compressor.py 39.7 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
import numpy as np
C
ceci3 已提交
19
import copy
C
ceci3 已提交
20
import inspect
C
ceci3 已提交
21
import shutil
W
whs 已提交
22
from time import gmtime, strftime
23
import platform
C
ceci3 已提交
24
import paddle
W
whs 已提交
25
import itertools
C
ceci3 已提交
26
import paddle.distributed.fleet as fleet
27
from ..quant.quanter import convert, quant_post
C
ceci3 已提交
28 29
from ..common.recover_program import recover_inference_program
from ..common import get_logger
C
ceci3 已提交
30 31
from ..common.patterns import get_patterns
from ..analysis import TableLatencyPredictor
Z
zhouzj 已提交
32
from .create_compressed_program import build_distill_program, build_quant_program, build_prune_program, remove_unused_var_nodes
C
ceci3 已提交
33
from .strategy_config import TrainConfig, ProgramInfo, merge_config
34
from .auto_strategy import prepare_strategy, get_final_quant_config, create_strategy_config, create_train_config
W
whs 已提交
35
from .config_helpers import load_config, extract_strategy_config, extract_train_config
36
from .utils.predict import with_variable_shape
W
whs 已提交
37
from .utils import get_feed_vars, wrap_dataloader
C
ceci3 已提交
38 39 40

_logger = get_logger(__name__, level=logging.INFO)

C
ceci3 已提交
41 42
try:
    if platform.system().lower() == 'linux':
C
ceci3 已提交
43
        from ..quant import post_quant_hpo
C
ceci3 已提交
44 45 46
except Exception as e:
    _logger.warning(e)

C
ceci3 已提交
47 48 49 50 51 52 53 54

class AutoCompression:
    def __init__(self,
                 model_dir,
                 model_filename,
                 params_filename,
                 save_dir,
                 train_dataloader,
W
whs 已提交
55
                 config=None,
56
                 input_shapes=None,
C
ceci3 已提交
57
                 target_speedup=None,
58
                 eval_callback=None,
C
ceci3 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
                 eval_dataloader=None,
                 deploy_hardware='gpu'):
        """
        Compress inference model automatically.

        Args:
            model_dir(str): The path of inference model that will be compressed, and
                the model and params that saved by ``paddle.static.io.save_inference_model``
                are under the path.
            model_filename(str, optional):  The name of model file. If parameters
                are saved in separate files, set it as 'None'. Default: 'None'.
            params_filename(str, optional): The name of params file.
                When all parameters are saved in a single file, set it
                as filename. If parameters are saved in separate files,
                set it as 'None'. Default : 'None'.
W
whs 已提交
74 75
            save_dir(str): The path to save compressed model. The models in this directory will be overwrited
                after calling 'compress()' function.
C
ceci3 已提交
76 77 78
            train_data_loader(Python Generator, Paddle.io.DataLoader): The
                Generator or Dataloader provides train data, and it could
                return a batch every time.
79 80 81 82 83 84 85
            input_shapes(dict|tuple|list): It is used when the model has implicit dimensions except batch size. 
                If it is a dict, the key is the name of input and the value is the shape. 
                Given the input shape of input "X" is [-1, 3, -1, -1] which means the batch size, hight
                and width is variable. And the input_shapes can be set {"X": [-1, 3, 512, 512]}.
                If it is a list or tuple, the number of model's inputs should be 1. And the shape of input
                will be set input_shapes. None means keeping the original shapes, then
                the compression strategies searching may be skipped. Default: None.
C
ceci3 已提交
86 87 88 89 90 91 92 93 94 95 96
            train_config(dict, optional): The train config in the compression process, the key can 
                reference `<https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L103>`_ . 
                Only one strategy(quant_post with hyperparameter optimization) can set train_config 
                to None. Default: None. 
            strategy_config(dict, list(dict), optional): The strategy config. You can set single config to get multi-strategy config, such as
                1. set ``Quantization`` and ``Distillation`` to get quant_aware and distillation compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                2. set ``Quantization`` and ``HyperParameterOptimization`` to get quant_post and hyperparameter optimization compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The HyperParameterOptimization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L73`_ .
C
ceci3 已提交
97 98
                3. set ``ChannelPrune`` and ``Distillation`` to get channel prune and distillation compress config.
                    The ChannelPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
C
ceci3 已提交
99
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
100 101 102 103 104 105 106
                4. set ``ASPPrune`` and ``Distillation`` to get asp prune and distillation compress config.
                    The ASPPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                5. set ``TransformerPrune`` and ``Distillation`` to get transformer prune and distillation compress config.
                    The TransformerPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                6. set ``UnstructurePrune`` and ``Distillation`` to get unstructureprune and distillation compress config.
C
ceci3 已提交
107 108
                    The UnstructurePrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L91`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
109
                7. set ``Distillation`` to use one teacher modol to distillation student model.
C
ceci3 已提交
110
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
111
                8. set ``MultiTeacherDistillation`` to use multi-teacher to distillation student model.
C
ceci3 已提交
112 113 114 115 116
                    The MultiTeacherDistillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L56`_ .

