compressor.py 41.9 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
W
whs 已提交
18
import copy
C
ceci3 已提交
19
import numpy as np
C
ceci3 已提交
20
import copy
C
ceci3 已提交
21
import inspect
C
ceci3 已提交
22
import shutil
W
whs 已提交
23
from time import gmtime, strftime
24
import platform
C
ceci3 已提交
25
import paddle
W
whs 已提交
26
import itertools
C
ceci3 已提交
27
import paddle.distributed.fleet as fleet
28
from ..quant.quanter import convert, quant_post
C
ceci3 已提交
29 30
from ..common.recover_program import recover_inference_program
from ..common import get_logger
C
ceci3 已提交
31
from ..common.patterns import get_patterns
G
Guanghua Yu 已提交
32
from ..common.load_model import load_inference_model, get_model_dir, export_onnx
33 34
from ..common.dataloader import wrap_dataloader, get_feed_vars
from ..common.config_helper import load_config
C
ceci3 已提交
35
from ..analysis import TableLatencyPredictor
Z
zhouzj 已提交
36
from .create_compressed_program import build_distill_program, build_quant_program, build_prune_program, remove_unused_var_nodes
C
ceci3 已提交
37
from .strategy_config import TrainConfig, ProgramInfo, merge_config
38
from .auto_strategy import prepare_strategy, get_final_quant_config, create_strategy_config, create_train_config
39
from .config_helpers import extract_strategy_config, extract_train_config
40
from .utils.predict import with_variable_shape
C
ceci3 已提交
41 42 43

_logger = get_logger(__name__, level=logging.INFO)

C
ceci3 已提交
44 45
try:
    if platform.system().lower() == 'linux':
C
ceci3 已提交
46
        from ..quant import post_quant_hpo
C
ceci3 已提交
47 48 49
except Exception as e:
    _logger.warning(e)

C
ceci3 已提交
50 51 52 53 54

class AutoCompression:
    def __init__(self,
                 model_dir,
                 train_dataloader,
55 56 57
                 model_filename=None,
                 params_filename=None,
                 save_dir='./output',
W
whs 已提交
58
                 config=None,
59
                 input_shapes=None,
C
ceci3 已提交
60
                 target_speedup=None,
61
                 eval_callback=None,
C
ceci3 已提交
62 63 64 65 66 67 68
                 eval_dataloader=None,
                 deploy_hardware='gpu'):
        """
        Compress inference model automatically.

        Args:
            model_dir(str): The path of inference model that will be compressed, and
C
ceci3 已提交
69
                the model and params that saved by ``paddle.static.save_inference_model``
C
ceci3 已提交
70
                are under the path.
G
Guanghua Yu 已提交
71
            train_dataloader(Python Generator, Paddle.io.DataLoader): The
72 73
                Generator or Dataloader provides train data, and it could
                return a batch every time.
C
ceci3 已提交
74 75
            model_filename(str):  The name of model file. 
            params_filename(str): The name of params file.
W
whs 已提交
76 77
            save_dir(str): The path to save compressed model. The models in this directory will be overwrited
                after calling 'compress()' function.
78 79 80 81 82 83 84
            input_shapes(dict|tuple|list): It is used when the model has implicit dimensions except batch size. 
                If it is a dict, the key is the name of input and the value is the shape. 
                Given the input shape of input "X" is [-1, 3, -1, -1] which means the batch size, hight
                and width is variable. And the input_shapes can be set {"X": [-1, 3, 512, 512]}.
                If it is a list or tuple, the number of model's inputs should be 1. And the shape of input
                will be set input_shapes. None means keeping the original shapes, then
                the compression strategies searching may be skipped. Default: None.
C
ceci3 已提交
85 86 87 88 89 90 91 92 93 94 95
            train_config(dict, optional): The train config in the compression process, the key can 
                reference `<https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L103>`_ . 
                Only one strategy(quant_post with hyperparameter optimization) can set train_config 
                to None. Default: None. 
            strategy_config(dict, list(dict), optional): The strategy config. You can set single config to get multi-strategy config, such as
                1. set ``Quantization`` and ``Distillation`` to get quant_aware and distillation compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                2. set ``Quantization`` and ``HyperParameterOptimization`` to get quant_post and hyperparameter optimization compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The HyperParameterOptimization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L73`_ .
C
ceci3 已提交
96 97
                3. set ``ChannelPrune`` and ``Distillation`` to get channel prune and distillation compress config.
                    The ChannelPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
C
ceci3 已提交
98
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
99 100 101 102 103 104 105
                4. set ``ASPPrune`` and ``Distillation`` to get asp prune and distillation compress config.
                    The ASPPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                5. set ``TransformerPrune`` and ``Distillation`` to get transformer prune and distillation compress config.
                    The TransformerPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                6. set ``UnstructurePrune`` and ``Distillation`` to get unstructureprune and distillation compress config.
C
ceci3 已提交
106 107
                    The UnstructurePrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L91`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
108
                7. set ``Distillation`` to use one teacher modol to distillation student model.
C
ceci3 已提交
109
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
110
                8. set ``MultiTeacherDistillation`` to use multi-teacher to distillation student model.
C
ceci3 已提交
111 112 113 114 115
                    The MultiTeacherDistillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L56`_ .

