compressor.py 29.9 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
import numpy as np
import inspect
C
ceci3 已提交
20
import shutil
W
whs 已提交
21
from time import gmtime, strftime
22
import platform
C
ceci3 已提交
23 24
import paddle
import paddle.distributed.fleet as fleet
25
from ..quant.quanter import convert, quant_post
C
ceci3 已提交
26 27
from ..common.recover_program import recover_inference_program
from ..common import get_logger
C
ceci3 已提交
28 29
from ..common.patterns import get_patterns
from ..analysis import TableLatencyPredictor
Z
zhouzj 已提交
30
from .create_compressed_program import build_distill_program, build_quant_program, build_prune_program, remove_unused_var_nodes
C
ceci3 已提交
31
from .strategy_config import ProgramInfo, merge_config
32
from .auto_strategy import prepare_strategy, get_final_quant_config, create_strategy_config, create_train_config
C
ceci3 已提交
33 34 35

_logger = get_logger(__name__, level=logging.INFO)

C
ceci3 已提交
36 37
try:
    if platform.system().lower() == 'linux':
C
ceci3 已提交
38
        from ..quant import quant_post_hpo
C
ceci3 已提交
39 40 41
except Exception as e:
    _logger.warning(e)

C
ceci3 已提交
42 43 44 45 46 47 48 49

class AutoCompression:
    def __init__(self,
                 model_dir,
                 model_filename,
                 params_filename,
                 save_dir,
                 train_dataloader,
C
ceci3 已提交
50 51 52
                 train_config=None,
                 strategy_config=None,
                 target_speedup=None,
53
                 eval_callback=None,
C
ceci3 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
                 eval_dataloader=None,
                 deploy_hardware='gpu'):
        """
        Compress inference model automatically.

        Args:
            model_dir(str): The path of inference model that will be compressed, and
                the model and params that saved by ``paddle.static.io.save_inference_model``
                are under the path.
            model_filename(str, optional):  The name of model file. If parameters
                are saved in separate files, set it as 'None'. Default: 'None'.
            params_filename(str, optional): The name of params file.
                When all parameters are saved in a single file, set it
                as filename. If parameters are saved in separate files,
                set it as 'None'. Default : 'None'.
W
whs 已提交
69 70
            save_dir(str): The path to save compressed model. The models in this directory will be overwrited
                after calling 'compress()' function.
C
ceci3 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
            train_data_loader(Python Generator, Paddle.io.DataLoader): The
                Generator or Dataloader provides train data, and it could
                return a batch every time.
            train_config(dict, optional): The train config in the compression process, the key can 
                reference `<https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L103>`_ . 
                Only one strategy(quant_post with hyperparameter optimization) can set train_config 
                to None. Default: None. 
            strategy_config(dict, list(dict), optional): The strategy config. You can set single config to get multi-strategy config, such as
                1. set ``Quantization`` and ``Distillation`` to get quant_aware and distillation compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                2. set ``Quantization`` and ``HyperParameterOptimization`` to get quant_post and hyperparameter optimization compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The HyperParameterOptimization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L73`_ .
                3. set ``Prune`` and ``Distillation`` to get prune and distillation compress config.
                    The Prune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                4. set ``UnstructurePrune`` and ``Distillation`` to get unstructureprune and distillation compress config.
                    The UnstructurePrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L91`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                5. set ``Distillation`` to use one teacher modol to distillation student model.
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                6. set ``MultiTeacherDistillation`` to use multi-teacher to distillation student model.
                    The MultiTeacherDistillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L56`_ .

                If set to None, will choose a strategy automatically. Default: None.
            target_speedup(float, optional): target speedup ratio by the way of auto compress. Default: None.
            eval_callback(function, optional): eval function, define by yourself to return the metric of the inference program, can be used to judge the metric of compressed model. The documents of how to write eval function is `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/auto-compression/custom_function.rst`_ . ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
            eval_dataloader(paddle.io.Dataloader, optional):  The
                 Generator or Dataloader provides eval data, and it could
                 return a batch every time. ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
            deploy_hardware(str, optional): The hardware you want to deploy. Default: 'gpu'.
        """
C
ceci3 已提交
104
        self.model_dir = model_dir
C
ceci3 已提交
105 106
        if model_filename == 'None':
            model_filename = None
C
ceci3 已提交
107
        self.model_filename = model_filename
C
ceci3 已提交
108 109
        if params_filename == 'None':
            params_filename = None
C
ceci3 已提交
110
        self.params_filename = params_filename
C
ceci3 已提交
111
        self.final_dir = save_dir
W
whs 已提交
112 113
        if not os.path.exists(self.final_dir):
            os.makedirs(self.final_dir)
C
ceci3 已提交
114 115 116
        self.strategy_config = strategy_config
        self.train_config = train_config
        self.train_dataloader = train_dataloader
C
ceci3 已提交
117 118
        self.target_speedup = target_speedup
        self.eval_function = eval_callback
C
ceci3 已提交
119
        self.eval_dataloader = eval_dataloader if eval_dataloader is not None else train_dataloader
C
ceci3 已提交
120

