))
            for i in ret:
                yield i

        return _gen

C
ceci3 已提交
306 307
    def _prepare_envs(self):
        devices = paddle.device.get_device().split(':')[0]
C
ceci3 已提交
308
        places = paddle.device._convert_to_place(devices)
W
whs 已提交
309
        _logger.info(f"devices: {devices}")
C
ceci3 已提交
310 311 312
        exe = paddle.static.Executor(places)
        return exe, places

C
ceci3 已提交
313
    def _get_model_type(self, exe, model_dir, model_filename, params_filename):
C
ceci3 已提交
314 315
        [inference_program, _, _]= (load_inference_model( \
            model_dir, \
C
ceci3 已提交
316
            model_filename=model_filename, params_filename=params_filename,
C
ceci3 已提交
317
            executor=exe))
C
ceci3 已提交
318
        _, _, model_type = get_patterns(inference_program)
C
ceci3 已提交
319 320 321 322 323 324 325 326 327 328 329
        if self.model_filename is None:
            new_model_filename = '__new_model__'
        else:
            new_model_filename = 'new_' + self.model_filename
        program_bytes = inference_program._remove_training_info(
            clip_extra=False).desc.serialize_to_string()
        with open(os.path.join(self.model_dir, new_model_filename), "wb") as f:
            f.write(program_bytes)
        shutil.move(
            os.path.join(self.model_dir, new_model_filename),
            os.path.join(self.model_dir, self.model_filename))
W
whs 已提交
330
        _logger.info(f"Detect model type: {model_type}")
C
ceci3 已提交
331 332 333 334 335 336 337 338 339 340 341
        return model_type

    def _prepare_strategy(self, strategy_config):
        if not isinstance(strategy_config, list):
            strategy_config = list(list(strategy_config))

        strategy = []
        config = []
        for strategy_c in strategy_config:
            quant_config = strategy_c.get("Quantization", None)
            hpo_config = strategy_c.get("HyperParameterOptimization", None)
C
ceci3 已提交
342 343 344
            prune_config = strategy_c.get("ChannelPrune", None)
            asp_config = strategy_c.get("ASPPrune", None)
            transformer_prune_config = strategy_c.get("TransformerPrune", None)
C
ceci3 已提交
345 346 347
            unstructure_prune_config = strategy_c.get("UnstructurePrune", None)
            single_teacher_distill_config = strategy_c.get("Distillation", None)
            if single_teacher_distill_config is not None and single_teacher_distill_config.teacher_model_dir is None:
C
ceci3 已提交
348 349 350
                single_teacher_distill_config.teacher_model_dir = self.model_dir
                single_teacher_distill_config.teacher_model_filename = self.model_filename
                single_teacher_distill_config.teacher_params_filename = self.params_filename
C
ceci3 已提交
351 352 353 354 355 356 357 358 359 360

            multi_teacher_distill_config = strategy_c.get(
                "MultiTeacherDistillation", None)

            assert (single_teacher_distill_config is None) or (multi_teacher_distill_config is None), \
                "Distillation and MultiTeacherDistillation cannot be set at the same time."
            self._distill_config = single_teacher_distill_config if \
                   single_teacher_distill_config is not None else \
                   multi_teacher_distill_config

C
ceci3 已提交
361
            only_distillation = True
C
ceci3 已提交
362

C
ceci3 已提交
363 364 365
            ### case1: prune_config & distill config
            if prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
366
                strategy.append('channel_prune_dis')
C
ceci3 已提交
367 368
                config.append(merge_config(prune_config, self._distill_config))

C
ceci3 已提交
369 370 371
            ### case2: asp_config & distill config
            if asp_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
372 373 374
                strategy.append('asp_prune_dis')
                config.append(merge_config(asp_config, self._distill_config))

C
ceci3 已提交
375 376 377
            ### case3: transformer_prune_config & distill config
            if transformer_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
378 379 380 381 382
                strategy.append('transformer_prune_dis')
                config.append(
                    merge_config(transformer_prune_config,
                                 self._distill_config))

C
ceci3 已提交
383 384 385
            ### case4: unstructure_config & distill config
            if unstructure_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
386 387 388 389 390
                strategy.append('unstructure_prune_dis')
                config.append(
                    merge_config(unstructure_prune_config,
                                 self._distill_config))