                If set to None, will choose a strategy automatically. Default: None.
            target_speedup(float, optional): target speedup ratio by the way of auto compress. Default: None.
            eval_callback(function, optional): eval function, define by yourself to return the metric of the inference program, can be used to judge the metric of compressed model. The documents of how to write eval function is `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/auto-compression/custom_function.rst`_ . ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
116 117 118
            eval_dataloader(paddle.io.Dataloader, optional):  The Generator or Dataloader provides eval data, and it could
                 return a batch every time. If eval_dataloader is None, will take first 5000 sample from train_dataloader 
                 as eval_dataloader, and the metric of eval_dataloader for reference only. Dafault: None.
C
ceci3 已提交
119 120
            deploy_hardware(str, optional): The hardware you want to deploy. Default: 'gpu'.
        """
G
Guanghua Yu 已提交
121
        self.model_dir = model_dir.rstrip('/')
122 123
        self.updated_model_dir, self.model_filename, self.params_filename = get_model_dir(
            model_dir, model_filename, params_filename)
C
ceci3 已提交
124

C
ceci3 已提交
125
        self.final_dir = save_dir
W
whs 已提交
126 127
        if not os.path.exists(self.final_dir):
            os.makedirs(self.final_dir)
W
whs 已提交
128 129 130 131

        # load config
        if isinstance(config, str):
            config = load_config(config)
C
ceci3 已提交
132 133 134
            self.train_config = extract_train_config(config)
        elif isinstance(config, dict):
            if 'TrainConfig' in config:
C
ceci3 已提交
135
                self.train_config = TrainConfig(**config.pop('TrainConfig'))
C
ceci3 已提交
136 137
            else:
                self.train_config = None
C
ceci3 已提交
138 139
        else:
            self.train_config = None
C
ceci3 已提交
140
        self.strategy_config = extract_strategy_config(config)
W
whs 已提交
141 142

        # prepare dataloader
G
Guanghua Yu 已提交
143
        self.feed_vars = get_feed_vars(self.model_dir, model_filename,
W
whs 已提交
144 145 146 147
                                       params_filename)
        self.train_dataloader = wrap_dataloader(train_dataloader,
                                                self.feed_vars)
        self.eval_dataloader = wrap_dataloader(eval_dataloader, self.feed_vars)
C
ceci3 已提交
148 149 150
        if self.eval_dataloader is None:
            self.eval_dataloader = self._get_eval_dataloader(
                self.train_dataloader)
W
whs 已提交
151

C
ceci3 已提交
152 153
        self.target_speedup = target_speedup
        self.eval_function = eval_callback
154
        self.deploy_hardware = deploy_hardware
155

C
ceci3 已提交
156
        paddle.enable_static()
C
ceci3 已提交
157
        self._exe, self._places = self._prepare_envs()
158
        self.model_type = self._get_model_type()
C
ceci3 已提交
159

160
        if self.train_config is not None and self.train_config.use_fleet:
C
ceci3 已提交
161 162
            fleet.init(is_collective=True)

163 164 165 166 167 168 169
        if with_variable_shape(
                self.model_dir,
                model_filename=model_filename,
                params_filename=params_filename) and input_shapes is not None:

            infer_shape_model = self.create_tmp_dir(
                self.final_dir, prefix="infer_shape_model_")
G
Guanghua Yu 已提交
170
            self._infer_shape(self.model_dir, self.model_filename,
171 172 173 174 175
                              self.params_filename, input_shapes,
                              infer_shape_model)
            self.model_dir = infer_shape_model
            self.model_filename = "infered_shape.pdmodel"
            self.params_filename = "infered_shape.pdiparams"
W
whs 已提交
176

C
ceci3 已提交
177 178
        if self.strategy_config is None:
            strategy_config = prepare_strategy(
C
ceci3 已提交
179 180 181
                self._exe, self._places, self.model_dir, self.model_filename,
                self.params_filename, self.target_speedup, self.deploy_hardware,
                self.model_type)
C
ceci3 已提交
182 183 184 185 186 187 188 189 190 191
            self.strategy_config = strategy_config
        elif isinstance(self.strategy_config, dict):
            self.strategy_config = [self.strategy_config]
        elif isinstance(self.strategy_config, str):
            strategy_config = create_strategy_config(self.strategy_config,
                                                     self.model_type)

        self._strategy, self._config = self._prepare_strategy(
            self.strategy_config)

