compressor.py 38.9 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
import numpy as np
C
ceci3 已提交
19
import copy
C
ceci3 已提交
20
import inspect
C
ceci3 已提交
21
import shutil
W
whs 已提交
22
from time import gmtime, strftime
23
import platform
C
ceci3 已提交
24 25
import paddle
import paddle.distributed.fleet as fleet
26
from ..quant.quanter import convert, quant_post
C
ceci3 已提交
27 28
from ..common.recover_program import recover_inference_program
from ..common import get_logger
C
ceci3 已提交
29 30
from ..common.patterns import get_patterns
from ..analysis import TableLatencyPredictor
Z
zhouzj 已提交
31
from .create_compressed_program import build_distill_program, build_quant_program, build_prune_program, remove_unused_var_nodes
C
ceci3 已提交
32
from .strategy_config import TrainConfig, ProgramInfo, merge_config
33
from .auto_strategy import prepare_strategy, get_final_quant_config, create_strategy_config, create_train_config
34
from .utils.predict import with_variable_shape
C
ceci3 已提交
35 36 37

_logger = get_logger(__name__, level=logging.INFO)

C
ceci3 已提交
38 39
try:
    if platform.system().lower() == 'linux':
C
ceci3 已提交
40
        from ..quant import post_quant_hpo
C
ceci3 已提交
41 42 43
except Exception as e:
    _logger.warning(e)

C
ceci3 已提交
44 45 46 47 48 49 50 51

class AutoCompression:
    def __init__(self,
                 model_dir,
                 model_filename,
                 params_filename,
                 save_dir,
                 train_dataloader,
52
                 input_shapes=None,
C
ceci3 已提交
53 54 55
                 train_config=None,
                 strategy_config=None,
                 target_speedup=None,
56
                 eval_callback=None,
C
ceci3 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
                 eval_dataloader=None,
                 deploy_hardware='gpu'):
        """
        Compress inference model automatically.

        Args:
            model_dir(str): The path of inference model that will be compressed, and
                the model and params that saved by ``paddle.static.io.save_inference_model``
                are under the path.
            model_filename(str, optional):  The name of model file. If parameters
                are saved in separate files, set it as 'None'. Default: 'None'.
            params_filename(str, optional): The name of params file.
                When all parameters are saved in a single file, set it
                as filename. If parameters are saved in separate files,
                set it as 'None'. Default : 'None'.
W
whs 已提交
72 73
            save_dir(str): The path to save compressed model. The models in this directory will be overwrited
                after calling 'compress()' function.
C
ceci3 已提交
74 75 76
            train_data_loader(Python Generator, Paddle.io.DataLoader): The
                Generator or Dataloader provides train data, and it could
                return a batch every time.
77 78 79 80 81 82 83
            input_shapes(dict|tuple|list): It is used when the model has implicit dimensions except batch size. 
                If it is a dict, the key is the name of input and the value is the shape. 
                Given the input shape of input "X" is [-1, 3, -1, -1] which means the batch size, hight
                and width is variable. And the input_shapes can be set {"X": [-1, 3, 512, 512]}.
                If it is a list or tuple, the number of model's inputs should be 1. And the shape of input
                will be set input_shapes. None means keeping the original shapes, then
                the compression strategies searching may be skipped. Default: None.
C
ceci3 已提交
84 85 86 87 88 89 90 91 92 93 94
            train_config(dict, optional): The train config in the compression process, the key can 
                reference `<https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L103>`_ . 
                Only one strategy(quant_post with hyperparameter optimization) can set train_config 
                to None. Default: None. 
            strategy_config(dict, list(dict), optional): The strategy config. You can set single config to get multi-strategy config, such as
                1. set ``Quantization`` and ``Distillation`` to get quant_aware and distillation compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                2. set ``Quantization`` and ``HyperParameterOptimization`` to get quant_post and hyperparameter optimization compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The HyperParameterOptimization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L73`_ .
C
ceci3 已提交
95 96
                3. set ``ChannelPrune`` and ``Distillation`` to get channel prune and distillation compress config.
                    The ChannelPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
C
ceci3 已提交
97
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
98 99 100 101 102 103 104
                4. set ``ASPPrune`` and ``Distillation`` to get asp prune and distillation compress config.
                    The ASPPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                5. set ``TransformerPrune`` and ``Distillation`` to get transformer prune and distillation compress config.
                    The TransformerPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                6. set ``UnstructurePrune`` and ``Distillation`` to get unstructureprune and distillation compress config.
C
ceci3 已提交
105 106
                    The UnstructurePrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L91`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
107
                7. set ``Distillation`` to use one teacher modol to distillation student model.
C
ceci3 已提交
108
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
109
                8. set ``MultiTeacherDistillation`` to use multi-teacher to distillation student model.
C
ceci3 已提交
110 111 112 113 114
                    The MultiTeacherDistillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L56`_ .

