Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
c95f309f
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
接近 2 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c95f309f
编写于
6月 06, 2022
作者:
C
ceci3
提交者:
GitHub
6月 06, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix latency_table multiprocess (#1151)
上级
d207622b
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
91 addition
and
46 deletion
+91
-46
paddleslim/analysis/_utils.py
paddleslim/analysis/_utils.py
+39
-8
paddleslim/analysis/latency_predictor.py
paddleslim/analysis/latency_predictor.py
+13
-12
paddleslim/auto_compression/auto_strategy.py
paddleslim/auto_compression/auto_strategy.py
+5
-1
paddleslim/auto_compression/compressor.py
paddleslim/auto_compression/compressor.py
+3
-2
paddleslim/auto_compression/utils/predict.py
paddleslim/auto_compression/utils/predict.py
+12
-8
paddleslim/auto_compression/utils/prune_model.py
paddleslim/auto_compression/utils/prune_model.py
+19
-15
未找到文件。
paddleslim/analysis/_utils.py
浏览文件 @
c95f309f
...
...
@@ -19,8 +19,9 @@ import paddle
import
paddleslim
import
subprocess
import
time
import
urllib.request
as
request
import
ssl
import
requests
import
shutil
__all__
=
[
"save_cls_model"
,
"save_det_model"
,
"nearest_interpolate"
,
"opt_model"
,
"load_predictor"
...
...
@@ -29,6 +30,36 @@ __all__ = [
PREDICTOR_URL
=
'https://paddlemodels.bj.bcebos.com/PaddleSlim/analysis/'
def
_get_download
(
url
,
fullname
):
# using requests.get method
fname
=
os
.
path
.
basename
(
fullname
)
try
:
req
=
requests
.
get
(
url
,
stream
=
True
)
except
Exception
as
e
:
# requests.exceptions.ConnectionError
logger
.
info
(
"Downloading {} from {} failed with exception {}"
.
format
(
fname
,
url
,
str
(
e
)))
return
False
if
req
.
status_code
!=
200
:
raise
RuntimeError
(
"Downloading from {} failed with code "
"{}!"
.
format
(
url
,
req
.
status_code
))
# For protecting download interupted, download to
# tmp_fullname firstly, move tmp_fullname to fullname
# after download finished
tmp_fullname
=
fullname
+
"_tmp"
with
open
(
tmp_fullname
,
'wb'
)
as
f
:
for
chunk
in
req
.
iter_content
(
chunk_size
=
1024
):
f
.
write
(
chunk
)
try
:
shutil
.
move
(
tmp_fullname
,
fullname
)
except
:
shutil
.
rmtree
(
tmp_fullname
,
ignore_errors
=
True
)
return
fullname
def
opt_model
(
opt
=
"paddle_lite_opt"
,
model_file
=
''
,
param_file
=
''
,
...
...
@@ -203,12 +234,13 @@ def download_predictor(op_dir, op):
os
.
makedirs
(
op_dir
)
op_path
=
os
.
path
.
join
(
op_dir
,
op
+
'_predictor.pkl'
)
if
not
os
.
path
.
exists
(
op_path
):
# NOTE: To solve the 'SSL: certificate verify failed' error.
ssl
.
_create_default_https_context
=
ssl
.
_create_unverified_context
url
=
PREDICTOR_URL
+
op_path
request
.
urlretrieve
(
url
,
op_path
)
print
(
'Successfully download {}!'
.
format
(
op_path
))
url
=
PREDICTOR_URL
+
op_path
while
not
(
os
.
path
.
exists
(
op_path
)):
if
not
_get_download
(
url
,
op_path
):
time
.
sleep
(
1
)
continue
print
(
'Successfully download {}!'
.
format
(
op_path
))
return
op_path
...
...
@@ -222,5 +254,4 @@ def load_predictor(op_type, op_dir, data_type='fp32'):
op_path
=
download_predictor
(
op_dir
,
op
)
with
open
(
op_path
,
'rb'
)
as
f
:
model
=
pickle
.
load
(
f
)
return
model
paddleslim/analysis/latency_predictor.py
浏览文件 @
c95f309f
...
...
@@ -18,14 +18,14 @@ import os
import
pickle
import
shutil
import
subprocess
from
.parse_ops
import
get_key_from_op
from
.extract_features
import
get_data_from_tables
,
get_features_from_paramkey
from
._utils
import
opt_model
,
load_predictor
,
nearest_interpolate
import
paddle
import
paddleslim
import
warnings
import
urllib.request
as
request
import
ssl
import
paddle
from
.parse_ops
import
get_key_from_op
from
.extract_features
import
get_data_from_tables
,
get_features_from_paramkey
from
._utils
import
opt_model
,
load_predictor
,
nearest_interpolate
,
_get_download
from
..core
import
GraphWrapper
__all__
=
[
"LatencyPredictor"
,
"TableLatencyPredictor"
]
TABLE_URL
=
'https://paddlemodels.bj.bcebos.com/PaddleSlim/analysis/'
...