C
ceci3 已提交
121
        paddle.enable_static()
C
ceci3 已提交
122 123 124

        if deploy_hardware in TableLatencyPredictor.hardware_list:
            self.deploy_hardware = deploy_hardware
C
ceci3 已提交
125
        else:
C
ceci3 已提交
126
            self.deploy_hardware = None
C
ceci3 已提交
127

C
ceci3 已提交
128 129 130
        self._exe, self._places = self._prepare_envs()
        self.model_type = self._get_model_type(self._exe, model_dir,
                                               model_filename, params_filename)
C
ceci3 已提交
131

C
ceci3 已提交
132 133 134 135 136
        if self.train_config is not None and self.train_config.use_fleet:
            fleet.init(is_collective=True)

        if self.strategy_config is None:
            strategy_config = prepare_strategy(
C
ceci3 已提交
137 138 139
                self._exe, self._places, self.model_dir, self.model_filename,
                self.params_filename, self.target_speedup, self.deploy_hardware,
                self.model_type)
C
ceci3 已提交
140 141 142 143 144 145 146 147 148 149
            self.strategy_config = strategy_config
        elif isinstance(self.strategy_config, dict):
            self.strategy_config = [self.strategy_config]
        elif isinstance(self.strategy_config, str):
            strategy_config = create_strategy_config(self.strategy_config,
                                                     self.model_type)

        self._strategy, self._config = self._prepare_strategy(
            self.strategy_config)

150 151 152 153 154
        # If train_config is None, set default train_config
        if self.train_config is None:
            self.train_config = create_train_config(self.strategy_config,
                                                    self.model_type)

C
ceci3 已提交
155 156
    def _prepare_envs(self):
        devices = paddle.device.get_device().split(':')[0]
C
ceci3 已提交
157 158 159 160
        places = paddle.device._convert_to_place(devices)
        exe = paddle.static.Executor(places)
        return exe, places

C
ceci3 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    def _get_model_type(self, exe, model_dir, model_filename, params_filename):
        [inference_program, _, _]= paddle.fluid.io.load_inference_model( \
            dirname=model_dir, \
            model_filename=model_filename, params_filename=params_filename,
            executor=exe)
        _, _, model_type = get_patterns(inference_program)
        return model_type

    def _prepare_strategy(self, strategy_config):
        if not isinstance(strategy_config, list):
            strategy_config = list(list(strategy_config))

        strategy = []
        config = []
        for strategy_c in strategy_config:
            quant_config = strategy_c.get("Quantization", None)
            hpo_config = strategy_c.get("HyperParameterOptimization", None)
            prune_config = strategy_c.get("Prune", None)
            unstructure_prune_config = strategy_c.get("UnstructurePrune", None)
            single_teacher_distill_config = strategy_c.get("Distillation", None)
            if single_teacher_distill_config is not None and single_teacher_distill_config.teacher_model_dir is None:
                single_teacher_distill_config = single_teacher_distill_config._replace(
                    teacher_model_dir=self.model_dir,
                    teacher_model_filename=self.model_filename,
                    teacher_params_filename=self.params_filename)

            multi_teacher_distill_config = strategy_c.get(
                "MultiTeacherDistillation", None)

            assert (single_teacher_distill_config is None) or (multi_teacher_distill_config is None), \
                "Distillation and MultiTeacherDistillation cannot be set at the same time."
            self._distill_config = single_teacher_distill_config if \
                   single_teacher_distill_config is not None else \
                   multi_teacher_distill_config

            ### case1: quant_config & hpo_config ==> PTQ & HPO
            if quant_config is not None and hpo_config is not None:
                strategy.append('ptq_hpo')
                config.append(merge_config(quant_config, hpo_config))