                If set to None, will choose a strategy automatically. Default: None.
            target_speedup(float, optional): target speedup ratio by the way of auto compress. Default: None.
            eval_callback(function, optional): eval function, define by yourself to return the metric of the inference program, can be used to judge the metric of compressed model. The documents of how to write eval function is `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/auto-compression/custom_function.rst`_ . ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
115 116 117
            eval_dataloader(paddle.io.Dataloader, optional):  The Generator or Dataloader provides eval data, and it could
                 return a batch every time. If eval_dataloader is None, will take first 5000 sample from train_dataloader 
                 as eval_dataloader, and the metric of eval_dataloader for reference only. Dafault: None.
C
ceci3 已提交
118 119
            deploy_hardware(str, optional): The hardware you want to deploy. Default: 'gpu'.
        """
C
ceci3 已提交
120
        self.model_dir = model_dir
C
ceci3 已提交
121 122
        if model_filename == 'None':
            model_filename = None
C
ceci3 已提交
123
        self.model_filename = model_filename
C
ceci3 已提交
124 125
        if params_filename == 'None':
            params_filename = None
C
ceci3 已提交
126
        self.params_filename = params_filename
C
ceci3 已提交
127
        self.final_dir = save_dir
W
whs 已提交
128 129
        if not os.path.exists(self.final_dir):
            os.makedirs(self.final_dir)
C
ceci3 已提交
130 131
        self.strategy_config = strategy_config
        self.train_dataloader = train_dataloader
C
ceci3 已提交
132 133
        self.target_speedup = target_speedup
        self.eval_function = eval_callback
134
        self.deploy_hardware = deploy_hardware
135 136 137 138

        if eval_dataloader is None:
            eval_dataloader = self._get_eval_dataloader(train_dataloader)
        self.eval_dataloader = eval_dataloader
C
ceci3 已提交
139

C
ceci3 已提交
140
        paddle.enable_static()
C
ceci3 已提交
141 142 143
        self._exe, self._places = self._prepare_envs()
        self.model_type = self._get_model_type(self._exe, model_dir,
                                               model_filename, params_filename)
C
ceci3 已提交
144

C
ceci3 已提交
145
        if train_config is not None and train_config.use_fleet:
C
ceci3 已提交
146 147
            fleet.init(is_collective=True)

148 149 150 151 152 153 154 155 156 157 158 159 160
        if with_variable_shape(
                self.model_dir,
                model_filename=model_filename,
                params_filename=params_filename) and input_shapes is not None:

            infer_shape_model = self.create_tmp_dir(
                self.final_dir, prefix="infer_shape_model_")
            self._infer_shape(model_dir, self.model_filename,
                              self.params_filename, input_shapes,
                              infer_shape_model)
            self.model_dir = infer_shape_model
            self.model_filename = "infered_shape.pdmodel"
            self.params_filename = "infered_shape.pdiparams"
C
ceci3 已提交
161 162
        if self.strategy_config is None:
            strategy_config = prepare_strategy(
C
ceci3 已提交
163 164 165
                self._exe, self._places, self.model_dir, self.model_filename,
                self.params_filename, self.target_speedup, self.deploy_hardware,
                self.model_type)
C
ceci3 已提交
166 167 168 169 170 171 172 173 174 175
            self.strategy_config = strategy_config
        elif isinstance(self.strategy_config, dict):
            self.strategy_config = [self.strategy_config]
        elif isinstance(self.strategy_config, str):
            strategy_config = create_strategy_config(self.strategy_config,
                                                     self.model_type)

        self._strategy, self._config = self._prepare_strategy(
            self.strategy_config)