C
ceci3 已提交
391 392 393 394 395 396 397 398 399 400 401 402
            ### case5: quant_config & hpo_config ==> PTQ & HPO
            if quant_config is not None and hpo_config is not None:
                only_distillation = False
                strategy.append('ptq_hpo')
                config.append(merge_config(quant_config, hpo_config))

            ### case6: quant_config & distill config ==> QAT & Distill
            if quant_config is not None and self._distill_config is not None:
                only_distillation = False
                strategy.append('qat_dis')
                config.append(merge_config(quant_config, self._distill_config))

C
ceci3 已提交
403
            ### case7: distill_config
C
ceci3 已提交
404
            if only_distillation == True and self._distill_config is not None:
C
ceci3 已提交
405 406 407 408 409 410
                if single_teacher_distill_config is not None:
                    strategy.append('single_teacher_dis')
                    config.append(single_teacher_distill_config)
                else:
                    strategy.append('multi_teacher_dis')
                    config.append(multi_teacher_distill_config)
C
ceci3 已提交
411

C
ceci3 已提交
412 413 414 415 416 417 418 419 420 421 422 423
        ### NOTE: keep quantation in the last step
        idx = -1
        if 'qat_dis' in strategy and strategy.index('qat_dis') != (
                len(strategy) - 1):
            idx = strategy.index('qat_dis')
        elif 'ptq_hpo' in strategy and strategy.index('ptq_hpo') != (
                len(strategy) - 1):
            idx = strategy.index('ptq_hpo')

        if idx != -1:
            strategy = strategy[:idx] + strategy[idx + 1:] + [strategy[idx]]
            config = config[:idx] + config[idx + 1:] + [config[idx]]
C
ceci3 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

        return strategy, config

    def _prepare_fleet_strategy(train_config):
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()

        strategy = fleet.DistributedStrategy()
        strategy.build_strategy = build_strategy
        if train_config.recompute_config is not None:
            strategy.recompute = True
            strategy.recompute_configs = { ** train_config.recompute_config}
        if train_config.sharding_config is not None:
            strategy.sharding = True
            strategy.sharding_configs = { ** train_config.sharding_config}
        if train_config.amp_config is not None:
            strategy.amp = True
            strategy.amp_configs = { ** train_config.amp_config}
442 443
        if train_config.asp_config is not None:
            strategy.asp = True
C
ceci3 已提交
444 445
        return strategy

C
ceci3 已提交
446
    def _prepare_program(self, program, feed_target_names, fetch_targets,
C
ceci3 已提交
447 448
                         patterns, default_distill_node_pair, strategy, config,
                         train_config):
C
ceci3 已提交
449 450 451 452 453
        train_program = recover_inference_program(program)
        startup_program = paddle.static.Program()
        train_program_info = ProgramInfo(startup_program, train_program,
                                         feed_target_names, fetch_targets)

C
ceci3 已提交
454
        config_dict = config.__dict__
455 456 457
        if "prune_strategy" in config_dict and config_dict[
                "prune_strategy"] == "gmp" and config_dict[
                    'gmp_config'] is None:
Z
zhouzj 已提交
458 459 460
            _logger.info(
                "Calculating the iterations per epoch……(It will take some time)")
            # NOTE:XXX: This way of calculating the iters needs to be improved.
C
ceci3 已提交
461
            if train_config.epochs:
G
Guanghua Yu 已提交
462
                iters_per_epoch = len(list(self.train_dataloader()))
C
ceci3 已提交
463 464 465
                total_iters = train_config.epochs * iters_per_epoch
            elif train_config.train_iter:
                total_iters = train_config.train_iter
G
Guanghua Yu 已提交
466 467 468
            else:
                raise RuntimeError(
                    'train_config must has `epochs` or `train_iter` field.')
Z
zhouzj 已提交
469 470
            config_dict['gmp_config'] = {
                'stable_iterations': 0,
C
ceci3 已提交
471 472
                'pruning_iterations': max(0.45 * total_iters, 30),
                'tunning_iterations': max(0.45 * total_iters, 30),
Z
zhouzj 已提交
473
                'resume_iteration': -1,
C
ceci3 已提交
474
                'pruning_steps': 100 if (0.45 * total_iters) > 1000 else 1,
Z
zhouzj 已提交
475 476
                'initial_ratio': 0.15,
            }
C
ceci3 已提交
477 478
        ### add prune program
        self._pruner = None
C
ceci3 已提交
479
        if 'prune' in strategy:
C
ceci3 已提交
480 481
            self._pruner, train_program_info = build_prune_program(
                self._exe, self._places, config_dict, train_program_info,
C
ceci3 已提交
482
                strategy, patterns, self.eval_dataloader)
C
ceci3 已提交
483