                If set to None, will choose a strategy automatically. Default: None.
            target_speedup(float, optional): target speedup ratio by the way of auto compress. Default: None.
            eval_callback(function, optional): eval function, define by yourself to return the metric of the inference program, can be used to judge the metric of compressed model. The documents of how to write eval function is `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/auto-compression/custom_function.rst`_ . ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
117 118 119
            eval_dataloader(paddle.io.Dataloader, optional):  The Generator or Dataloader provides eval data, and it could
                 return a batch every time. If eval_dataloader is None, will take first 5000 sample from train_dataloader 
                 as eval_dataloader, and the metric of eval_dataloader for reference only. Dafault: None.
C
ceci3 已提交
120 121
            deploy_hardware(str, optional): The hardware you want to deploy. Default: 'gpu'.
        """
C
ceci3 已提交
122
        self.model_dir = model_dir
C
ceci3 已提交
123 124
        if model_filename == 'None':
            model_filename = None
C
ceci3 已提交
125
        self.model_filename = model_filename
C
ceci3 已提交
126 127
        if params_filename == 'None':
            params_filename = None
C
ceci3 已提交
128
        self.params_filename = params_filename
C
ceci3 已提交
129
        self.final_dir = save_dir
W
whs 已提交
130 131
        if not os.path.exists(self.final_dir):
            os.makedirs(self.final_dir)
W
whs 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

        # load config
        assert type(config) in [
            dict, str, set, list, tuple
        ], f"The type of config should be in [dict, str, set, list, tuple] but got {type(config)}"
        if isinstance(config, str):
            config = load_config(config)
        self.strategy_config = extract_strategy_config(config)
        self.train_config = extract_train_config(config)

        # prepare dataloader
        self.feed_vars = get_feed_vars(model_dir, model_filename,
                                       params_filename)
        self.train_dataloader = wrap_dataloader(train_dataloader,
                                                self.feed_vars)
        self.eval_dataloader = wrap_dataloader(eval_dataloader, self.feed_vars)
        if eval_dataloader is None:
            eval_dataloader = self._get_eval_dataloader(self.train_dataloader)

C
ceci3 已提交
151 152
        self.target_speedup = target_speedup
        self.eval_function = eval_callback
153
        self.deploy_hardware = deploy_hardware
154

C
ceci3 已提交
155
        paddle.enable_static()
C
ceci3 已提交
156 157 158
        self._exe, self._places = self._prepare_envs()
        self.model_type = self._get_model_type(self._exe, model_dir,
                                               model_filename, params_filename)
C
ceci3 已提交
159

C
ceci3 已提交
160
        if train_config is not None and train_config.use_fleet:
C
ceci3 已提交
161 162
            fleet.init(is_collective=True)