C
ceci3 已提交
176 177 178 179 180
        self.train_config = self._get_final_train_config(
            train_config, self._strategy, self.model_type)

    def _get_final_train_config(self, train_config, strategy_config,
                                model_type):
181
        # If train_config is None, set default train_config
C
ceci3 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
        if train_config is None:
            train_config = create_train_config(strategy_config, model_type)

        train_configs = [train_config]
        for idx in range(1, len(self._strategy)):
            if 'qat' in self._strategy[idx]:
                ### if compress strategy more than one, the train config in the yaml set for prune
                ### the train config for quantization is extrapolate from the yaml
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                ### the epoch, train_iter, learning rate of quant is 10% of the prune compress
                tmp_train_config['epochs'] = max(
                    int(train_config.epochs * 0.1), 1)
                if train_config.train_iter is not None:
                    tmp_train_config['train_iter'] = int(
                        train_config.train_iter * 0.1)
                if isinstance(train_config.learning_rate, float):
                    tmp_train_config[
                        'learning_rate'] = train_config.learning_rate * 0.1
                else:
                    if 'learning_rate' in train_config.learning_rate:
                        tmp_train_config['learning_rate'][
                            'learning_rate'] = train_config.learning_rate[
                                'learning_rate'] * 0.1
                    else:  ### learning rate decay is PiecewiseDecay
                        tmp_train_config['learning_rate']['values'] = list(
                            map(lambda x: x * 0.1, train_config.learning_rate[
                                'values']))
                train_cfg = TrainConfig(**tmp_train_config)
            elif 'ptq' in self._strategy[idx]:
                train_cfg = None
            else:
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                train_cfg = TrainConfig(**tmp_train_config)

            train_configs.append(train_cfg)
        return train_configs
218

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    def _infer_shape(self, model_dir, model_filename, params_filename,
                     input_shapes, save_path):
        assert type(input_shapes) in [
            dict, list, tuple
        ], f'Type of input_shapes should be in [dict, tuple or list] but got {type(input_shapes)}.'
        paddle.enable_static()
        exe = paddle.static.Executor(paddle.CPUPlace())
        [inference_program, feed_target_names, fetch_targets] = (
            paddle.static.load_inference_model(
                model_dir,
                exe,
                model_filename=model_filename,
                params_filename=params_filename))

        if type(input_shapes) in [list, tuple]:
            assert len(
                feed_target_names
            ) == 1, f"The number of model's inputs should be 1 but got {feed_target_names}."
            input_shapes = {feed_target_names[0]: input_shapes}

        feed_vars = []
        for var_ in inference_program.list_vars():
            if var_.name in feed_target_names:
                feed_vars.append(var_)
                var_.desc.set_shape(input_shapes[var_.name])

        for block in inference_program.blocks:
            for op in block.ops:
                if op.type not in ["feed", "fetch"]:
                    op.desc.infer_shape(block.desc)

        save_path = os.path.join(save_path, "infered_shape")
        os.makedirs(save_path)
        paddle.static.save_inference_model(
            save_path, feed_vars, fetch_targets, exe, program=inference_program)
        _logger.info(f"Saved model infered shape to {save_path}")

    @property
    def deploy_hardware(self):
        return self._deploy_hardware

    @deploy_hardware.setter
    def deploy_hardware(self, value):
262 263 264 265
        supported_hardware = TableLatencyPredictor.hardware_list + [
            'gpu',  # nvidia gpu
            "cpu",  # intel cpu
        ]
266 267 268
        if value is not None:
            # Fail-fast when deploy hardware is set explicitly
            assert (
269 270
                value in supported_hardware
            ), f"Hardware should be in supported list {supported_hardware} but got {value}. Or you can set deploy_hardware None."
271 272
        self._deploy_hardware = value

273 274 275 276 277 278 279 280 281 282 283
    def _get_eval_dataloader(self, train_dataloader):
        def _gen():
            len_loader = len(list(train_dataloader()))
            ### max eval_dataloader is 5000 if use train_dataloader as eval_dataloader
            slice_len = min(5000, len_loader)
            ret = list(itertools.islice(train_dataloader(), slice_len))
            for i in ret:
                yield i

        return _gen

C
ceci3 已提交
284 285
    def _prepare_envs(self):
        devices = paddle.device.get_device().split(':')[0]
C
ceci3 已提交
286 287 288 289
        places = paddle.device._convert_to_place(devices)
        exe = paddle.static.Executor(places)
        return exe, places

