未验证 提交 a929c49a 编写于 作者: G Guanghua Yu 提交者: GitHub

support voc dataset in act (#1185)

* support voc dataset in act

* fix readme
上级 f29efe4b
......@@ -113,24 +113,29 @@ wget https://bj.bcebos.com/v1/paddle-slim-models/detection/ppyoloe_crn_l_300e_co
tar -xf ppyoloe_crn_l_300e_coco.tar
```
#### 3.4. 测试模型精度
**注意**:TinyPose模型暂不支持精度测试。
使用run.py脚本得到模型的mAP:
#### 3.4 自动压缩并产出模型
蒸馏量化自动压缩示例通过run.py脚本启动,会使用接口```paddleslim.auto_compression.AutoCompression```对模型进行自动压缩。配置config文件中模型路径、蒸馏、量化、和训练等部分的参数,配置完成后便可对模型进行量化和蒸馏。具体运行命令为:
```
# 单卡
export CUDA_VISIBLE_DEVICES=0
python run.py --config_path=./configs/ppyoloe_l_qat_dis.yaml --eval=True
# 多卡
# export CUDA_VISIBLE_DEVICES=0,1,2,3
python run.py --config_path=./configs/ppyoloe_l_qat_dis.yaml --save_dir='./output/'
```
**注意**:TinyPose模型暂不支持精度测试。
#### 3.5 测试模型精度
#### 3.5 自动压缩并产出模型
蒸馏量化自动压缩示例通过run.py脚本启动,会使用接口```paddleslim.auto_compression.AutoCompression```对模型进行自动压缩。配置config文件中模型路径、蒸馏、量化、和训练等部分的参数,配置完成后便可对模型进行量化和蒸馏。具体运行命令为:
使用run.py脚本得到模型的mAP:
```
export CUDA_VISIBLE_DEVICES=0
python run.py --config_path=./configs/ppyoloe_l_qat_dis.yaml --save_dir='./output/'
python eval.py --config_path=./configs/ppyoloe_l_qat_dis.yaml
```
**注意**:要测试的模型路径可以在配置文件中`model_dir`字段下进行修改。
## 4.预测部署
......
Global:
reader_config: configs/ssd_reader.yml
input_list: ['image', 'scale_factor', 'im_shape']
Evaluation: True
model_dir: ./ssd_mobilenet_v1_300_120e_voc/
model_filename: model.pdmodel
params_filename: model.pdiparams
Distillation:
alpha: 1.0
loss: l2
node:
- concat_0.tmp_0
- concat_2.tmp_0
Quantization:
activation_quantize_type: 'range_abs_max'
quantize_op_types:
- conv2d
- depthwise_conv2d
TrainConfig:
train_iter: 80000
eval_iter: 1000
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.00001
T_max: 120000
optimizer_builder:
optimizer:
type: SGD
weight_decay: 4.0e-05
metric: VOC
map_type: 11point
num_classes: 20
# Datset configuration
TrainDataset:
!VOCDataSet
dataset_dir: dataset/voc
anno_path: trainval.txt
label_list: label_list.txt
data_fields: ['image', 'gt_bbox', 'gt_class', 'difficult']
EvalDataset:
!VOCDataSet
dataset_dir: dataset/voc
anno_path: test.txt
label_list: label_list.txt
data_fields: ['image', 'gt_bbox', 'gt_class', 'difficult']
worker_num: 0
# preprocess reader in test
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {target_size: [300, 300], keep_ratio: False, interp: 1}
- NormalizeImage: {mean: [127.5, 127.5, 127.5], std: [127.502231, 127.502231, 127.502231], is_scale: false}
- Permute: {}
batch_size: 16
collate_batch: false
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import numpy as np
import argparse
import paddle
from ppdet.core.workspace import load_config, merge_config
from ppdet.core.workspace import create
from ppdet.metrics import COCOMetric, VOCMetric
from paddleslim.auto_compression.config_helpers import load_config as load_slim_config
from post_process import YOLOv5PostProcess
def argsparser():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--config_path',
type=str,
default=None,
help="path of compression strategy config.",
required=True)
parser.add_argument(
'--devices',
type=str,
default='gpu',
help="which device used to compress.")