C
ceci3 已提交
192
        self.train_config = self._get_final_train_config(
193 194
            self.train_config, self._strategy, self.model_type)
        _logger.info(f"Selected strategies: {self._strategy}")
C
ceci3 已提交
195 196 197

    def _get_final_train_config(self, train_config, strategy_config,
                                model_type):
198
        # If train_config is None, set default train_config
C
ceci3 已提交
199 200 201 202 203
        if train_config is None:
            train_config = create_train_config(strategy_config, model_type)

        train_configs = [train_config]
        for idx in range(1, len(self._strategy)):
C
ceci3 已提交
204 205 206
            if 'qat' in self._strategy[idx] or 'ptq' in self._strategy[idx]:
                ### If compress strategy more than one, the TrainConfig in the yaml only used in prune.
                ### The TrainConfig for quantization is extrapolate from above.
C
ceci3 已提交
207 208
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                ### the epoch, train_iter, learning rate of quant is 10% of the prune compress
C
ceci3 已提交
209 210 211
                if self.model_type != 'transformer':
                    tmp_train_config['epochs'] = max(
                        int(train_config.epochs * 0.1), 1)
C
ceci3 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
                if train_config.train_iter is not None:
                    tmp_train_config['train_iter'] = int(
                        train_config.train_iter * 0.1)
                if isinstance(train_config.learning_rate, float):
                    tmp_train_config[
                        'learning_rate'] = train_config.learning_rate * 0.1
                else:
                    if 'learning_rate' in train_config.learning_rate:
                        tmp_train_config['learning_rate'][
                            'learning_rate'] = train_config.learning_rate[
                                'learning_rate'] * 0.1
                    else:  ### learning rate decay is PiecewiseDecay
                        tmp_train_config['learning_rate']['values'] = list(
                            map(lambda x: x * 0.1, train_config.learning_rate[
                                'values']))
                train_cfg = TrainConfig(**tmp_train_config)
            else:
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                train_cfg = TrainConfig(**tmp_train_config)

            train_configs.append(train_cfg)
        return train_configs
234

235 236 237 238 239 240 241
    def _infer_shape(self, model_dir, model_filename, params_filename,
                     input_shapes, save_path):
        assert type(input_shapes) in [
            dict, list, tuple
        ], f'Type of input_shapes should be in [dict, tuple or list] but got {type(input_shapes)}.'
        paddle.enable_static()
        exe = paddle.static.Executor(paddle.CPUPlace())
C
ceci3 已提交
242
        [inference_program, feed_target_names,
243 244
         fetch_targets] = load_inference_model(model_dir, exe, model_filename,
                                               params_filename)
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

        if type(input_shapes) in [list, tuple]:
            assert len(
                feed_target_names
            ) == 1, f"The number of model's inputs should be 1 but got {feed_target_names}."
            input_shapes = {feed_target_names[0]: input_shapes}

        feed_vars = []
        for var_ in inference_program.list_vars():
            if var_.name in feed_target_names:
                feed_vars.append(var_)
                var_.desc.set_shape(input_shapes[var_.name])

        for block in inference_program.blocks:
            for op in block.ops:
                if op.type not in ["feed", "fetch"]:
                    op.desc.infer_shape(block.desc)

        save_path = os.path.join(save_path, "infered_shape")
        os.makedirs(save_path)
        paddle.static.save_inference_model(
            save_path, feed_vars, fetch_targets, exe, program=inference_program)
        _logger.info(f"Saved model infered shape to {save_path}")

    @property
    def deploy_hardware(self):
        return self._deploy_hardware

    @deploy_hardware.setter
    def deploy_hardware(self, value):
275 276 277 278
        supported_hardware = TableLatencyPredictor.hardware_list + [
            'gpu',  # nvidia gpu
            "cpu",  # intel cpu
        ]
279 280 281
        if value is not None:
            # Fail-fast when deploy hardware is set explicitly
            assert (
282 283
                value in supported_hardware
            ), f"Hardware should be in supported list {supported_hardware} but got {value}. Or you can set deploy_hardware None."
284 285
        self._deploy_hardware = value

286 287 288 289 290 291 292 293 294 295 296
    def _get_eval_dataloader(self, train_dataloader):
        def _gen():
            len_loader = len(list(train_dataloader()))
            ### max eval_dataloader is 5000 if use train_dataloader as eval_dataloader
            slice_len = min(5000, len_loader)
            ret = list(itertools.islice(train_dataloader(), slice_len))
            for i in ret:
                yield i

        return _gen

C
ceci3 已提交
297 298
    def _prepare_envs(self):
        devices = paddle.device.get_device().split(':')[0]
C
ceci3 已提交
299
        places = paddle.device._convert_to_place(devices)
W
whs 已提交
300
        _logger.info(f"devices: {devices}")
C
ceci3 已提交
301 302 303
        exe = paddle.static.Executor(places)
        return exe, places