C
ceci3 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    def _get_model_type(self, exe, model_dir, model_filename, params_filename):
        [inference_program, _, _]= paddle.fluid.io.load_inference_model( \
            dirname=model_dir, \
            model_filename=model_filename, params_filename=params_filename,
            executor=exe)
        _, _, model_type = get_patterns(inference_program)
        return model_type

    def _prepare_strategy(self, strategy_config):
        if not isinstance(strategy_config, list):
            strategy_config = list(list(strategy_config))

        strategy = []
        config = []
        for strategy_c in strategy_config:
            quant_config = strategy_c.get("Quantization", None)
            hpo_config = strategy_c.get("HyperParameterOptimization", None)
C
ceci3 已提交
307 308 309
            prune_config = strategy_c.get("ChannelPrune", None)
            asp_config = strategy_c.get("ASPPrune", None)
            transformer_prune_config = strategy_c.get("TransformerPrune", None)
C
ceci3 已提交
310 311 312
            unstructure_prune_config = strategy_c.get("UnstructurePrune", None)
            single_teacher_distill_config = strategy_c.get("Distillation", None)
            if single_teacher_distill_config is not None and single_teacher_distill_config.teacher_model_dir is None:
C
ceci3 已提交
313 314 315
                single_teacher_distill_config.teacher_model_dir = self.model_dir
                single_teacher_distill_config.teacher_model_filename = self.model_filename
                single_teacher_distill_config.teacher_params_filename = self.params_filename
C
ceci3 已提交
316 317 318 319 320 321 322 323 324 325

            multi_teacher_distill_config = strategy_c.get(
                "MultiTeacherDistillation", None)

            assert (single_teacher_distill_config is None) or (multi_teacher_distill_config is None), \
                "Distillation and MultiTeacherDistillation cannot be set at the same time."
            self._distill_config = single_teacher_distill_config if \
                   single_teacher_distill_config is not None else \
                   multi_teacher_distill_config

C
ceci3 已提交
326
            only_distillation = True
C
ceci3 已提交
327

C
ceci3 已提交
328 329 330
            ### case1: prune_config & distill config
            if prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
331
                strategy.append('channel_prune_dis')
C
ceci3 已提交
332 333
                config.append(merge_config(prune_config, self._distill_config))

C
ceci3 已提交
334 335 336
            ### case2: asp_config & distill config
            if asp_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
337 338 339
                strategy.append('asp_prune_dis')
                config.append(merge_config(asp_config, self._distill_config))

C
ceci3 已提交
340 341 342
            ### case3: transformer_prune_config & distill config
            if transformer_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
343 344 345 346 347
                strategy.append('transformer_prune_dis')
                config.append(
                    merge_config(transformer_prune_config,
                                 self._distill_config))

C
ceci3 已提交
348 349 350
            ### case4: unstructure_config & distill config
            if unstructure_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
351 352 353 354 355
                strategy.append('unstructure_prune_dis')
                config.append(
                    merge_config(unstructure_prune_config,
                                 self._distill_config))

C
ceci3 已提交
356 357 358 359 360 361 362 363 364 365 366 367
            ### case5: quant_config & hpo_config ==> PTQ & HPO
            if quant_config is not None and hpo_config is not None:
                only_distillation = False
                strategy.append('ptq_hpo')
                config.append(merge_config(quant_config, hpo_config))

            ### case6: quant_config & distill config ==> QAT & Distill
            if quant_config is not None and self._distill_config is not None:
                only_distillation = False
                strategy.append('qat_dis')
                config.append(merge_config(quant_config, self._distill_config))

C
ceci3 已提交
368
            ### case7: distill_config
C
ceci3 已提交
369
            if only_distillation == True and self._distill_config is not None:
C
ceci3 已提交
370 371 372 373 374 375
                if single_teacher_distill_config is not None:
                    strategy.append('single_teacher_dis')
                    config.append(single_teacher_distill_config)
                else:
                    strategy.append('multi_teacher_dis')
                    config.append(multi_teacher_distill_config)
C
ceci3 已提交
376

C
ceci3 已提交
377 378 379 380 381 382 383 384 385 386 387 388
        ### NOTE: keep quantation in the last step
        idx = -1
        if 'qat_dis' in strategy and strategy.index('qat_dis') != (
                len(strategy) - 1):
            idx = strategy.index('qat_dis')
        elif 'ptq_hpo' in strategy and strategy.index('ptq_hpo') != (
                len(strategy) - 1):
            idx = strategy.index('ptq_hpo')

        if idx != -1:
            strategy = strategy[:idx] + strategy[idx + 1:] + [strategy[idx]]
            config = config[:idx] + config[idx + 1:] + [config[idx]]
C
ceci3 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

        return strategy, config

    def _prepare_fleet_strategy(train_config):
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()

        strategy = fleet.DistributedStrategy()
        strategy.build_strategy = build_strategy
        if train_config.recompute_config is not None:
            strategy.recompute = True
            strategy.recompute_configs = { ** train_config.recompute_config}
        if train_config.sharding_config is not None:
            strategy.sharding = True
            strategy.sharding_configs = { ** train_config.sharding_config}
        if train_config.amp_config is not None:
            strategy.amp = True
            strategy.amp_configs = { ** train_config.amp_config}
407 408
        if train_config.asp_config is not None:
            strategy.asp = True
C
ceci3 已提交
409 410
        return strategy