163 164 165 166 167 168 169 170 171 172 173 174 175
        if with_variable_shape(
                self.model_dir,
                model_filename=model_filename,
                params_filename=params_filename) and input_shapes is not None:

            infer_shape_model = self.create_tmp_dir(
                self.final_dir, prefix="infer_shape_model_")
            self._infer_shape(model_dir, self.model_filename,
                              self.params_filename, input_shapes,
                              infer_shape_model)
            self.model_dir = infer_shape_model
            self.model_filename = "infered_shape.pdmodel"
            self.params_filename = "infered_shape.pdiparams"
W
whs 已提交
176

C
ceci3 已提交
177 178
        if self.strategy_config is None:
            strategy_config = prepare_strategy(
C
ceci3 已提交
179 180 181
                self._exe, self._places, self.model_dir, self.model_filename,
                self.params_filename, self.target_speedup, self.deploy_hardware,
                self.model_type)
C
ceci3 已提交
182 183 184 185 186 187 188 189 190 191
            self.strategy_config = strategy_config
        elif isinstance(self.strategy_config, dict):
            self.strategy_config = [self.strategy_config]
        elif isinstance(self.strategy_config, str):
            strategy_config = create_strategy_config(self.strategy_config,
                                                     self.model_type)

        self._strategy, self._config = self._prepare_strategy(
            self.strategy_config)

C
ceci3 已提交
192 193 194 195 196
        self.train_config = self._get_final_train_config(
            train_config, self._strategy, self.model_type)

    def _get_final_train_config(self, train_config, strategy_config,
                                model_type):
197
        # If train_config is None, set default train_config
C
ceci3 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        if train_config is None:
            train_config = create_train_config(strategy_config, model_type)

        train_configs = [train_config]
        for idx in range(1, len(self._strategy)):
            if 'qat' in self._strategy[idx]:
                ### if compress strategy more than one, the train config in the yaml set for prune
                ### the train config for quantization is extrapolate from the yaml
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                ### the epoch, train_iter, learning rate of quant is 10% of the prune compress
                tmp_train_config['epochs'] = max(
                    int(train_config.epochs * 0.1), 1)
                if train_config.train_iter is not None:
                    tmp_train_config['train_iter'] = int(
                        train_config.train_iter * 0.1)
                if isinstance(train_config.learning_rate, float):
                    tmp_train_config[
                        'learning_rate'] = train_config.learning_rate * 0.1
                else:
                    if 'learning_rate' in train_config.learning_rate:
                        tmp_train_config['learning_rate'][
                            'learning_rate'] = train_config.learning_rate[
                                'learning_rate'] * 0.1
                    else:  ### learning rate decay is PiecewiseDecay
                        tmp_train_config['learning_rate']['values'] = list(
                            map(lambda x: x * 0.1, train_config.learning_rate[
                                'values']))
                train_cfg = TrainConfig(**tmp_train_config)
            elif 'ptq' in self._strategy[idx]:
                train_cfg = None
            else:
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                train_cfg = TrainConfig(**tmp_train_config)

            train_configs.append(train_cfg)
        return train_configs
234

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    def _infer_shape(self, model_dir, model_filename, params_filename,
                     input_shapes, save_path):
        assert type(input_shapes) in [
            dict, list, tuple
        ], f'Type of input_shapes should be in [dict, tuple or list] but got {type(input_shapes)}.'
        paddle.enable_static()
        exe = paddle.static.Executor(paddle.CPUPlace())
        [inference_program, feed_target_names, fetch_targets] = (
            paddle.static.load_inference_model(
                model_dir,
                exe,
                model_filename=model_filename,
                params_filename=params_filename))

        if type(input_shapes) in [list, tuple]:
            assert len(
                feed_target_names
            ) == 1, f"The number of model's inputs should be 1 but got {feed_target_names}."
            input_shapes = {feed_target_names[0]: input_shapes}

        feed_vars = []
        for var_ in inference_program.list_vars():
            if var_.name in feed_target_names:
                feed_vars.append(var_)
                var_.desc.set_shape(input_shapes[var_.name])

        for block in inference_program.blocks:
            for op in block.ops:
                if op.type not in ["feed", "fetch"]:
                    op.desc.infer_shape(block.desc)

        save_path = os.path.join(save_path, "infered_shape")
        os.makedirs(save_path)
        paddle.static.save_inference_model(
            save_path, feed_vars, fetch_targets, exe, program=inference_program)
        _logger.info(f"Saved model infered shape to {save_path}")