            ### case2: quant_config & distill config ==> QAT & Distill
            elif quant_config is not None and self._distill_config is not None:
                strategy.append('qat_dis')
                config.append(merge_config(quant_config, self._distill_config))

            ### case3: prune_config & distill config
            elif prune_config is not None and self._distill_config is not None:
                strategy.append('prune_dis')
                config.append(merge_config(prune_config, self._distill_config))

            ### case4: unstructure_config & distill config
            elif unstructure_prune_config is not None and self._distill_config is not None:
                strategy.append('unstructure_prune_dis')
                config.append(
                    merge_config(unstructure_prune_config,
                                 self._distill_config))

            ### case4: distill_config
            elif self._distill_config is not None:
                if single_teacher_distill_config is not None:
                    strategy.append('single_teacher_dis')
                    config.append(single_teacher_distill_config)
                else:
                    strategy.append('multi_teacher_dis')
                    config.append(multi_teacher_distill_config)
C
ceci3 已提交
226

C
ceci3 已提交
227 228 229 230 231
            ### case N: todo
            else:
                raise NotImplementedError(
                    "Not Implemented {} be set at the same time now".format(
                        strategy_c.keys()))
C
ceci3 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

        return strategy, config

    def _prepare_fleet_strategy(train_config):
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()

        strategy = fleet.DistributedStrategy()
        strategy.build_strategy = build_strategy
        if train_config.recompute_config is not None:
            strategy.recompute = True
            strategy.recompute_configs = { ** train_config.recompute_config}
        if train_config.sharding_config is not None:
            strategy.sharding = True
            strategy.sharding_configs = { ** train_config.sharding_config}
        if train_config.amp_config is not None:
            strategy.amp = True
            strategy.amp_configs = { ** train_config.amp_config}
250 251
        if train_config.asp_config is not None:
            strategy.asp = True
C
ceci3 已提交
252 253
        return strategy

C
ceci3 已提交
254 255
    def _prepare_program(self, program, feed_target_names, fetch_targets,
                         patterns, default_distill_node_pair, strategy, config):
C
ceci3 已提交
256 257 258 259 260
        train_program = recover_inference_program(program)
        startup_program = paddle.static.Program()
        train_program_info = ProgramInfo(startup_program, train_program,
                                         feed_target_names, fetch_targets)

C
ceci3 已提交
261
        config_dict = dict(config._asdict())
262 263 264
        if "prune_strategy" in config_dict and config_dict[
                "prune_strategy"] == "gmp" and config_dict[
                    'gmp_config'] is None:
Z
zhouzj 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277
            _logger.info(
                "Calculating the iterations per epoch……(It will take some time)")
            # NOTE:XXX: This way of calculating the iters needs to be improved.
            iters_per_epoch = len(list(self.train_dataloader()))
            total_iters = self.train_config.epochs * iters_per_epoch
            config_dict['gmp_config'] = {
                'stable_iterations': 0,
                'pruning_iterations': 0.45 * total_iters,
                'tunning_iterations': 0.45 * total_iters,
                'resume_iteration': -1,
                'pruning_steps': 100,
                'initial_ratio': 0.15,
            }
C
ceci3 已提交
278 279
        ### add prune program
        self._pruner = None
C
ceci3 已提交
280
        if 'prune' in strategy:
C
ceci3 已提交
281 282
            self._pruner, train_program_info = build_prune_program(
                self._exe, self._places, config_dict, train_program_info,
C
ceci3 已提交
283
                strategy, patterns, self.eval_dataloader)
C
ceci3 已提交
284 285 286 287 288 289 290

        if self.train_config.use_fleet:
            dist_strategy = _prepare_fleet_strategy(self.train_config)
        else:
            dist_strategy = None

        ### add distill program
C
ceci3 已提交
291
        if 'dis' in strategy:
C
ceci3 已提交
292 293 294 295 296 297 298
            train_program_info, test_program_info = build_distill_program(
                self._exe,
                self._places,
                config_dict,
                self.train_config._asdict(),
                train_program_info,
                pruner=self._pruner,
C
ceci3 已提交
299 300
                dist_strategy=dist_strategy,
                default_distill_node_pair=default_distill_node_pair)
C
ceci3 已提交
301 302 303