C
ceci3 已提交
411
    def _prepare_program(self, program, feed_target_names, fetch_targets,
C
ceci3 已提交
412 413
                         patterns, default_distill_node_pair, strategy, config,
                         train_config):
C
ceci3 已提交
414 415 416 417 418
        train_program = recover_inference_program(program)
        startup_program = paddle.static.Program()
        train_program_info = ProgramInfo(startup_program, train_program,
                                         feed_target_names, fetch_targets)

C
ceci3 已提交
419
        config_dict = config.__dict__
420 421 422
        if "prune_strategy" in config_dict and config_dict[
                "prune_strategy"] == "gmp" and config_dict[
                    'gmp_config'] is None:
Z
zhouzj 已提交
423 424 425
            _logger.info(
                "Calculating the iterations per epoch……(It will take some time)")
            # NOTE:XXX: This way of calculating the iters needs to be improved.
C
ceci3 已提交
426
            if train_config.epochs:
G
Guanghua Yu 已提交
427
                iters_per_epoch = len(list(self.train_dataloader()))
C
ceci3 已提交
428 429 430
                total_iters = train_config.epochs * iters_per_epoch
            elif train_config.train_iter:
                total_iters = train_config.train_iter
G
Guanghua Yu 已提交
431 432 433
            else:
                raise RuntimeError(
                    'train_config must has `epochs` or `train_iter` field.')
Z
zhouzj 已提交
434 435 436 437 438 439 440 441
            config_dict['gmp_config'] = {
                'stable_iterations': 0,
                'pruning_iterations': 0.45 * total_iters,
                'tunning_iterations': 0.45 * total_iters,
                'resume_iteration': -1,
                'pruning_steps': 100,
                'initial_ratio': 0.15,
            }
C
ceci3 已提交
442 443
        ### add prune program
        self._pruner = None
C
ceci3 已提交
444
        if 'prune' in strategy:
C
ceci3 已提交
445 446
            self._pruner, train_program_info = build_prune_program(
                self._exe, self._places, config_dict, train_program_info,
C
ceci3 已提交
447
                strategy, patterns, self.eval_dataloader)
C
ceci3 已提交
448

C
ceci3 已提交
449 450
        if train_config.use_fleet:
            dist_strategy = _prepare_fleet_strategy(train_config)
C
ceci3 已提交
451 452 453 454
        else:
            dist_strategy = None

        ### add distill program
C
ceci3 已提交
455
        if 'dis' in strategy:
C
ceci3 已提交
456 457 458 459
            train_program_info, test_program_info = build_distill_program(
                self._exe,
                self._places,
                config_dict,
C
ceci3 已提交
460
                train_config.__dict__,
C
ceci3 已提交
461 462
                train_program_info,
                pruner=self._pruner,
C
ceci3 已提交
463 464
                dist_strategy=dist_strategy,
                default_distill_node_pair=default_distill_node_pair)
C
ceci3 已提交
465 466 467

        self._quant_config = None
        ### add quant_aware program, quant always is last step
C
ceci3 已提交
468
        if 'qat' in strategy:
C
ceci3 已提交
469 470 471
            train_program_info, test_program_info, self._quant_config = build_quant_program(
                self._exe, self._places, config_dict, train_program_info,
                test_program_info)
C
ceci3 已提交
472
        if train_config.sparse_model:
Z
zhouzj 已提交
473
            from ..prune.unstructured_pruner import UnstructuredPruner
Z
zhouzj 已提交
474
            # NOTE: The initialization parameter of this pruner doesn't work, it is only used to call the 'set_static_masks' function
Z
zhouzj 已提交
475 476 477 478 479 480
            self._pruner = UnstructuredPruner(
                train_program_info.program,
                mode='ratio',
                ratio=0.75,
                prune_params_type='conv1x1_only',
                place=self._places)
Z
zhouzj 已提交
481
            self._pruner.set_static_masks()  # Fixed model sparsity
C
ceci3 已提交
482 483 484

        self._exe.run(train_program_info.startup_program)

C
ceci3 已提交
485 486 487 488
        if (not train_config.use_fleet) and train_config.amp_config is not None:
            if hasattr(
                    train_config.amp_config,
                    'use_pure_fp16') and train_config.amp_config.use_pure_fp16:
C
ceci3 已提交
489 490 491
                train_program_info.optimizer.amp_init(
                    self._places, scope=paddle.static.global_scope())