304 305 306 307 308 309
    def _get_model_type(self):
        [inference_program, _, _] = (load_inference_model(
            self.model_dir,
            model_filename=self.model_filename,
            params_filename=self.params_filename,
            executor=self._exe))
C
ceci3 已提交
310
        _, _, model_type = get_patterns(inference_program)
C
ceci3 已提交
311
        if self.model_filename is None:
312
            opt_model_filename = '__opt_model__'
C
ceci3 已提交
313
        else:
314
            opt_model_filename = 'opt_' + self.model_filename
C
ceci3 已提交
315 316
        program_bytes = inference_program._remove_training_info(
            clip_extra=False).desc.serialize_to_string()
317 318 319
        with open(
                os.path.join(self.updated_model_dir, opt_model_filename),
                "wb") as f:
C
ceci3 已提交
320 321
            f.write(program_bytes)
        shutil.move(
322 323
            os.path.join(self.updated_model_dir, opt_model_filename),
            os.path.join(self.updated_model_dir, self.model_filename))
W
whs 已提交
324
        _logger.info(f"Detect model type: {model_type}")
C
ceci3 已提交
325 326 327 328 329 330 331 332 333 334 335
        return model_type

    def _prepare_strategy(self, strategy_config):
        if not isinstance(strategy_config, list):
            strategy_config = list(list(strategy_config))

        strategy = []
        config = []
        for strategy_c in strategy_config:
            quant_config = strategy_c.get("Quantization", None)
            hpo_config = strategy_c.get("HyperParameterOptimization", None)
C
ceci3 已提交
336 337 338
            prune_config = strategy_c.get("ChannelPrune", None)
            asp_config = strategy_c.get("ASPPrune", None)
            transformer_prune_config = strategy_c.get("TransformerPrune", None)
C
ceci3 已提交
339 340 341
            unstructure_prune_config = strategy_c.get("UnstructurePrune", None)
            single_teacher_distill_config = strategy_c.get("Distillation", None)
            if single_teacher_distill_config is not None and single_teacher_distill_config.teacher_model_dir is None:
C
ceci3 已提交
342 343 344
                single_teacher_distill_config.teacher_model_dir = self.model_dir
                single_teacher_distill_config.teacher_model_filename = self.model_filename
                single_teacher_distill_config.teacher_params_filename = self.params_filename
C
ceci3 已提交
345 346 347 348 349 350 351 352 353 354

            multi_teacher_distill_config = strategy_c.get(
                "MultiTeacherDistillation", None)

            assert (single_teacher_distill_config is None) or (multi_teacher_distill_config is None), \
                "Distillation and MultiTeacherDistillation cannot be set at the same time."
            self._distill_config = single_teacher_distill_config if \
                   single_teacher_distill_config is not None else \
                   multi_teacher_distill_config

C
ceci3 已提交
355
            only_distillation = True
C
ceci3 已提交
356

C
ceci3 已提交
357 358 359
            ### case1: prune_config & distill config
            if prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
360
                strategy.append('channel_prune_dis')
C
ceci3 已提交
361 362
                config.append(merge_config(prune_config, self._distill_config))

C
ceci3 已提交
363 364 365
            ### case2: asp_config & distill config
            if asp_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
366 367 368
                strategy.append('asp_prune_dis')
                config.append(merge_config(asp_config, self._distill_config))

C
ceci3 已提交
369 370 371
            ### case3: transformer_prune_config & distill config
            if transformer_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
372 373 374 375 376
                strategy.append('transformer_prune_dis')
                config.append(
                    merge_config(transformer_prune_config,
                                 self._distill_config))

C
ceci3 已提交
377 378 379
            ### case4: unstructure_config & distill config
            if unstructure_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
380 381 382 383 384
                strategy.append('unstructure_prune_dis')
                config.append(
                    merge_config(unstructure_prune_config,
                                 self._distill_config))

C
ceci3 已提交
385 386 387 388 389 390 391 392 393 394 395 396
            ### case5: quant_config & hpo_config ==> PTQ & HPO
            if quant_config is not None and hpo_config is not None:
                only_distillation = False
                strategy.append('ptq_hpo')
                config.append(merge_config(quant_config, hpo_config))

            ### case6: quant_config & distill config ==> QAT & Distill
            if quant_config is not None and self._distill_config is not None:
                only_distillation = False
                strategy.append('qat_dis')
                config.append(merge_config(quant_config, self._distill_config))

C
ceci3 已提交
397
            ### case7: distill_config
C
ceci3 已提交
398
            if only_distillation == True and self._distill_config is not None:
C
ceci3 已提交
399 400 401 402 403 404
                if single_teacher_distill_config is not None:
                    strategy.append('single_teacher_dis')
                    config.append(single_teacher_distill_config)
                else:
                    strategy.append('multi_teacher_dis')
                    config.append(multi_teacher_distill_config)
C
ceci3 已提交
405

C
ceci3 已提交
406 407 408 409 410 411 412 413 414 415 416 417
        ### NOTE: keep quantation in the last step
        idx = -1
        if 'qat_dis' in strategy and strategy.index('qat_dis') != (
                len(strategy) - 1):
            idx = strategy.index('qat_dis')
        elif 'ptq_hpo' in strategy and strategy.index('ptq_hpo') != (
                len(strategy) - 1):
            idx = strategy.index('ptq_hpo')

        if idx != -1:
            strategy = strategy[:idx] + strategy[idx + 1:] + [strategy[idx]]
            config = config[:idx] + config[idx + 1:] + [config[idx]]
C
ceci3 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

        return strategy, config

    def _prepare_fleet_strategy(train_config):
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()

        strategy = fleet.DistributedStrategy()
        strategy.build_strategy = build_strategy
        if train_config.recompute_config is not None:
            strategy.recompute = True
            strategy.recompute_configs = { ** train_config.recompute_config}
        if train_config.sharding_config is not None:
            strategy.sharding = True
            strategy.sharding_configs = { ** train_config.sharding_config}
        if train_config.amp_config is not None:
            strategy.amp = True
            strategy.amp_configs = { ** train_config.amp_config}
436 437
        if train_config.asp_config is not None:
            strategy.asp = True
C
ceci3 已提交
438 439
        return strategy