    @property
    def deploy_hardware(self):
        return self._deploy_hardware

    @deploy_hardware.setter
    def deploy_hardware(self, value):
278 279 280 281
        supported_hardware = TableLatencyPredictor.hardware_list + [
            'gpu',  # nvidia gpu
            "cpu",  # intel cpu
        ]
282 283 284
        if value is not None:
            # Fail-fast when deploy hardware is set explicitly
            assert (
285 286
                value in supported_hardware
            ), f"Hardware should be in supported list {supported_hardware} but got {value}. Or you can set deploy_hardware None."
287 288
        self._deploy_hardware = value

289 290 291 292 293 294 295 296 297 298 299
    def _get_eval_dataloader(self, train_dataloader):
        def _gen():
            len_loader = len(list(train_dataloader()))
            ### max eval_dataloader is 5000 if use train_dataloader as eval_dataloader
            slice_len = min(5000, len_loader)
            ret = list(itertools.islice(train_dataloader(), slice_len))
            for i in ret:
                yield i

        return _gen

C
ceci3 已提交
300 301
    def _prepare_envs(self):
        devices = paddle.device.get_device().split(':')[0]
C
ceci3 已提交
302 303 304 305
        places = paddle.device._convert_to_place(devices)
        exe = paddle.static.Executor(places)
        return exe, places

C
ceci3 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    def _get_model_type(self, exe, model_dir, model_filename, params_filename):
        [inference_program, _, _]= paddle.fluid.io.load_inference_model( \
            dirname=model_dir, \
            model_filename=model_filename, params_filename=params_filename,
            executor=exe)
        _, _, model_type = get_patterns(inference_program)
        return model_type

    def _prepare_strategy(self, strategy_config):
        if not isinstance(strategy_config, list):
            strategy_config = list(list(strategy_config))

        strategy = []
        config = []
        for strategy_c in strategy_config:
            quant_config = strategy_c.get("Quantization", None)
            hpo_config = strategy_c.get("HyperParameterOptimization", None)
C
ceci3 已提交
323 324 325
            prune_config = strategy_c.get("ChannelPrune", None)
            asp_config = strategy_c.get("ASPPrune", None)
            transformer_prune_config = strategy_c.get("TransformerPrune", None)
C
ceci3 已提交
326 327 328
            unstructure_prune_config = strategy_c.get("UnstructurePrune", None)
            single_teacher_distill_config = strategy_c.get("Distillation", None)
            if single_teacher_distill_config is not None and single_teacher_distill_config.teacher_model_dir is None:
C
ceci3 已提交
329 330 331
                single_teacher_distill_config.teacher_model_dir = self.model_dir
                single_teacher_distill_config.teacher_model_filename = self.model_filename
                single_teacher_distill_config.teacher_params_filename = self.params_filename
C
ceci3 已提交
332 333 334 335 336 337 338 339 340 341

            multi_teacher_distill_config = strategy_c.get(
                "MultiTeacherDistillation", None)

            assert (single_teacher_distill_config is None) or (multi_teacher_distill_config is None), \
                "Distillation and MultiTeacherDistillation cannot be set at the same time."
            self._distill_config = single_teacher_distill_config if \
                   single_teacher_distill_config is not None else \
                   multi_teacher_distill_config

C
ceci3 已提交
342
            only_distillation = True
C
ceci3 已提交
343

C
ceci3 已提交
344 345 346
            ### case1: prune_config & distill config
            if prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
347
                strategy.append('channel_prune_dis')
C
ceci3 已提交
348 349
                config.append(merge_config(prune_config, self._distill_config))