C
ceci3 已提交
484 485
        if train_config.use_fleet:
            dist_strategy = _prepare_fleet_strategy(train_config)
C
ceci3 已提交
486 487 488 489
        else:
            dist_strategy = None

        ### add distill program
C
ceci3 已提交
490
        if 'dis' in strategy:
C
ceci3 已提交
491 492 493 494
            train_program_info, test_program_info = build_distill_program(
                self._exe,
                self._places,
                config_dict,
C
ceci3 已提交
495
                train_config.__dict__,
C
ceci3 已提交
496 497
                train_program_info,
                pruner=self._pruner,
C
ceci3 已提交
498 499
                dist_strategy=dist_strategy,
                default_distill_node_pair=default_distill_node_pair)
C
ceci3 已提交
500 501 502

        self._quant_config = None
        ### add quant_aware program, quant always is last step
C
ceci3 已提交
503
        if 'qat' in strategy:
C
ceci3 已提交
504 505 506
            train_program_info, test_program_info, self._quant_config = build_quant_program(
                self._exe, self._places, config_dict, train_program_info,
                test_program_info)
C
ceci3 已提交
507
        if train_config.sparse_model:
Z
zhouzj 已提交
508
            from ..prune.unstructured_pruner import UnstructuredPruner
Z
zhouzj 已提交
509
            # NOTE: The initialization parameter of this pruner doesn't work, it is only used to call the 'set_static_masks' function
Z
zhouzj 已提交
510 511 512 513 514 515
            self._pruner = UnstructuredPruner(
                train_program_info.program,
                mode='ratio',
                ratio=0.75,
                prune_params_type='conv1x1_only',
                place=self._places)
Z
zhouzj 已提交
516
            self._pruner.set_static_masks()  # Fixed model sparsity
C
ceci3 已提交
517 518 519

        self._exe.run(train_program_info.startup_program)

C
ceci3 已提交
520 521 522 523
        if (not train_config.use_fleet) and train_config.amp_config is not None:
            if hasattr(
                    train_config.amp_config,
                    'use_pure_fp16') and train_config.amp_config.use_pure_fp16:
C
ceci3 已提交
524 525 526
                train_program_info.optimizer.amp_init(
                    self._places, scope=paddle.static.global_scope())

C
ceci3 已提交
527
        if 'asp' in strategy:
C
ceci3 已提交
528 529 530
            ### prune weight in scope
            self._pruner.prune_model(train_program_info.program)

C
ceci3 已提交
531
        if not train_config.use_fleet:
C
ceci3 已提交
532
            train_program_info = self._compiled_program(train_program_info,
C
ceci3 已提交
533
                                                        strategy)
C
ceci3 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
            test_program_info = self._compiled_program(test_program_info,
                                                       self._strategy)
        return train_program_info, test_program_info

    def _compiled_program(self, program_info, strategy):
        compiled_prog = paddle.static.CompiledProgram(program_info.program)
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()
        if 'qat' in strategy:
            build_strategy.memory_optimize = False
            build_strategy.enable_inplace = False
            build_strategy.fuse_all_reduce_ops = False
            build_strategy.sync_batch_norm = False

        compiled_prog = compiled_prog.with_data_parallel(
            loss_name=program_info.fetch_targets[0].name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)
        program_info.program = compiled_prog
        return program_info