return parser
def print_arguments(args):
print('----------- Running Arguments -----------')
for arg, value in sorted(vars(args).items()):
print('%s: %s' % (arg, value))
print('------------------------------------------')
def reader_wrapper(reader, input_list):
def gen():
for data in reader:
in_dict = {}
if isinstance(input_list, list):
for input_name in input_list:
in_dict[input_name] = data[input_name]
elif isinstance(input_list, dict):
for input_name in input_list.keys():
in_dict[input_list[input_name]] = data[input_name]
yield in_dict
return gen
def convert_numpy_data(data, metric):
data_all = {}
data_all = {k: np.array(v) for k, v in data.items()}
if isinstance(metric, VOCMetric):
for k, v in data_all.items():
if not isinstance(v[0], np.ndarray):
tmp_list = []
for t in v:
tmp_list.append(np.array(t))
data_all[k] = np.array(tmp_list)
else:
data_all = {k: np.array(v) for k, v in data.items()}
return data_all
def eval():
place = paddle.CUDAPlace(0) if FLAGS.devices == 'gpu' else paddle.CPUPlace()
exe = paddle.static.Executor(place)
val_program, feed_target_names, fetch_targets = paddle.fluid.io.load_inference_model(
global_config["model_dir"],
exe,
model_filename=global_config["model_filename"],
params_filename=global_config["params_filename"])
print('Loaded model from: {}'.format(global_config["model_dir"]))
metric = global_config['metric']
for batch_id, data in enumerate(val_loader):
data_all = convert_numpy_data(data, metric)
data_input = {}
for k, v in data.items():
if isinstance(global_config['input_list'], list):
if k in global_config['input_list']:
data_input[k] = np.array(v)
elif isinstance(global_config['input_list'], dict):
if k in global_config['input_list'].keys():
data_input[global_config['input_list'][k]] = np.array(v)
outs = exe.run(val_program,
feed=data_input,
fetch_list=fetch_targets,
return_numpy=False)
res = {}
if 'arch' in global_config and global_config['arch'] == 'YOLOv5':
postprocess = YOLOv5PostProcess(
score_threshold=0.001, nms_threshold=0.6, multi_label=True)
res = postprocess(np.array(outs[0]), data_all['scale_factor'])
else:
for out in outs:
v = np.array(out)
if len(v.shape) > 1:
res['bbox'] = v
else:
res['bbox_num'] = v
metric.update(data_all, res)
if batch_id % 100 == 0:
print('Eval iter:', batch_id)
metric.accumulate()
metric.log()
metric.reset()
def main():
global global_config
_, _, global_config = load_slim_config(FLAGS.config_path)
reader_cfg = load_config(global_config['reader_config'])
dataset = reader_cfg['EvalDataset']
global val_loader
val_loader = create('EvalReader')(reader_cfg['EvalDataset'],
reader_cfg['worker_num'],
return_list=True)
metric = None
if reader_cfg['metric'] == 'COCO':
clsid2catid = {v: k for k, v in dataset.catid2clsid.items()}
anno_file = dataset.get_anno()
metric = COCOMetric(
anno_file=anno_file, clsid2catid=clsid2catid, IouType='bbox')
elif reader_cfg['metric'] == 'VOC':
metric = VOCMetric(
label_list=dataset.get_label_list(),
class_num=reader_cfg['num_classes'],
map_type=reader_cfg['map_type'])
else:
raise ValueError("metric currently only supports COCO and VOC.")
global_config['metric'] = metric
eval()
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
print_arguments(FLAGS)
assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu']
paddle.set_device(FLAGS.devices)
main()
......@@ -19,7 +19,7 @@ import argparse
import paddle
from ppdet.core.workspace import load_config, merge_config
from ppdet.core.workspace import create
from ppdet.metrics import COCOMetric
from ppdet.metrics import COCOMetric, VOCMetric
from paddleslim.auto_compression.config_helpers import load_config as load_slim_config
from paddleslim.auto_compression import AutoCompression
......@@ -72,65 +72,25 @@ def reader_wrapper(reader, input_list):
return gen
def eval(config):
place = paddle.CUDAPlace(0) if FLAGS.devices == 'gpu' else paddle.CPUPlace()
exe = paddle.static.Executor(place)
val_program, feed_target_names, fetch_targets = paddle.fluid.io.load_inference_model(
config["model_dir"],
exe,
model_filename=config["model_filename"],
params_filename=config["params_filename"], )
clsid2catid = {v: k for k, v in dataset.catid2clsid.items()}
anno_file = dataset.get_anno()
metric = COCOMetric(
anno_file=anno_file, clsid2catid=clsid2catid, IouType='bbox')
for batch_id, data in enumerate(val_loader):
def convert_numpy_data(data, metric):
data_all = {}
data_all = {k: np.array(v) for k, v in data.items()}
if isinstance(metric, VOCMetric):