        self._quant_config = None
        ### add quant_aware program, quant always is last step
C
ceci3 已提交
304
        if 'qat' in strategy:
C
ceci3 已提交
305 306 307
            train_program_info, test_program_info, self._quant_config = build_quant_program(
                self._exe, self._places, config_dict, train_program_info,
                test_program_info)
Z
zhouzj 已提交
308 309
        if self.train_config.sparse_model:
            from ..prune.unstructured_pruner import UnstructuredPruner
Z
zhouzj 已提交
310
            # NOTE: The initialization parameter of this pruner doesn't work, it is only used to call the 'set_static_masks' function
Z
zhouzj 已提交
311 312 313 314 315 316
            self._pruner = UnstructuredPruner(
                train_program_info.program,
                mode='ratio',
                ratio=0.75,
                prune_params_type='conv1x1_only',
                place=self._places)
Z
zhouzj 已提交
317
            self._pruner.set_static_masks()  # Fixed model sparsity
C
ceci3 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

        self._exe.run(train_program_info.startup_program)

        if (not self.train_config.use_fleet
            ) and self.train_config.amp_config is not None:
            if hasattr(self.train_config.amp_config, 'use_pure_fp16'
                       ) and self.train_config.amp_config.use_pure_fp16:
                train_program_info.optimizer.amp_init(
                    self._places, scope=paddle.static.global_scope())

        if 'prune_algo' in config_dict and config_dict['prune_algo'] == 'asp':
            ### prune weight in scope
            self._pruner.prune_model(train_program_info.program)

        if not self.train_config.use_fleet:
            train_program_info = self._compiled_program(train_program_info,
C
ceci3 已提交
334
                                                        strategy)
C
ceci3 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
            test_program_info = self._compiled_program(test_program_info,
                                                       self._strategy)
        return train_program_info, test_program_info

    def _compiled_program(self, program_info, strategy):
        compiled_prog = paddle.static.CompiledProgram(program_info.program)
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()
        if 'qat' in strategy:
            build_strategy.memory_optimize = False
            build_strategy.enable_inplace = False
            build_strategy.fuse_all_reduce_ops = False
            build_strategy.sync_batch_norm = False

        compiled_prog = compiled_prog.with_data_parallel(
            loss_name=program_info.fetch_targets[0].name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)
        program_info.program = compiled_prog
        return program_info

    def compress(self):
W
whs 已提交
357 358 359 360 361 362 363
        # create a new temp directory in final dir
        s_datetime = strftime("%Y-%m-%d-%H:%M:%S", gmtime())
        tmp_base_name = "_".join(["tmp", str(os.getpid()), s_datetime])
        self.tmp_dir = os.path.join(self.final_dir, tmp_base_name)
        if not os.path.exists(self.tmp_dir):
            os.makedirs(self.tmp_dir)

C
ceci3 已提交
364 365 366 367 368 369 370 371 372
        for strategy_idx, (
                strategy,
                config) in enumerate(zip(self._strategy, self._config)):
            self.single_strategy_compress(strategy, config, strategy_idx)

        if strategy == 'ptq_hpo' and config.max_quant_count == 1 and platform.system(
        ).lower() == 'linux':
            ptq_loss = quant_post_hpo.g_min_emd_loss

C
ceci3 已提交
373 374 375 376 377 378
            final_quant_config = get_final_quant_config(ptq_loss)
            if final_quant_config is not None:
                quant_strategy, quant_config = self._prepare_strategy(
                    final_quant_config)
                self.single_strategy_compress(quant_strategy[0],
                                              quant_config[0], strategy_idx)
379
        tmp_model_path = os.path.join(
W
whs 已提交
380
            self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1)))
C
ceci3 已提交
381
        final_model_path = os.path.join(self.final_dir)
382 383
        if not os.path.exists(final_model_path):
            os.makedirs(final_model_path)
C
ceci3 已提交
384 385 386 387 388 389 390
        tmp_model_file = os.path.join(tmp_model_path, self.model_filename)
        tmp_params_file = os.path.join(tmp_model_path, self.params_filename)
        final_model_file = os.path.join(final_model_path, self.model_filename)
        final_params_file = os.path.join(final_model_path, self.params_filename)
        if paddle.distributed.get_rank() == 0:
            shutil.move(tmp_model_file, final_model_file)
            shutil.move(tmp_params_file, final_params_file)
W
whs 已提交
391
            shutil.rmtree(self.tmp_dir)
C
ceci3 已提交
392
            _logger.info(
G
Guanghua Yu 已提交
393
                "==> The ACT compression has been completed and the final model is saved in `{}`".
C
ceci3 已提交
394
                format(final_model_path))
C
ceci3 已提交
395 396 397
        os._exit(0)