...
@@ -89,12 +89,13 @@ class TableLatencyPredictor(LatencyPredictor):
self
.
threads
=
4
self
.
table_file
=
f
'
{
self
.
hardware
}
_threads_4_power_mode_0.pkl'
self
.
predictor_state
=
True
if
not
os
.
path
.
exists
(
self
.
table_file
):
# NOTE: To solve the 'SSL: certificate verify failed' error.
ssl
.
_create_default_https_context
=
ssl
.
_create_unverified_context
url
=
TABLE_URL
+
self
.
table_file
request
.
urlretrieve
(
url
,
self
.
table_file
)
print
(
'Successfully download {}!'
.
format
(
self
.
table_file
))
url
=
TABLE_URL
+
self
.
table_file
while
not
(
os
.
path
.
exists
(
self
.
table_file
)):
if
not
_get_download
(
url
,
self
.
table_file
):
time
.
sleep
(
1
)
continue
print
(
'Successfully download {}!'
.
format
(
self
.
table_file
))
assert
os
.
path
.
exists
(
self
.
table_file
),
f
'
{
self
.
table_file
}
does not exist. If you want to use our table files, please set
\'
table_file
\'
in
{
TableLatencyPredictor
.
hardware_list
}
'
...
...
@@ -177,7 +178,7 @@ class TableLatencyPredictor(LatencyPredictor):
fluid_program
=
paddle
.
fluid
.
framework
.
Program
.
parse_from_string
(
f
.
read
())
graph
=
paddleslim
.
core
.
GraphWrapper
(
fluid_program
)
graph
=
GraphWrapper
(
fluid_program
)
if
input_shape
!=
None
:
ori_shape
=
self
.
_get_input_shape
(
graph
)
...
...
paddleslim/auto_compression/auto_strategy.py
浏览文件 @
c95f309f
...
...
@@ -140,7 +140,9 @@ def create_train_config(strategy_str, model_type):
return
train_config
def
prepare_strategy
(
model_dir
,
def
prepare_strategy
(
executor
,
places
,
model_dir
,
model_filename
,
params_filename
,
target_speedup
=
None
,
...
...
@@ -152,6 +154,8 @@ def prepare_strategy(model_dir,
### use hardware latency tabel if support
if
deploy_hardware
is
not
None
:
compressed_time_dict
=
predict_compressed_model
(
executor
,
places
,
model_dir
,
model_filename
,
params_filename
,
...
...
paddleslim/auto_compression/compressor.py
浏览文件 @
c95f309f
...
...
@@ -136,8 +136,9 @@ class AutoCompression:
if
self
.
strategy_config
is
None
:
strategy_config
=
prepare_strategy
(
self
.
model_dir
,
self
.
model_filename
,
self
.
params_filename
,
self
.
target_speedup
,
self
.
deploy_hardware
,
self
.
model_type
)
self
.
_exe
,
self
.
_places
,
self
.
model_dir
,
self
.
model_filename
,
self
.
params_filename
,
self
.
target_speedup
,
self
.
deploy_hardware
,
self
.
model_type
)
self
.
strategy_config
=
strategy_config
elif
isinstance
(
self
.
strategy_config
,
dict
):
self
.
strategy_config
=
[
self
.
strategy_config
]
...
...
paddleslim/auto_compression/utils/predict.py
浏览文件 @
c95f309f
import
os
import
shutil
import
paddle
from
paddleslim
.analysis
import
TableLatencyPredictor
from
..
.analysis
import
TableLatencyPredictor
from
.prune_model
import
get_sparse_model
,
get_prune_model
from
.fake_ptq
import
post_quant_fake
import
shutil
def
predict_compressed_model
(
model_dir
,
def
predict_compressed_model
(
executor
,
places
,
model_dir
,
model_filename
,
params_filename
,
hardware
=
'SD710'
):
...
...
@@ -41,10 +43,8 @@ def predict_compressed_model(model_dir,
model_file
=
model_file
,
param_file
=
param_file
,
data_type
=
'fp32'
)
latency_dict
.
update
({
'origin_fp32'
:
latency
})
paddle
.
enable_static
()
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
post_quant_fake
(
exe
,
exe
cutor
,
model_dir
=
model_dir
,
model_filename
=
model_filename
,
params_filename
=
params_filename
,
...
...
@@ -64,6 +64,8 @@ def predict_compressed_model(model_dir,
for
prune_ratio
in
[
0.3
,
0.4
,
0.5
,
0.6
]:
get_prune_model
(
executor
,
places
,
model_file
=
model_file
,
param_file
=
param_file
,
ratio
=
prune_ratio
,
...