for k, v in data_all.items():
if not isinstance(v[0], np.ndarray):
tmp_list = []
for t in v:
tmp_list.append(np.array(t))
data_all[k] = np.array(tmp_list)
else:
data_all = {k: np.array(v) for k, v in data.items()}
data_input = {}
for k, v in data.items():
if isinstance(config['input_list'], list):
if k in config['input_list']:
data_input[k] = np.array(v)
elif isinstance(config['input_list'], dict):
if k in config['input_list'].keys():
data_input[config['input_list'][k]] = np.array(v)
outs = exe.run(val_program,
feed=data_input,
fetch_list=fetch_targets,
return_numpy=False)
res = {}
if 'arch' in config and config['arch'] == 'YOLOv5':
postprocess = YOLOv5PostProcess(
score_threshold=0.001, nms_threshold=0.6, multi_label=True)
res = postprocess(np.array(outs[0]), data_all['scale_factor'])
else:
for out in outs:
v = np.array(out)
if len(v.shape) > 1:
res['bbox'] = v
else:
res['bbox_num'] = v
metric.update(data_all, res)
if batch_id % 100 == 0:
print('Eval iter:', batch_id)
metric.accumulate()
metric.log()
metric.reset()
return data_all
def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list):
clsid2catid = {v: k for k, v in dataset.catid2clsid.items()}
anno_file = dataset.get_anno()
metric = COCOMetric(
anno_file=anno_file, clsid2catid=clsid2catid, IouType='bbox')
metric = global_config['metric']
for batch_id, data in enumerate(val_loader):
data_all = {k: np.array(v) for k, v in data.items()}
data_all = convert_numpy_data(data, metric)
data_input = {}
for k, v in data.items():
if isinstance(global_config['input_list'], list):
......@@ -177,16 +137,25 @@ def main():
return_list=True)
train_loader = reader_wrapper(train_loader, global_config['input_list'])
global dataset
dataset = reader_cfg['EvalDataset']
global val_loader
val_loader = create('EvalReader')(reader_cfg['EvalDataset'],
reader_cfg['worker_num'],
return_list=True)
if FLAGS.eval:
eval(global_config)
sys.exit(0)
metric = None
if reader_cfg['metric'] == 'COCO':
clsid2catid = {v: k for k, v in dataset.catid2clsid.items()}
anno_file = dataset.get_anno()
metric = COCOMetric(
anno_file=anno_file, clsid2catid=clsid2catid, IouType='bbox')
elif reader_cfg['metric'] == 'VOC':
metric = VOCMetric(
label_list=dataset.get_label_list(),
class_num=reader_cfg['num_classes'],
map_type=reader_cfg['map_type'])
else:
raise ValueError("metric currently only supports COCO and VOC.")
global_config['metric'] = metric
if 'Evaluation' in global_config.keys() and global_config['Evaluation']:
eval_func = eval_function
......
......@@ -611,7 +611,8 @@ class AutoCompression:
def _start_train(self, train_program_info, test_program_info, strategy):
best_metric = -1.0
total_epochs = self.train_config.epochs if self.train_config.epochs else 1
total_epochs = self.train_config.epochs if self.train_config.epochs else 100
total_train_iter = 0
for epoch_id in range(total_epochs):
for batch_id, data in enumerate(self.train_dataloader()):
np_probs_float, = self._exe.run(train_program_info.program, \
......@@ -627,11 +628,13 @@ class AutoCompression:
else:
logging_iter = self.train_config.logging_iter
if batch_id % int(logging_iter) == 0:
_logger.info("epoch: {}, batch: {}, loss: {}".format(
epoch_id, batch_id, np_probs_float))
if batch_id % int(
self.train_config.eval_iter) == 0 and batch_id != 0:
_logger.info(
"Total iter: {}, epoch: {}, batch: {}, loss: {}".format(
total_train_iter, epoch_id, batch_id,
np_probs_float))
total_train_iter += 1
if total_train_iter % int(self.train_config.eval_iter
) == 0 and total_train_iter != 0:
if self.eval_function is not None:
# GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation.
......@@ -644,8 +647,9 @@ class AutoCompression:
test_program_info.fetch_targets)
_logger.info(
"epoch: {}, batch: {} metric of compressed model is: {}, best metric of compressed model is {}".
format(epoch_id, batch_id, metric, best_metric))
"epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
format(epoch_id, metric, best_metric))
if metric > best_metric:
paddle.static.save(
program=test_program_info.program._program,
......@@ -665,7 +669,7 @@ class AutoCompression:
_logger.warning(
"Not set eval function, so unable to test accuracy performance."
)
if self.train_config.train_iter and batch_id >= self.train_config.train_iter:
if self.train_config.train_iter and total_train_iter >= self.train_config.train_iter:
break
if 'unstructure' in self._strategy or self.train_config.sparse_model:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册