555
    def create_tmp_dir(self, base_dir, prefix="tmp"):
W
whs 已提交
556
        # create a new temp directory in final dir
557
        s_datetime = strftime("%Y_%m_%d_%H_%M_%S", gmtime())
558 559 560 561 562
        tmp_base_name = "_".join([prefix, str(os.getpid()), s_datetime])
        tmp_dir = os.path.join(base_dir, tmp_base_name)
        if not os.path.exists(tmp_dir):
            os.makedirs(tmp_dir)
        return tmp_dir
W
whs 已提交
563

564
    def compress(self):
565
        assert len(self._strategy) > 0
566
        self.tmp_dir = self.create_tmp_dir(self.final_dir)
567 568 569 570
        strategy = None
        config = None
        train_config = None
        strategy_idx = None
C
ceci3 已提交
571
        for strategy_idx, (
C
ceci3 已提交
572 573 574 575
                strategy, config, train_config
        ) in enumerate(zip(self._strategy, self._config, self.train_config)):
            self.single_strategy_compress(strategy, config, strategy_idx,
                                          train_config)
C
ceci3 已提交
576 577 578

        if strategy == 'ptq_hpo' and config.max_quant_count == 1 and platform.system(
        ).lower() == 'linux':
C
ceci3 已提交
579
            ptq_loss = post_quant_hpo.g_min_emd_loss
C
ceci3 已提交
580

C
ceci3 已提交
581 582
            final_quant_config = get_final_quant_config(ptq_loss,
                                                        self.model_type)
C
ceci3 已提交
583 584 585 586
            if final_quant_config is not None:
                quant_strategy, quant_config = self._prepare_strategy(
                    final_quant_config)
                self.single_strategy_compress(quant_strategy[0],
C
ceci3 已提交
587 588
                                              quant_config[0], strategy_idx,
                                              train_config)
589
        tmp_model_path = os.path.join(
W
whs 已提交
590
            self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1)))
C
ceci3 已提交
591
        final_model_path = os.path.join(self.final_dir)
C
ceci3 已提交
592
        if paddle.distributed.get_rank() == 0:
W
whs 已提交
593 594 595 596
            for _file in os.listdir(tmp_model_path):
                _file_path = os.path.join(tmp_model_path, _file)
                if os.path.isfile(_file_path):
                    shutil.copy(_file_path, final_model_path)
W
whs 已提交
597
            shutil.rmtree(self.tmp_dir)
C
ceci3 已提交
598
            _logger.info(
G
Guanghua Yu 已提交
599
                "==> The ACT compression has been completed and the final model is saved in `{}`".
C
ceci3 已提交
600
                format(final_model_path))
C
ceci3 已提交
601

C
ceci3 已提交
602 603
    def single_strategy_compress(self, strategy, config, strategy_idx,
                                 train_config):
604 605 606 607 608 609 610
        # start compress, including train/eval model
        # TODO: add the emd loss of evaluation model.
        if strategy == 'quant_post':
            quant_post(
                self._exe,
                model_dir=self.model_dir,
                quantize_model_path=os.path.join(
W
whs 已提交
611
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
                data_loader=self.train_dataloader,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
                batch_size=1,
                batch_nums=config.batch_num,
                algo=config.ptq_algo,
                round_type='round',
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
                quantizable_op_type=config.quantize_op_types,
                is_full_quantize=config.is_full_quantize,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                activation_quantize_type='range_abs_max',
                weight_quantize_type=config.weight_quantize_type,
                onnx_format=False)

        elif strategy == 'ptq_hpo':
632 633 634 635
            if platform.system().lower() != 'linux':
                raise NotImplementedError(
                    "post-quant-hpo is not support in system other than linux")

C
ceci3 已提交
636
            post_quant_hpo.quant_post_hpo(
C
ceci3 已提交
637 638 639
                self._exe,
                self._places,
                model_dir=self.model_dir,
C
ceci3 已提交
640
                quantize_model_path=os.path.join(
W
whs 已提交
641
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
C
ceci3 已提交
642 643 644 645 646 647 648
                train_dataloader=self.train_dataloader,
                eval_dataloader=self.eval_dataloader,
                eval_function=self.eval_function,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
C
ceci3 已提交
649 650 651 652 653 654 655 656
                quantizable_op_type=config.quantize_op_types,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                weight_quantize_type=config.weight_quantize_type,
                is_full_quantize=config.is_full_quantize,
                algo=config.ptq_algo,
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
C
ceci3 已提交
657
                batch_size=[1],
C
ceci3 已提交
658 659
                batch_num=config.batch_num,
                runcount_limit=config.max_quant_count)
C
ceci3 已提交
660 661

        else:
C
ceci3 已提交
662 663 664 665 666 667
            assert 'dis' in strategy, "Only support optimizer compressed model by distillation loss."