C
ceci3 已提交
492
        if 'asp' in strategy:
C
ceci3 已提交
493 494 495
            ### prune weight in scope
            self._pruner.prune_model(train_program_info.program)

C
ceci3 已提交
496
        if not train_config.use_fleet:
C
ceci3 已提交
497
            train_program_info = self._compiled_program(train_program_info,
C
ceci3 已提交
498
                                                        strategy)
C
ceci3 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
            test_program_info = self._compiled_program(test_program_info,
                                                       self._strategy)
        return train_program_info, test_program_info

    def _compiled_program(self, program_info, strategy):
        compiled_prog = paddle.static.CompiledProgram(program_info.program)
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()
        if 'qat' in strategy:
            build_strategy.memory_optimize = False
            build_strategy.enable_inplace = False
            build_strategy.fuse_all_reduce_ops = False
            build_strategy.sync_batch_norm = False

        compiled_prog = compiled_prog.with_data_parallel(
            loss_name=program_info.fetch_targets[0].name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)
        program_info.program = compiled_prog
        return program_info

520
    def create_tmp_dir(self, base_dir, prefix="tmp"):
W
whs 已提交
521
        # create a new temp directory in final dir
522 523 524 525 526 527
        s_datetime = strftime("%Y-%m-%d-%H:%M:%S", gmtime())
        tmp_base_name = "_".join([prefix, str(os.getpid()), s_datetime])
        tmp_dir = os.path.join(base_dir, tmp_base_name)
        if not os.path.exists(tmp_dir):
            os.makedirs(tmp_dir)
        return tmp_dir
W
whs 已提交
528

529
    def compress(self):
530
        self.tmp_dir = self.create_tmp_dir(self.final_dir)
C
ceci3 已提交
531
        for strategy_idx, (
C
ceci3 已提交
532 533 534 535
                strategy, config, train_config
        ) in enumerate(zip(self._strategy, self._config, self.train_config)):
            self.single_strategy_compress(strategy, config, strategy_idx,
                                          train_config)
C
ceci3 已提交
536 537 538

        if strategy == 'ptq_hpo' and config.max_quant_count == 1 and platform.system(
        ).lower() == 'linux':
C
ceci3 已提交
539
            ptq_loss = post_quant_hpo.g_min_emd_loss
C
ceci3 已提交
540

C
ceci3 已提交
541 542 543 544 545
            final_quant_config = get_final_quant_config(ptq_loss)
            if final_quant_config is not None:
                quant_strategy, quant_config = self._prepare_strategy(
                    final_quant_config)
                self.single_strategy_compress(quant_strategy[0],
C
ceci3 已提交
546 547
                                              quant_config[0], strategy_idx,
                                              train_config)
548
        tmp_model_path = os.path.join(
W
whs 已提交
549
            self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1)))
C
ceci3 已提交
550
        final_model_path = os.path.join(self.final_dir)
551 552
        if not os.path.exists(final_model_path):
            os.makedirs(final_model_path)
C
ceci3 已提交
553 554 555 556 557 558 559
        tmp_model_file = os.path.join(tmp_model_path, self.model_filename)
        tmp_params_file = os.path.join(tmp_model_path, self.params_filename)
        final_model_file = os.path.join(final_model_path, self.model_filename)
        final_params_file = os.path.join(final_model_path, self.params_filename)
        if paddle.distributed.get_rank() == 0:
            shutil.move(tmp_model_file, final_model_file)
            shutil.move(tmp_params_file, final_params_file)
W
whs 已提交
560
            shutil.rmtree(self.tmp_dir)
C
ceci3 已提交
561
            _logger.info(
G
Guanghua Yu 已提交
562
                "==> The ACT compression has been completed and the final model is saved in `{}`".
C
ceci3 已提交
563
                format(final_model_path))
C
ceci3 已提交
564 565
        os._exit(0)