C
ceci3 已提交
440
    def _prepare_program(self, program, feed_target_names, fetch_targets,
C
ceci3 已提交
441 442
                         patterns, default_distill_node_pair, strategy, config,
                         train_config):
C
ceci3 已提交
443 444 445 446 447
        train_program = recover_inference_program(program)
        startup_program = paddle.static.Program()
        train_program_info = ProgramInfo(startup_program, train_program,
                                         feed_target_names, fetch_targets)

C
ceci3 已提交
448
        config_dict = config.__dict__
449 450 451
        if "prune_strategy" in config_dict and config_dict[
                "prune_strategy"] == "gmp" and config_dict[
                    'gmp_config'] is None:
Z
zhouzj 已提交
452 453 454
            _logger.info(
                "Calculating the iterations per epoch……(It will take some time)")
            # NOTE:XXX: This way of calculating the iters needs to be improved.
C
ceci3 已提交
455
            if train_config.epochs:
G
Guanghua Yu 已提交
456
                iters_per_epoch = len(list(self.train_dataloader()))
C
ceci3 已提交
457 458 459
                total_iters = train_config.epochs * iters_per_epoch
            elif train_config.train_iter:
                total_iters = train_config.train_iter
G
Guanghua Yu 已提交
460 461 462
            else:
                raise RuntimeError(
                    'train_config must has `epochs` or `train_iter` field.')
Z
zhouzj 已提交
463 464
            config_dict['gmp_config'] = {
                'stable_iterations': 0,
C
ceci3 已提交
465 466
                'pruning_iterations': max(0.45 * total_iters, 30),
                'tunning_iterations': max(0.45 * total_iters, 30),
Z
zhouzj 已提交
467
                'resume_iteration': -1,
C
ceci3 已提交
468
                'pruning_steps': 100 if (0.45 * total_iters) > 1000 else 1,
Z
zhouzj 已提交
469 470
                'initial_ratio': 0.15,
            }
C
ceci3 已提交
471 472
        ### add prune program
        self._pruner = None
C
ceci3 已提交
473
        if 'prune' in strategy:
C
ceci3 已提交
474 475
            self._pruner, train_program_info = build_prune_program(
                self._exe, self._places, config_dict, train_program_info,
C
ceci3 已提交
476
                strategy, patterns, self.eval_dataloader)
C
ceci3 已提交
477

C
ceci3 已提交
478 479
        if train_config.use_fleet:
            dist_strategy = _prepare_fleet_strategy(train_config)
C
ceci3 已提交
480 481 482 483
        else:
            dist_strategy = None

        ### add distill program
C
ceci3 已提交
484
        if 'dis' in strategy:
C
ceci3 已提交
485 486 487 488
            train_program_info, test_program_info = build_distill_program(
                self._exe,
                self._places,
                config_dict,
C
ceci3 已提交
489
                train_config.__dict__,
C
ceci3 已提交
490 491
                train_program_info,
                pruner=self._pruner,
C
ceci3 已提交
492 493
                dist_strategy=dist_strategy,
                default_distill_node_pair=default_distill_node_pair)
C
ceci3 已提交
494 495 496

        self._quant_config = None
        ### add quant_aware program, quant always is last step
C
ceci3 已提交
497
        if 'qat' in strategy:
C
ceci3 已提交
498 499 500
            train_program_info, test_program_info, self._quant_config = build_quant_program(
                self._exe, self._places, config_dict, train_program_info,
                test_program_info)
C
ceci3 已提交
501
        if train_config.sparse_model:
Z
zhouzj 已提交
502
            from ..prune.unstructured_pruner import UnstructuredPruner
Z
zhouzj 已提交
503
            # NOTE: The initialization parameter of this pruner doesn't work, it is only used to call the 'set_static_masks' function
Z
zhouzj 已提交
504 505 506 507 508 509
            self._pruner = UnstructuredPruner(
                train_program_info.program,
                mode='ratio',
                ratio=0.75,
                prune_params_type='conv1x1_only',
                place=self._places)
Z
zhouzj 已提交
510
            self._pruner.set_static_masks()  # Fixed model sparsity
C
ceci3 已提交
511 512 513

        self._exe.run(train_program_info.startup_program)