C
ceci3 已提交
350 351 352
            ### case2: asp_config & distill config
            if asp_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
353 354 355
                strategy.append('asp_prune_dis')
                config.append(merge_config(asp_config, self._distill_config))

C
ceci3 已提交
356 357 358
            ### case3: transformer_prune_config & distill config
            if transformer_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
359 360 361 362 363
                strategy.append('transformer_prune_dis')
                config.append(
                    merge_config(transformer_prune_config,
                                 self._distill_config))

C
ceci3 已提交
364 365 366
            ### case4: unstructure_config & distill config
            if unstructure_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
367 368 369 370 371
                strategy.append('unstructure_prune_dis')
                config.append(
                    merge_config(unstructure_prune_config,
                                 self._distill_config))

C
ceci3 已提交
372 373 374 375 376 377 378 379 380 381 382 383
            ### case5: quant_config & hpo_config ==> PTQ & HPO
            if quant_config is not None and hpo_config is not None:
                only_distillation = False
                strategy.append('ptq_hpo')
                config.append(merge_config(quant_config, hpo_config))

            ### case6: quant_config & distill config ==> QAT & Distill
            if quant_config is not None and self._distill_config is not None:
                only_distillation = False
                strategy.append('qat_dis')
                config.append(merge_config(quant_config, self._distill_config))

C
ceci3 已提交
384
            ### case7: distill_config
C
ceci3 已提交
385
            if only_distillation == True and self._distill_config is not None:
C
ceci3 已提交
386 387 388 389 390 391
                if single_teacher_distill_config is not None:
                    strategy.append('single_teacher_dis')
                    config.append(single_teacher_distill_config)
                else:
                    strategy.append('multi_teacher_dis')
                    config.append(multi_teacher_distill_config)
C
ceci3 已提交
392

C
ceci3 已提交
393 394 395 396 397 398 399 400 401 402 403 404
        ### NOTE: keep quantation in the last step
        idx = -1
        if 'qat_dis' in strategy and strategy.index('qat_dis') != (
                len(strategy) - 1):
            idx = strategy.index('qat_dis')
        elif 'ptq_hpo' in strategy and strategy.index('ptq_hpo') != (
                len(strategy) - 1):
            idx = strategy.index('ptq_hpo')

        if idx != -1:
            strategy = strategy[:idx] + strategy[idx + 1:] + [strategy[idx]]
            config = config[:idx] + config[idx + 1:] + [config[idx]]
C
ceci3 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

        return strategy, config

    def _prepare_fleet_strategy(train_config):
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()

        strategy = fleet.DistributedStrategy()
        strategy.build_strategy = build_strategy
        if train_config.recompute_config is not None:
            strategy.recompute = True
            strategy.recompute_configs = { ** train_config.recompute_config}
        if train_config.sharding_config is not None:
            strategy.sharding = True
            strategy.sharding_configs = { ** train_config.sharding_config}
        if train_config.amp_config is not None:
            strategy.amp = True
            strategy.amp_configs = { ** train_config.amp_config}
423 424
        if train_config.asp_config is not None:
            strategy.asp = True
C
ceci3 已提交
425 426
        return strategy

C
ceci3 已提交
427
    def _prepare_program(self, program, feed_target_names, fetch_targets,
C
ceci3 已提交
428 429
                         patterns, default_distill_node_pair, strategy, config,
                         train_config):
C
ceci3 已提交
430 431 432 433 434
        train_program = recover_inference_program(program)
        startup_program = paddle.static.Program()
        train_program_info = ProgramInfo(startup_program, train_program,
                                         feed_target_names, fetch_targets)