C
ceci3 已提交
566 567
    def single_strategy_compress(self, strategy, config, strategy_idx,
                                 train_config):
568 569 570 571 572 573 574
        # start compress, including train/eval model
        # TODO: add the emd loss of evaluation model.
        if strategy == 'quant_post':
            quant_post(
                self._exe,
                model_dir=self.model_dir,
                quantize_model_path=os.path.join(
W
whs 已提交
575
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
                data_loader=self.train_dataloader,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
                batch_size=1,
                batch_nums=config.batch_num,
                algo=config.ptq_algo,
                round_type='round',
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
                quantizable_op_type=config.quantize_op_types,
                is_full_quantize=config.is_full_quantize,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                activation_quantize_type='range_abs_max',
                weight_quantize_type=config.weight_quantize_type,
                onnx_format=False)

        elif strategy == 'ptq_hpo':
596 597 598 599
            if platform.system().lower() != 'linux':
                raise NotImplementedError(
                    "post-quant-hpo is not support in system other than linux")

C
ceci3 已提交
600
            post_quant_hpo.quant_post_hpo(
C
ceci3 已提交
601 602 603
                self._exe,
                self._places,
                model_dir=self.model_dir,
C
ceci3 已提交
604
                quantize_model_path=os.path.join(
W
whs 已提交
605
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
C
ceci3 已提交
606 607 608 609 610 611 612
                train_dataloader=self.train_dataloader,
                eval_dataloader=self.eval_dataloader,
                eval_function=self.eval_function,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
C
ceci3 已提交
613 614 615 616 617 618 619 620
                quantizable_op_type=config.quantize_op_types,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                weight_quantize_type=config.weight_quantize_type,
                is_full_quantize=config.is_full_quantize,
                algo=config.ptq_algo,
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
C
ceci3 已提交
621
                batch_size=[1],
C
ceci3 已提交
622 623
                batch_num=config.batch_num,
                runcount_limit=config.max_quant_count)
C
ceci3 已提交
624 625

        else:
C
ceci3 已提交
626 627 628 629 630 631
            assert 'dis' in strategy, "Only support optimizer compressed model by distillation loss."

            if strategy_idx == 0:
                model_dir = self.model_dir
            else:
                model_dir = os.path.join(
W
whs 已提交
632
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx)))
C
ceci3 已提交
633 634

            [inference_program, feed_target_names, fetch_targets]= paddle.fluid.io.load_inference_model( \
C
ceci3 已提交
635
                dirname=model_dir, \
C
ceci3 已提交
636 637 638 639
                model_filename=self.model_filename, params_filename=self.params_filename,
                executor=self._exe)

            ### used to check whether the dataloader is right
C
ceci3 已提交
640
            self.metric_before_compressed = None
C
ceci3 已提交
641
            if self.eval_function is not None and train_config.origin_metric is not None:
C
ceci3 已提交
642
                _logger.info("start to test metric before compress")
C
ceci3 已提交
643 644 645 646
                metric = self.eval_function(self._exe, inference_program,
                                            feed_target_names, fetch_targets)
                _logger.info("metric of compressed model is: {}".format(metric))
                buf = 0.05
C
ceci3 已提交
647 648
                if metric < (float(train_config.origin_metric) - buf) or \
                        metric > (float(train_config.origin_metric) + buf):
C
ceci3 已提交
649 650 651 652
                    raise RuntimeError("target metric of pretrained model is {}, \
                          but now is {}, Please check the format of evaluation dataset \
                          or check the origin_metric in train_config"
                                                                     .format(\
C
ceci3 已提交
653
                          train_config.origin_metric, metric))
C
ceci3 已提交
654 655 656 657
                self.metric_before_compressed = metric

            patterns, default_distill_node_pair, _ = get_patterns(
                inference_program)
C
ceci3 已提交
658 659

            train_program_info, test_program_info = self._prepare_program(
C
ceci3 已提交
660
                inference_program, feed_target_names, fetch_targets, patterns,
C
ceci3 已提交
661
                default_distill_node_pair, strategy, config, train_config)
Z
zhouzj 已提交
662 663 664
            if 'unstructure' in self._strategy:
                test_program_info.program._program = remove_unused_var_nodes(
                    test_program_info.program._program)
C
ceci3 已提交
665 666
            test_program_info = self._start_train(
                train_program_info, test_program_info, strategy, train_config)
C
ceci3 已提交
667
            self._save_model(test_program_info, strategy, strategy_idx)
C
ceci3 已提交
668

C
ceci3 已提交
669 670
    def _start_train(self, train_program_info, test_program_info, strategy,
                     train_config):
C
ceci3 已提交
671
        best_metric = -1.0
G
Guanghua Yu 已提交
672 673
        total_epochs = self.train_config.epochs if self.train_config.epochs else 100
        total_train_iter = 0
G
Guanghua Yu 已提交
674
        for epoch_id in range(total_epochs):
C
ceci3 已提交
675 676 677 678
            for batch_id, data in enumerate(self.train_dataloader()):
                np_probs_float, = self._exe.run(train_program_info.program, \
                    feed=data, \
                    fetch_list=train_program_info.fetch_targets)
679 680
                if not isinstance(train_program_info.learning_rate, float):
                    train_program_info.learning_rate.step()
C
ceci3 已提交
681
                if 'unstructure' in strategy:
C
ceci3 已提交
682 683
                    self._pruner.step()