...
@@ -78,7 +80,7 @@ def predict_compressed_model(model_dir,
latency_dict
.
update
({
f
'prune_
{
prune_ratio
}
_fp32'
:
latency
})
post_quant_fake
(
exe
,
exe
cutor
,
model_dir
=
prune_model_path
,
model_filename
=
model_filename
,
params_filename
=
params_filename
,
...
...
@@ -98,6 +100,8 @@ def predict_compressed_model(model_dir,
for
sparse_ratio
in
[
0.70
,
0.75
,
0.80
,
0.85
,
0.90
,
0.95
]:
get_sparse_model
(
executor
,
places
,
model_file
=
model_file
,
param_file
=
param_file
,
ratio
=
sparse_ratio
,
...
...
@@ -112,7 +116,7 @@ def predict_compressed_model(model_dir,
latency_dict
.
update
({
f
'sparse_
{
sparse_ratio
}
_fp32'
:
latency
})
post_quant_fake
(
exe
,
exe
cutor
,
model_dir
=
sparse_model_path
,
model_filename
=
model_filename
,
params_filename
=
params_filename
,
...
...
paddleslim/auto_compression/utils/prune_model.py
浏览文件 @
c95f309f
import
os
import
time
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.static
as
static
from
paddleslim.prune
import
Pruner
from
paddleslim.core
import
GraphWrapper
import
numpy
as
np
from
...prune
import
Pruner
from
...core
import
GraphWrapper
__all__
=
[
"get_sparse_model"
,
"get_prune_model"
]
def
get_sparse_model
(
model_file
,
param_file
,
ratio
,
save_path
):
def
get_sparse_model
(
executor
,
places
,
model_file
,
param_file
,
ratio
,
save_path
):
"""
Using the unstructured sparse algorithm to compress the network.
This interface is only used to evaluate the latency of the compressed network, and does not consider the loss of accuracy.
...
...
@@ -34,12 +35,14 @@ def get_sparse_model(model_file, param_file, ratio, save_path):
main_prog
=
static
.
Program
()
startup_prog
=
static
.
Program
()
exe
=
paddle
.
static
.
Executor
(
paddle
.
CPUPlace
())
exe
.
run
(
startup_prog
)
executor
.
run
(
startup_prog
)
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
(
fluid
.
io
.
load_inference_model
(
folder
,
exe
,
model_filename
=
model_name
,
params_filename
=
param_name
))
folder
,
executor
,
model_filename
=
model_name
,
params_filename
=
param_name
))
thresholds
=
{}
graph
=
GraphWrapper
(
inference_program
)
...
...
@@ -88,14 +91,14 @@ def get_sparse_model(model_file, param_file, ratio, save_path):
save_path
,
feeded_var_names
=
feed_target_names
,
target_vars
=
fetch_targets
,
executor
=
exe
,
executor
=
exe
cutor
,
main_program
=
inference_program
,
model_filename
=
model_name
,
params_filename
=
param_name
)
print
(
"The pruned model is saved in: "
,
save_path
)
def
get_prune_model
(
model_file
,
param_file
,
ratio
,
save_path
):
def
get_prune_model
(
executor
,
places
,
model_file
,
param_file
,
ratio
,
save_path
):
"""
Using the structured pruning algorithm to compress the network.
This interface is only used to evaluate the latency of the compressed network, and does not consider the loss of accuracy.
...
...
@@ -121,14 +124,15 @@ def get_prune_model(model_file, param_file, ratio, save_path):
main_prog
=
static
.
Program
()
startup_prog
=
static
.
Program
()
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
scope
=
static
.
global_scope
()
exe
.
run
(
startup_prog
)
exe
cutor
.
run
(
startup_prog
)
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
(
fluid
.
io
.
load_inference_model
(
folder
,
exe
,
model_filename
=
model_name
,
params_filename
=
param_name
))
folder
,
executor
,
model_filename
=
model_name
,
params_filename
=
param_name
))
prune_params
=
[]
graph
=
GraphWrapper
(
inference_program
)
...
...
@@ -152,7 +156,7 @@ def get_prune_model(model_file, param_file, ratio, save_path):
scope
,
params
=
prune_params
,
ratios
=
ratios
,
place
=
place
,
place
=
place
s
,
lazy
=
False
,
only_graph
=
False
,
param_backup
=
None
,
...
...
@@ -162,7 +166,7 @@ def get_prune_model(model_file, param_file, ratio, save_path):
save_path
,
feeded_var_names
=
feed_target_names
,
target_vars
=
fetch_targets
,
executor
=
exe
,
executor
=
exe
cutor
,
main_program
=
main_program
,
model_filename
=
model_name
,
params_filename
=
param_name
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录