C
ceci3 已提交
435
        config_dict = config.__dict__
436 437 438
        if "prune_strategy" in config_dict and config_dict[
                "prune_strategy"] == "gmp" and config_dict[
                    'gmp_config'] is None:
Z
zhouzj 已提交
439 440 441
            _logger.info(
                "Calculating the iterations per epoch……(It will take some time)")
            # NOTE:XXX: This way of calculating the iters needs to be improved.
C
ceci3 已提交
442
            if train_config.epochs:
G
Guanghua Yu 已提交
443
                iters_per_epoch = len(list(self.train_dataloader()))
C
ceci3 已提交
444 445 446
                total_iters = train_config.epochs * iters_per_epoch
            elif train_config.train_iter:
                total_iters = train_config.train_iter
G
Guanghua Yu 已提交
447 448 449
            else:
                raise RuntimeError(
                    'train_config must has `epochs` or `train_iter` field.')
Z
zhouzj 已提交
450 451 452 453 454 455 456 457
            config_dict['gmp_config'] = {
                'stable_iterations': 0,
                'pruning_iterations': 0.45 * total_iters,
                'tunning_iterations': 0.45 * total_iters,
                'resume_iteration': -1,
                'pruning_steps': 100,
                'initial_ratio': 0.15,
            }
C
ceci3 已提交
458 459
        ### add prune program
        self._pruner = None
C
ceci3 已提交
460
        if 'prune' in strategy:
C
ceci3 已提交
461 462
            self._pruner, train_program_info = build_prune_program(
                self._exe, self._places, config_dict, train_program_info,
C
ceci3 已提交
463
                strategy, patterns, self.eval_dataloader)
C
ceci3 已提交
464

C
ceci3 已提交
465 466
        if train_config.use_fleet:
            dist_strategy = _prepare_fleet_strategy(train_config)
C
ceci3 已提交
467 468 469 470
        else:
            dist_strategy = None

        ### add distill program
C
ceci3 已提交
471
        if 'dis' in strategy:
C
ceci3 已提交
472 473 474 475
            train_program_info, test_program_info = build_distill_program(
                self._exe,
                self._places,
                config_dict,
C
ceci3 已提交
476
                train_config.__dict__,
C
ceci3 已提交
477 478
                train_program_info,
                pruner=self._pruner,
C
ceci3 已提交
479 480
                dist_strategy=dist_strategy,
                default_distill_node_pair=default_distill_node_pair)
C
ceci3 已提交
481 482 483

        self._quant_config = None
        ### add quant_aware program, quant always is last step
C
ceci3 已提交
484
        if 'qat' in strategy:
C
ceci3 已提交
485 486 487
            train_program_info, test_program_info, self._quant_config = build_quant_program(
                self._exe, self._places, config_dict, train_program_info,
                test_program_info)
C
ceci3 已提交
488
        if train_config.sparse_model:
Z
zhouzj 已提交
489
            from ..prune.unstructured_pruner import UnstructuredPruner
Z
zhouzj 已提交
490
            # NOTE: The initialization parameter of this pruner doesn't work, it is only used to call the 'set_static_masks' function
Z
zhouzj 已提交
491 492 493 494 495 496
            self._pruner = UnstructuredPruner(
                train_program_info.program,
                mode='ratio',
                ratio=0.75,
                prune_params_type='conv1x1_only',
                place=self._places)
Z
zhouzj 已提交
497
            self._pruner.set_static_masks()  # Fixed model sparsity
C
ceci3 已提交
498 499 500

        self._exe.run(train_program_info.startup_program)

C
ceci3 已提交
501 502 503 504
        if (not train_config.use_fleet) and train_config.amp_config is not None:
            if hasattr(
                    train_config.amp_config,
                    'use_pure_fp16') and train_config.amp_config.use_pure_fp16:
C
ceci3 已提交
505 506 507
                train_program_info.optimizer.amp_init(
                    self._places, scope=paddle.static.global_scope())

C
ceci3 已提交
508
        if 'asp' in strategy:
C
ceci3 已提交
509 510 511
            ### prune weight in scope
            self._pruner.prune_model(train_program_info.program)