C
ceci3 已提交
514 515 516 517
        if (not train_config.use_fleet) and train_config.amp_config is not None:
            if hasattr(
                    train_config.amp_config,
                    'use_pure_fp16') and train_config.amp_config.use_pure_fp16:
C
ceci3 已提交
518 519 520
                train_program_info.optimizer.amp_init(
                    self._places, scope=paddle.static.global_scope())

C
ceci3 已提交
521
        if 'asp' in strategy:
C
ceci3 已提交
522 523 524
            ### prune weight in scope
            self._pruner.prune_model(train_program_info.program)

C
ceci3 已提交
525
        if not train_config.use_fleet:
C
ceci3 已提交
526
            train_program_info = self._compiled_program(train_program_info,
C
ceci3 已提交
527
                                                        strategy)
C
ceci3 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
            test_program_info = self._compiled_program(test_program_info,
                                                       self._strategy)
        return train_program_info, test_program_info

    def _compiled_program(self, program_info, strategy):
        compiled_prog = paddle.static.CompiledProgram(program_info.program)
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()
        if 'qat' in strategy:
            build_strategy.memory_optimize = False
            build_strategy.enable_inplace = False
            build_strategy.fuse_all_reduce_ops = False
            build_strategy.sync_batch_norm = False

        compiled_prog = compiled_prog.with_data_parallel(
            loss_name=program_info.fetch_targets[0].name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)
        program_info.program = compiled_prog
        return program_info

549
    def create_tmp_dir(self, base_dir, prefix="tmp"):
W
whs 已提交
550
        # create a new temp directory in final dir
551
        s_datetime = strftime("%Y_%m_%d_%H_%M_%S", gmtime())
552 553 554 555 556
        tmp_base_name = "_".join([prefix, str(os.getpid()), s_datetime])
        tmp_dir = os.path.join(base_dir, tmp_base_name)
        if not os.path.exists(tmp_dir):
            os.makedirs(tmp_dir)
        return tmp_dir
W
whs 已提交
557

558
    def compress(self):
559
        assert len(self._strategy) > 0
560
        self.tmp_dir = self.create_tmp_dir(self.final_dir)
561 562 563 564
        strategy = None
        config = None
        train_config = None
        strategy_idx = None
C
ceci3 已提交
565
        for strategy_idx, (
C
ceci3 已提交
566 567 568 569
                strategy, config, train_config
        ) in enumerate(zip(self._strategy, self._config, self.train_config)):
            self.single_strategy_compress(strategy, config, strategy_idx,
                                          train_config)
C
ceci3 已提交
570 571 572

        if strategy == 'ptq_hpo' and config.max_quant_count == 1 and platform.system(
        ).lower() == 'linux':
C
ceci3 已提交
573
            ptq_loss = post_quant_hpo.g_min_emd_loss
C
ceci3 已提交
574

C
ceci3 已提交
575 576
            final_quant_config = get_final_quant_config(ptq_loss,
                                                        self.model_type)
C
ceci3 已提交
577 578 579 580
            if final_quant_config is not None:
                quant_strategy, quant_config = self._prepare_strategy(
                    final_quant_config)
                self.single_strategy_compress(quant_strategy[0],
C
ceci3 已提交
581 582
                                              quant_config[0], strategy_idx,
                                              train_config)
583
        tmp_model_path = os.path.join(
W
whs 已提交
584
            self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1)))
C
ceci3 已提交
585
        final_model_path = os.path.join(self.final_dir)
C
ceci3 已提交
586
        if paddle.distributed.get_rank() == 0:
W
whs 已提交
587 588 589 590
            for _file in os.listdir(tmp_model_path):
                _file_path = os.path.join(tmp_model_path, _file)
                if os.path.isfile(_file_path):
                    shutil.copy(_file_path, final_model_path)
W
whs 已提交
591
            shutil.rmtree(self.tmp_dir)
C
ceci3 已提交
592
            _logger.info(
G
Guanghua Yu 已提交
593
                "==> The ACT compression has been completed and the final model is saved in `{}`".
C
ceci3 已提交
594
                format(final_model_path))
C
ceci3 已提交
595

C
ceci3 已提交
596 597
    def single_strategy_compress(self, strategy, config, strategy_idx,
                                 train_config):
598 599
        # start compress, including train/eval model
        # TODO: add the emd loss of evaluation model.
G
Guanghua Yu 已提交
600 601 602 603 604 605 606
        if self.updated_model_dir != self.model_dir:
            # If model is ONNX, convert it to inference model firstly.
            load_inference_model(
                self.model_dir,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                executor=self._exe)
607 608 609
        if strategy == 'quant_post':
            quant_post(
                self._exe,
610
                model_dir=self.updated_model_dir,
611
                quantize_model_path=os.path.join(
W
whs 已提交
612
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
                data_loader=self.train_dataloader,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
                batch_size=1,
                batch_nums=config.batch_num,
                algo=config.ptq_algo,
                round_type='round',
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
                quantizable_op_type=config.quantize_op_types,
                is_full_quantize=config.is_full_quantize,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                activation_quantize_type='range_abs_max',
                weight_quantize_type=config.weight_quantize_type,
                onnx_format=False)