            if strategy_idx == 0:
                model_dir = self.model_dir
            else:
                model_dir = os.path.join(
W
whs 已提交
668
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx)))
C
ceci3 已提交
669

C
ceci3 已提交
670 671
            [inference_program, feed_target_names, fetch_targets]= load_inference_model( \
                model_dir, \
C
ceci3 已提交
672 673 674 675
                model_filename=self.model_filename, params_filename=self.params_filename,
                executor=self._exe)

            ### used to check whether the dataloader is right
C
ceci3 已提交
676
            self.metric_before_compressed = None
C
ceci3 已提交
677
            if self.eval_function is not None and train_config.origin_metric is not None:
C
ceci3 已提交
678
                _logger.info("start to test metric before compress")
C
ceci3 已提交
679 680 681 682
                metric = self.eval_function(self._exe, inference_program,
                                            feed_target_names, fetch_targets)
                _logger.info("metric of compressed model is: {}".format(metric))
                buf = 0.05
C
ceci3 已提交
683 684
                if metric < (float(train_config.origin_metric) - buf) or \
                        metric > (float(train_config.origin_metric) + buf):
C
ceci3 已提交
685 686 687 688
                    raise RuntimeError("target metric of pretrained model is {}, \
                          but now is {}, Please check the format of evaluation dataset \
                          or check the origin_metric in train_config"
                                                                     .format(\
C
ceci3 已提交
689
                          train_config.origin_metric, metric))
C
ceci3 已提交
690 691 692 693
                self.metric_before_compressed = metric

            patterns, default_distill_node_pair, _ = get_patterns(
                inference_program)
C
ceci3 已提交
694 695

            train_program_info, test_program_info = self._prepare_program(
C
ceci3 已提交
696
                inference_program, feed_target_names, fetch_targets, patterns,
C
ceci3 已提交
697
                default_distill_node_pair, strategy, config, train_config)
Z
zhouzj 已提交
698 699 700
            if 'unstructure' in self._strategy:
                test_program_info.program._program = remove_unused_var_nodes(
                    test_program_info.program._program)
C
ceci3 已提交
701 702
            test_program_info = self._start_train(
                train_program_info, test_program_info, strategy, train_config)
C
ceci3 已提交
703
            self._save_model(test_program_info, strategy, strategy_idx)
C
ceci3 已提交
704

C
ceci3 已提交
705 706
    def _start_train(self, train_program_info, test_program_info, strategy,
                     train_config):
C
ceci3 已提交
707
        best_metric = -1.0
C
ceci3 已提交
708
        total_epochs = train_config.epochs if train_config.epochs else 100
G
Guanghua Yu 已提交
709
        total_train_iter = 0
G
Guanghua Yu 已提交
710
        for epoch_id in range(total_epochs):
C
ceci3 已提交
711 712 713 714
            for batch_id, data in enumerate(self.train_dataloader()):
                np_probs_float, = self._exe.run(train_program_info.program, \
                    feed=data, \
                    fetch_list=train_program_info.fetch_targets)
715 716
                if not isinstance(train_program_info.learning_rate, float):
                    train_program_info.learning_rate.step()
C
ceci3 已提交
717
                if 'unstructure' in strategy:
C
ceci3 已提交
718 719
                    self._pruner.step()

C
ceci3 已提交
720
                if train_config.logging_iter is None:
C
ceci3 已提交
721 722
                    logging_iter = 10
                else:
C
ceci3 已提交
723
                    logging_iter = train_config.logging_iter
C
ceci3 已提交
724
                if batch_id % int(logging_iter) == 0:
G
Guanghua Yu 已提交
725 726 727 728 729
                    _logger.info(
                        "Total iter: {}, epoch: {}, batch: {}, loss: {}".format(
                            total_train_iter, epoch_id, batch_id,
                            np_probs_float))
                total_train_iter += 1
C
ceci3 已提交
730 731
                if total_train_iter % int(
                        train_config.eval_iter) == 0 and total_train_iter != 0:
C
ceci3 已提交
732 733 734
                    if self.eval_function is not None:

                        # GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation. 
C
ceci3 已提交
735
                        if 'unstructure' in strategy:
C
ceci3 已提交
736 737 738 739 740 741 742 743 744 745
                            self._pruner.update_params()

                        metric = self.eval_function(
                            self._exe, test_program_info.program,
                            test_program_info.feed_target_names,
                            test_program_info.fetch_targets)

                        if metric > best_metric:
                            paddle.static.save(
                                program=test_program_info.program._program,
W
whs 已提交
746
                                model_path=os.path.join(self.tmp_dir,
C
ceci3 已提交
747
                                                        'best_model'))
C
ceci3 已提交
748
                            best_metric = metric
749 750 751
                            _logger.info(
                                "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
                                format(epoch_id, metric, best_metric))
C
ceci3 已提交
752 753 754 755 756
                            if self.metric_before_compressed is not None and float(
                                    abs(best_metric -
                                        self.metric_before_compressed)
                            ) / self.metric_before_compressed <= 0.005:
                                break
757 758 759 760
                        else:
                            _logger.info(
                                "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
                                format(epoch_id, metric, best_metric))
C
ceci3 已提交
761 762
                        if train_config.target_metric is not None:
                            if metric > float(train_config.target_metric):
C
ceci3 已提交
763
                                break
C
ceci3 已提交
764 765

                    else:
766 767 768
                        _logger.warning(
                            "Not set eval function, so unable to test accuracy performance."
                        )
C
ceci3 已提交
769
                if train_config.train_iter and total_train_iter >= train_config.train_iter:
770
                    epoch_id = total_epochs
G
Guanghua Yu 已提交
771
                    break
C
ceci3 已提交
772

C
ceci3 已提交
773
        if 'unstructure' in self._strategy or train_config.sparse_model:
Z
zhouzj 已提交
774 775
            self._pruner.update_params()

C
ceci3 已提交
776 777
        return test_program_info

C
ceci3 已提交
778
    def _save_model(self, test_program_info, strategy, strategy_idx):
C
ceci3 已提交
779 780 781
        test_program = test_program_info.program._program if isinstance(
            test_program_info.program,
            paddle.static.CompiledProgram) else test_program_info.program
C
ceci3 已提交
782

W
whs 已提交
783
        if os.path.exists(os.path.join(self.tmp_dir, 'best_model.pdparams')):
784
            paddle.static.load(test_program,
W
whs 已提交
785 786 787 788
                               os.path.join(self.tmp_dir, 'best_model'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdmodel'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdopt'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdparams'))
C
ceci3 已提交
789 790

        if 'qat' in strategy:
G
Guanghua Yu 已提交
791
            test_program, int8_program = convert(test_program, self._places, self._quant_config, \
C
ceci3 已提交
792 793 794
                                          scope=paddle.static.global_scope(), \
                                          save_int8=True)

W
whs 已提交
795
        model_dir = os.path.join(self.tmp_dir,
C
ceci3 已提交
796 797 798
                                 'strategy_{}'.format(str(strategy_idx + 1)))
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
C
ceci3 已提交
799 800 801 802 803
        feed_vars = [
            test_program.global_block().var(name)
            for name in test_program_info.feed_target_names
        ]

804 805 806 807 808 809 810 811
        model_name = None
        if self.model_filename is None:
            model_name = "model"
        elif self.model_filename.endswith(".pdmodel"):
            model_name = self.model_filename.rsplit(".", 1)[0]
        else:
            model_name = self.model_filename

C
ceci3 已提交
812
        path_prefix = os.path.join(model_dir, model_name)
C
ceci3 已提交
813
        paddle.static.save_inference_model(
C
ceci3 已提交
814
            path_prefix=path_prefix,
C
ceci3 已提交
815 816
            feed_vars=feed_vars,
            fetch_vars=test_program_info.fetch_targets,
C
ceci3 已提交
817
            executor=self._exe,
C
ceci3 已提交
818
            program=test_program)