C
ceci3 已提交
512
        if not train_config.use_fleet:
C
ceci3 已提交
513
            train_program_info = self._compiled_program(train_program_info,
C
ceci3 已提交
514
                                                        strategy)
C
ceci3 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
            test_program_info = self._compiled_program(test_program_info,
                                                       self._strategy)
        return train_program_info, test_program_info

    def _compiled_program(self, program_info, strategy):
        compiled_prog = paddle.static.CompiledProgram(program_info.program)
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()
        if 'qat' in strategy:
            build_strategy.memory_optimize = False
            build_strategy.enable_inplace = False
            build_strategy.fuse_all_reduce_ops = False
            build_strategy.sync_batch_norm = False

        compiled_prog = compiled_prog.with_data_parallel(
            loss_name=program_info.fetch_targets[0].name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)
        program_info.program = compiled_prog
        return program_info

536
    def create_tmp_dir(self, base_dir, prefix="tmp"):
W
whs 已提交
537
        # create a new temp directory in final dir
538 539 540 541 542 543
        s_datetime = strftime("%Y-%m-%d-%H:%M:%S", gmtime())
        tmp_base_name = "_".join([prefix, str(os.getpid()), s_datetime])
        tmp_dir = os.path.join(base_dir, tmp_base_name)
        if not os.path.exists(tmp_dir):
            os.makedirs(tmp_dir)
        return tmp_dir
W
whs 已提交
544

545
    def compress(self):
546
        self.tmp_dir = self.create_tmp_dir(self.final_dir)
C
ceci3 已提交
547
        for strategy_idx, (
C
ceci3 已提交
548 549 550 551
                strategy, config, train_config
        ) in enumerate(zip(self._strategy, self._config, self.train_config)):
            self.single_strategy_compress(strategy, config, strategy_idx,
                                          train_config)
C
ceci3 已提交
552 553 554

        if strategy == 'ptq_hpo' and config.max_quant_count == 1 and platform.system(
        ).lower() == 'linux':
C
ceci3 已提交
555
            ptq_loss = post_quant_hpo.g_min_emd_loss
C
ceci3 已提交
556

C
ceci3 已提交
557 558 559 560 561
            final_quant_config = get_final_quant_config(ptq_loss)
            if final_quant_config is not None:
                quant_strategy, quant_config = self._prepare_strategy(
                    final_quant_config)
                self.single_strategy_compress(quant_strategy[0],
C
ceci3 已提交
562 563
                                              quant_config[0], strategy_idx,
                                              train_config)
564
        tmp_model_path = os.path.join(
W
whs 已提交
565
            self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1)))
C
ceci3 已提交
566
        final_model_path = os.path.join(self.final_dir)
567 568
        if not os.path.exists(final_model_path):
            os.makedirs(final_model_path)
C
ceci3 已提交
569 570 571 572 573 574 575
        tmp_model_file = os.path.join(tmp_model_path, self.model_filename)
        tmp_params_file = os.path.join(tmp_model_path, self.params_filename)
        final_model_file = os.path.join(final_model_path, self.model_filename)
        final_params_file = os.path.join(final_model_path, self.params_filename)
        if paddle.distributed.get_rank() == 0:
            shutil.move(tmp_model_file, final_model_file)
            shutil.move(tmp_params_file, final_params_file)
W
whs 已提交
576
            shutil.rmtree(self.tmp_dir)
C
ceci3 已提交
577
            _logger.info(
G
Guanghua Yu 已提交
578
                "==> The ACT compression has been completed and the final model is saved in `{}`".
C
ceci3 已提交
579
                format(final_model_path))
C
ceci3 已提交
580 581
        os._exit(0)

C
ceci3 已提交
582 583
    def single_strategy_compress(self, strategy, config, strategy_idx,
                                 train_config):
584 585 586 587 588 589 590
        # start compress, including train/eval model
        # TODO: add the emd loss of evaluation model.
        if strategy == 'quant_post':
            quant_post(
                self._exe,
                model_dir=self.model_dir,
                quantize_model_path=os.path.join(
W
whs 已提交
591
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
                data_loader=self.train_dataloader,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
                batch_size=1,
                batch_nums=config.batch_num,
                algo=config.ptq_algo,
                round_type='round',
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
                quantizable_op_type=config.quantize_op_types,
                is_full_quantize=config.is_full_quantize,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                activation_quantize_type='range_abs_max',
                weight_quantize_type=config.weight_quantize_type,
                onnx_format=False)

        elif strategy == 'ptq_hpo':
612 613 614 615
            if platform.system().lower() != 'linux':
                raise NotImplementedError(
                    "post-quant-hpo is not support in system other than linux")