        elif strategy == 'ptq_hpo':
633 634 635
            if platform.system().lower() != 'linux':
                raise NotImplementedError(
                    "post-quant-hpo is not support in system other than linux")
G
Guanghua Yu 已提交
636 637 638 639 640 641 642
            if self.updated_model_dir != self.model_dir:
                # If model is ONNX, convert it to inference model firstly.
                load_inference_model(
                    self.model_dir,
                    model_filename=self.model_filename,
                    params_filename=self.params_filename,
                    executor=self._exe)
C
ceci3 已提交
643
            post_quant_hpo.quant_post_hpo(
C
ceci3 已提交
644 645
                self._exe,
                self._places,
646
                model_dir=self.updated_model_dir,
C
ceci3 已提交
647
                quantize_model_path=os.path.join(
W
whs 已提交
648
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
C
ceci3 已提交
649 650 651 652 653 654 655
                train_dataloader=self.train_dataloader,
                eval_dataloader=self.eval_dataloader,
                eval_function=self.eval_function,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
C
ceci3 已提交
656 657 658 659 660 661 662 663
                quantizable_op_type=config.quantize_op_types,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                weight_quantize_type=config.weight_quantize_type,
                is_full_quantize=config.is_full_quantize,
                algo=config.ptq_algo,
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
C
ceci3 已提交
664
                batch_size=[1],
C
ceci3 已提交
665 666
                batch_num=config.batch_num,
                runcount_limit=config.max_quant_count)
C
ceci3 已提交
667 668

        else:
C
ceci3 已提交
669 670 671 672 673 674
            assert 'dis' in strategy, "Only support optimizer compressed model by distillation loss."

            if strategy_idx == 0:
                model_dir = self.model_dir
            else:
                model_dir = os.path.join(
W
whs 已提交
675
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx)))
C
ceci3 已提交
676

C
ceci3 已提交
677 678
            [inference_program, feed_target_names, fetch_targets]= load_inference_model( \
                model_dir, \
C
ceci3 已提交
679 680 681 682
                model_filename=self.model_filename, params_filename=self.params_filename,
                executor=self._exe)

            ### used to check whether the dataloader is right
C
ceci3 已提交
683
            self.metric_before_compressed = None
C
ceci3 已提交
684
            if self.eval_function is not None and train_config.origin_metric is not None:
C
ceci3 已提交
685
                _logger.info("start to test metric before compress")
C
ceci3 已提交
686 687 688 689
                metric = self.eval_function(self._exe, inference_program,
                                            feed_target_names, fetch_targets)
                _logger.info("metric of compressed model is: {}".format(metric))
                buf = 0.05
C
ceci3 已提交
690 691
                if metric < (float(train_config.origin_metric) - buf) or \
                        metric > (float(train_config.origin_metric) + buf):
C
ceci3 已提交
692 693 694 695
                    raise RuntimeError("target metric of pretrained model is {}, \
                          but now is {}, Please check the format of evaluation dataset \
                          or check the origin_metric in train_config"
                                                                     .format(\
C
ceci3 已提交
696
                          train_config.origin_metric, metric))
C
ceci3 已提交
697 698 699 700
                self.metric_before_compressed = metric

            patterns, default_distill_node_pair, _ = get_patterns(
                inference_program)
C
ceci3 已提交
701 702

            train_program_info, test_program_info = self._prepare_program(
C
ceci3 已提交
703
                inference_program, feed_target_names, fetch_targets, patterns,
C
ceci3 已提交
704
                default_distill_node_pair, strategy, config, train_config)
Z
zhouzj 已提交
705 706 707
            if 'unstructure' in self._strategy:
                test_program_info.program._program = remove_unused_var_nodes(
                    test_program_info.program._program)
C
ceci3 已提交
708 709
            test_program_info = self._start_train(
                train_program_info, test_program_info, strategy, train_config)
C
ceci3 已提交
710
            self._save_model(test_program_info, strategy, strategy_idx)
C
ceci3 已提交
711

C
ceci3 已提交
712 713
    def _start_train(self, train_program_info, test_program_info, strategy,
                     train_config):
C
ceci3 已提交
714
        best_metric = -1.0
C
ceci3 已提交
715
        total_epochs = train_config.epochs if train_config.epochs else 100
G
Guanghua Yu 已提交
716
        total_train_iter = 0
G
Guanghua Yu 已提交
717
        for epoch_id in range(total_epochs):
C
ceci3 已提交
718 719 720 721
            for batch_id, data in enumerate(self.train_dataloader()):
                np_probs_float, = self._exe.run(train_program_info.program, \
                    feed=data, \
                    fetch_list=train_program_info.fetch_targets)
722 723
                if not isinstance(train_program_info.learning_rate, float):
                    train_program_info.learning_rate.step()
C
ceci3 已提交
724
                if 'unstructure' in strategy:
C
ceci3 已提交
725 726
                    self._pruner.step()