C
ceci3 已提交
684
                if train_config.logging_iter is None:
C
ceci3 已提交
685 686
                    logging_iter = 10
                else:
C
ceci3 已提交
687
                    logging_iter = train_config.logging_iter
C
ceci3 已提交
688
                if batch_id % int(logging_iter) == 0:
G
Guanghua Yu 已提交
689 690 691 692 693 694 695
                    _logger.info(
                        "Total iter: {}, epoch: {}, batch: {}, loss: {}".format(
                            total_train_iter, epoch_id, batch_id,
                            np_probs_float))
                total_train_iter += 1
                if total_train_iter % int(self.train_config.eval_iter
                                          ) == 0 and total_train_iter != 0:
C
ceci3 已提交
696 697 698
                    if self.eval_function is not None:

                        # GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation. 
C
ceci3 已提交
699
                        if 'unstructure' in strategy:
C
ceci3 已提交
700 701 702 703 704 705 706 707
                            self._pruner.update_params()

                        metric = self.eval_function(
                            self._exe, test_program_info.program,
                            test_program_info.feed_target_names,
                            test_program_info.fetch_targets)

                        _logger.info(
G
Guanghua Yu 已提交
708 709 710
                            "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
                            format(epoch_id, metric, best_metric))

C
ceci3 已提交
711 712 713
                        if metric > best_metric:
                            paddle.static.save(
                                program=test_program_info.program._program,
W
whs 已提交
714
                                model_path=os.path.join(self.tmp_dir,
C
ceci3 已提交
715
                                                        'best_model'))
C
ceci3 已提交
716 717 718 719 720 721
                            best_metric = metric
                            if self.metric_before_compressed is not None and float(
                                    abs(best_metric -
                                        self.metric_before_compressed)
                            ) / self.metric_before_compressed <= 0.005:
                                break
C
ceci3 已提交
722 723
                        if train_config.target_metric is not None:
                            if metric > float(train_config.target_metric):
C
ceci3 已提交
724
                                break
C
ceci3 已提交
725 726

                    else:
727 728 729
                        _logger.warning(
                            "Not set eval function, so unable to test accuracy performance."
                        )
G
Guanghua Yu 已提交
730
                if self.train_config.train_iter and total_train_iter >= self.train_config.train_iter:
G
Guanghua Yu 已提交
731
                    break
C
ceci3 已提交
732

C
ceci3 已提交
733
        if 'unstructure' in self._strategy or train_config.sparse_model:
Z
zhouzj 已提交
734 735
            self._pruner.update_params()

C
ceci3 已提交
736 737
        return test_program_info

C
ceci3 已提交
738
    def _save_model(self, test_program_info, strategy, strategy_idx):
C
ceci3 已提交
739 740 741
        test_program = test_program_info.program._program if isinstance(
            test_program_info.program,
            paddle.static.CompiledProgram) else test_program_info.program
C
ceci3 已提交
742

W
whs 已提交
743
        if os.path.exists(os.path.join(self.tmp_dir, 'best_model.pdparams')):
744
            paddle.static.load(test_program,
W
whs 已提交
745 746 747 748
                               os.path.join(self.tmp_dir, 'best_model'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdmodel'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdopt'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdparams'))
C
ceci3 已提交
749 750

        if 'qat' in strategy:
G
Guanghua Yu 已提交
751
            test_program, int8_program = convert(test_program, self._places, self._quant_config, \
C
ceci3 已提交
752 753 754
                                          scope=paddle.static.global_scope(), \
                                          save_int8=True)

W
whs 已提交
755
        model_dir = os.path.join(self.tmp_dir,
C
ceci3 已提交
756 757 758 759 760 761 762
                                 'strategy_{}'.format(str(strategy_idx + 1)))
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
        paddle.fluid.io.save_inference_model(
            dirname=str(model_dir),
            feeded_var_names=test_program_info.feed_target_names,
            target_vars=test_program_info.fetch_targets,
C
ceci3 已提交
763
            executor=self._exe,
764
            main_program=test_program,
C
ceci3 已提交
765 766
            model_filename=self.model_filename,
            params_filename=self.params_filename)