    def single_strategy_compress(self, strategy, config, strategy_idx):
398 399 400 401 402 403 404
        # start compress, including train/eval model
        # TODO: add the emd loss of evaluation model.
        if strategy == 'quant_post':
            quant_post(
                self._exe,
                model_dir=self.model_dir,
                quantize_model_path=os.path.join(
W
whs 已提交
405
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
                data_loader=self.train_dataloader,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
                batch_size=1,
                batch_nums=config.batch_num,
                algo=config.ptq_algo,
                round_type='round',
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
                quantizable_op_type=config.quantize_op_types,
                is_full_quantize=config.is_full_quantize,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                activation_quantize_type='range_abs_max',
                weight_quantize_type=config.weight_quantize_type,
                onnx_format=False)

        elif strategy == 'ptq_hpo':
426 427 428 429
            if platform.system().lower() != 'linux':
                raise NotImplementedError(
                    "post-quant-hpo is not support in system other than linux")

C
ceci3 已提交
430
            quant_post_hpo.quant_post_hpo(
C
ceci3 已提交
431 432 433
                self._exe,
                self._places,
                model_dir=self.model_dir,
C
ceci3 已提交
434
                quantize_model_path=os.path.join(
W
whs 已提交
435
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
C
ceci3 已提交
436 437 438 439 440 441 442
                train_dataloader=self.train_dataloader,
                eval_dataloader=self.eval_dataloader,
                eval_function=self.eval_function,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
C
ceci3 已提交
443 444 445 446 447 448 449 450
                quantizable_op_type=config.quantize_op_types,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                weight_quantize_type=config.weight_quantize_type,
                is_full_quantize=config.is_full_quantize,
                algo=config.ptq_algo,
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
C
ceci3 已提交
451
                batch_size=[1],
C
ceci3 已提交
452 453
                batch_num=config.batch_num,
                runcount_limit=config.max_quant_count)
C
ceci3 已提交
454 455

        else:
C
ceci3 已提交
456 457 458 459 460 461
            assert 'dis' in strategy, "Only support optimizer compressed model by distillation loss."

            if strategy_idx == 0:
                model_dir = self.model_dir
            else:
                model_dir = os.path.join(
W
whs 已提交
462
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx)))
C
ceci3 已提交
463 464

            [inference_program, feed_target_names, fetch_targets]= paddle.fluid.io.load_inference_model( \
C
ceci3 已提交
465
                dirname=model_dir, \
C
ceci3 已提交
466 467 468 469
                model_filename=self.model_filename, params_filename=self.params_filename,
                executor=self._exe)

            ### used to check whether the dataloader is right
C
ceci3 已提交
470
            self.metric_before_compressed = None
C
ceci3 已提交
471
            if self.eval_function is not None and self.train_config.origin_metric is not None:
C
ceci3 已提交
472
                _logger.info("start to test metric before compress")
C
ceci3 已提交
473 474 475 476 477 478 479 480 481 482 483
                metric = self.eval_function(self._exe, inference_program,
                                            feed_target_names, fetch_targets)
                _logger.info("metric of compressed model is: {}".format(metric))
                buf = 0.05
                if metric < (float(self.train_config.origin_metric) - buf) or \
                        metric > (float(self.train_config.origin_metric) + buf):
                    raise RuntimeError("target metric of pretrained model is {}, \
                          but now is {}, Please check the format of evaluation dataset \
                          or check the origin_metric in train_config"
                                                                     .format(\
                          self.train_config.origin_metric, metric))
C
ceci3 已提交
484 485 486 487
                self.metric_before_compressed = metric

            patterns, default_distill_node_pair, _ = get_patterns(
                inference_program)
C
ceci3 已提交
488 489

            train_program_info, test_program_info = self._prepare_program(
C
ceci3 已提交
490 491
                inference_program, feed_target_names, fetch_targets, patterns,
                default_distill_node_pair, strategy, config)
Z
zhouzj 已提交
492 493 494
            if 'unstructure' in self._strategy:
                test_program_info.program._program = remove_unused_var_nodes(
                    test_program_info.program._program)
C
ceci3 已提交
495
            test_program_info = self._start_train(train_program_info,
C
ceci3 已提交
496 497
                                                  test_program_info, strategy)
            self._save_model(test_program_info, strategy, strategy_idx)
C
ceci3 已提交
498