C
ceci3 已提交
727
                if train_config.logging_iter is None:
C
ceci3 已提交
728 729
                    logging_iter = 10
                else:
C
ceci3 已提交
730
                    logging_iter = train_config.logging_iter
C
ceci3 已提交
731
                if batch_id % int(logging_iter) == 0:
G
Guanghua Yu 已提交
732 733 734 735 736
                    _logger.info(
                        "Total iter: {}, epoch: {}, batch: {}, loss: {}".format(
                            total_train_iter, epoch_id, batch_id,
                            np_probs_float))
                total_train_iter += 1
C
ceci3 已提交
737 738
                if total_train_iter % int(
                        train_config.eval_iter) == 0 and total_train_iter != 0:
C
ceci3 已提交
739 740 741
                    if self.eval_function is not None:

                        # GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation. 
C
ceci3 已提交
742
                        if 'unstructure' in strategy:
C
ceci3 已提交
743 744 745 746 747 748 749 750 751 752
                            self._pruner.update_params()

                        metric = self.eval_function(
                            self._exe, test_program_info.program,
                            test_program_info.feed_target_names,
                            test_program_info.fetch_targets)

                        if metric > best_metric:
                            paddle.static.save(
                                program=test_program_info.program._program,
W
whs 已提交
753
                                model_path=os.path.join(self.tmp_dir,
C
ceci3 已提交
754
                                                        'best_model'))
C
ceci3 已提交
755
                            best_metric = metric
756 757 758
                            _logger.info(
                                "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
                                format(epoch_id, metric, best_metric))
C
ceci3 已提交
759 760 761 762 763
                            if self.metric_before_compressed is not None and float(
                                    abs(best_metric -
                                        self.metric_before_compressed)
                            ) / self.metric_before_compressed <= 0.005:
                                break
764 765 766 767
                        else:
                            _logger.info(
                                "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
                                format(epoch_id, metric, best_metric))
C
ceci3 已提交
768 769
                        if train_config.target_metric is not None:
                            if metric > float(train_config.target_metric):
C
ceci3 已提交
770
                                break
C
ceci3 已提交
771 772

                    else:
773 774 775
                        _logger.warning(
                            "Not set eval function, so unable to test accuracy performance."
                        )
C
ceci3 已提交
776
                if train_config.train_iter and total_train_iter >= train_config.train_iter:
777
                    epoch_id = total_epochs
G
Guanghua Yu 已提交
778
                    break
C
ceci3 已提交
779

C
ceci3 已提交
780
        if 'unstructure' in self._strategy or train_config.sparse_model:
Z
zhouzj 已提交
781 782
            self._pruner.update_params()

C
ceci3 已提交
783 784
        return test_program_info

C
ceci3 已提交
785
    def _save_model(self, test_program_info, strategy, strategy_idx):
C
ceci3 已提交
786 787 788
        test_program = test_program_info.program._program if isinstance(
            test_program_info.program,
            paddle.static.CompiledProgram) else test_program_info.program
C
ceci3 已提交
789

W
whs 已提交
790
        if os.path.exists(os.path.join(self.tmp_dir, 'best_model.pdparams')):
791
            paddle.static.load(test_program,
W
whs 已提交
792 793 794 795
                               os.path.join(self.tmp_dir, 'best_model'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdmodel'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdopt'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdparams'))
C
ceci3 已提交
796

W
whs 已提交
797
        model_dir = os.path.join(self.tmp_dir,
C
ceci3 已提交
798 799 800
                                 'strategy_{}'.format(str(strategy_idx + 1)))
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
801 802 803 804 805 806 807 808

        if 'qat' in strategy:
            test_program = convert(
                test_program,
                self._places,
                self._quant_config,
                scope=paddle.static.global_scope())

C
ceci3 已提交
809 810 811 812 813
        feed_vars = [
            test_program.global_block().var(name)
            for name in test_program_info.feed_target_names
        ]

814 815 816 817 818 819 820 821
        model_name = None
        if self.model_filename is None:
            model_name = "model"
        elif self.model_filename.endswith(".pdmodel"):
            model_name = self.model_filename.rsplit(".", 1)[0]
        else:
            model_name = self.model_filename

C
ceci3 已提交
822
        path_prefix = os.path.join(model_dir, model_name)
C
ceci3 已提交
823
        paddle.static.save_inference_model(
C
ceci3 已提交
824
            path_prefix=path_prefix,
C
ceci3 已提交
825 826
            feed_vars=feed_vars,
            fetch_vars=test_program_info.fetch_targets,
C
ceci3 已提交
827
            executor=self._exe,
C
ceci3 已提交
828
            program=test_program)
G
Guanghua Yu 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841 842

    def export_onnx(self,
                    model_name='quant_model.onnx',
                    deploy_backend='tensorrt'):
        infer_model_path = os.path.join(self.final_dir, self.model_filename)
        assert os.path.exists(
            infer_model_path), 'Not found {}, please check it.'.format(
                infer_model_path)
        export_onnx(
            self.final_dir,
            model_filename=self.model_filename,
            params_filename=self.params_filename,
            save_file_path=os.path.join(self.final_dir, model_name),
            deploy_backend=deploy_backend)