C
ceci3 已提交
499
    def _start_train(self, train_program_info, test_program_info, strategy):
C
ceci3 已提交
500 501 502 503 504 505
        best_metric = -1.0
        for epoch_id in range(self.train_config.epochs):
            for batch_id, data in enumerate(self.train_dataloader()):
                np_probs_float, = self._exe.run(train_program_info.program, \
                    feed=data, \
                    fetch_list=train_program_info.fetch_targets)
506 507
                if not isinstance(train_program_info.learning_rate, float):
                    train_program_info.learning_rate.step()
C
ceci3 已提交
508
                if 'unstructure' in strategy:
C
ceci3 已提交
509 510 511 512 513 514 515 516 517 518
                    self._pruner.step()

                if self.train_config.logging_iter is None:
                    logging_iter = 10
                else:
                    logging_iter = self.train_config.logging_iter
                if batch_id % int(logging_iter) == 0:
                    _logger.info("epoch: {}, batch: {}, loss: {}".format(
                        epoch_id, batch_id, np_probs_float))

519 520
                if batch_id % int(
                        self.train_config.eval_iter) == 0 and batch_id != 0:
C
ceci3 已提交
521 522 523
                    if self.eval_function is not None:

                        # GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation. 
C
ceci3 已提交
524
                        if 'unstructure' in strategy:
C
ceci3 已提交
525 526 527 528 529 530 531 532
                            self._pruner.update_params()

                        metric = self.eval_function(
                            self._exe, test_program_info.program,
                            test_program_info.feed_target_names,
                            test_program_info.fetch_targets)

                        _logger.info(
C
ceci3 已提交
533 534
                            "epoch: {}, batch: {} metric of compressed model is: {}, best metric of compressed model is {}".
                            format(epoch_id, batch_id, metric, best_metric))
C
ceci3 已提交
535 536 537
                        if metric > best_metric:
                            paddle.static.save(
                                program=test_program_info.program._program,
W
whs 已提交
538
                                model_path=os.path.join(self.tmp_dir,
C
ceci3 已提交
539
                                                        'best_model'))
C
ceci3 已提交
540 541 542 543 544 545
                            best_metric = metric
                            if self.metric_before_compressed is not None and float(
                                    abs(best_metric -
                                        self.metric_before_compressed)
                            ) / self.metric_before_compressed <= 0.005:
                                break
C
ceci3 已提交
546 547
                        if self.train_config.target_metric is not None:
                            if metric > float(self.train_config.target_metric):
C
ceci3 已提交
548
                                break
C
ceci3 已提交
549 550

                    else:
551 552 553
                        _logger.warning(
                            "Not set eval function, so unable to test accuracy performance."
                        )
C
ceci3 已提交
554

Z
zhouzj 已提交
555 556 557
        if 'unstructure' in self._strategy or self.train_config.sparse_model:
            self._pruner.update_params()

C
ceci3 已提交
558 559
        return test_program_info

C
ceci3 已提交
560
    def _save_model(self, test_program_info, strategy, strategy_idx):
C
ceci3 已提交
561 562 563
        test_program = test_program_info.program._program if isinstance(
            test_program_info.program,
            paddle.static.CompiledProgram) else test_program_info.program
C
ceci3 已提交
564

W
whs 已提交
565
        if os.path.exists(os.path.join(self.tmp_dir, 'best_model.pdparams')):
566
            paddle.static.load(test_program,
W
whs 已提交
567 568 569 570
                               os.path.join(self.tmp_dir, 'best_model'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdmodel'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdopt'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdparams'))
C
ceci3 已提交
571 572

        if 'qat' in strategy:
G
Guanghua Yu 已提交
573
            test_program, int8_program = convert(test_program, self._places, self._quant_config, \
C
ceci3 已提交
574 575 576
                                          scope=paddle.static.global_scope(), \
                                          save_int8=True)

W
whs 已提交
577
        model_dir = os.path.join(self.tmp_dir,
C
ceci3 已提交
578 579 580 581 582 583 584
                                 'strategy_{}'.format(str(strategy_idx + 1)))
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
        paddle.fluid.io.save_inference_model(
            dirname=str(model_dir),
            feeded_var_names=test_program_info.feed_target_names,
            target_vars=test_program_info.fetch_targets,
C
ceci3 已提交
585
            executor=self._exe,
586
            main_program=test_program,
C
ceci3 已提交
587 588
            model_filename=self.model_filename,
            params_filename=self.params_filename)