C
ceci3 已提交
616
            post_quant_hpo.quant_post_hpo(
C
ceci3 已提交
617 618 619
                self._exe,
                self._places,
                model_dir=self.model_dir,
C
ceci3 已提交
620
                quantize_model_path=os.path.join(
W
whs 已提交
621
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
C
ceci3 已提交
622 623 624 625 626 627 628
                train_dataloader=self.train_dataloader,
                eval_dataloader=self.eval_dataloader,
                eval_function=self.eval_function,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
C
ceci3 已提交
629 630 631 632 633 634 635 636
                quantizable_op_type=config.quantize_op_types,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                weight_quantize_type=config.weight_quantize_type,
                is_full_quantize=config.is_full_quantize,
                algo=config.ptq_algo,
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
C
ceci3 已提交
637
                batch_size=[1],
C
ceci3 已提交
638 639
                batch_num=config.batch_num,
                runcount_limit=config.max_quant_count)
C
ceci3 已提交
640 641

        else:
C
ceci3 已提交
642 643 644 645 646 647
            assert 'dis' in strategy, "Only support optimizer compressed model by distillation loss."

            if strategy_idx == 0:
                model_dir = self.model_dir
            else:
                model_dir = os.path.join(
W
whs 已提交
648
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx)))
C
ceci3 已提交
649 650

            [inference_program, feed_target_names, fetch_targets]= paddle.fluid.io.load_inference_model( \
C
ceci3 已提交
651
                dirname=model_dir, \
C
ceci3 已提交
652 653 654 655
                model_filename=self.model_filename, params_filename=self.params_filename,
                executor=self._exe)

            ### used to check whether the dataloader is right
C
ceci3 已提交
656
            self.metric_before_compressed = None
C
ceci3 已提交
657
            if self.eval_function is not None and train_config.origin_metric is not None:
C
ceci3 已提交
658
                _logger.info("start to test metric before compress")
C
ceci3 已提交
659 660 661 662
                metric = self.eval_function(self._exe, inference_program,
                                            feed_target_names, fetch_targets)
                _logger.info("metric of compressed model is: {}".format(metric))
                buf = 0.05
C
ceci3 已提交
663 664
                if metric < (float(train_config.origin_metric) - buf) or \
                        metric > (float(train_config.origin_metric) + buf):
C
ceci3 已提交
665 666 667 668
                    raise RuntimeError("target metric of pretrained model is {}, \
                          but now is {}, Please check the format of evaluation dataset \
                          or check the origin_metric in train_config"
                                                                     .format(\
C
ceci3 已提交
669
                          train_config.origin_metric, metric))
C
ceci3 已提交
670 671 672 673
                self.metric_before_compressed = metric

            patterns, default_distill_node_pair, _ = get_patterns(
                inference_program)
C
ceci3 已提交
674 675

            train_program_info, test_program_info = self._prepare_program(
C
ceci3 已提交
676
                inference_program, feed_target_names, fetch_targets, patterns,
C
ceci3 已提交
677
                default_distill_node_pair, strategy, config, train_config)
Z
zhouzj 已提交
678 679 680
            if 'unstructure' in self._strategy:
                test_program_info.program._program = remove_unused_var_nodes(
                    test_program_info.program._program)
C
ceci3 已提交
681 682
            test_program_info = self._start_train(
                train_program_info, test_program_info, strategy, train_config)
C
ceci3 已提交
683
            self._save_model(test_program_info, strategy, strategy_idx)
C
ceci3 已提交
684

C
ceci3 已提交
685 686
    def _start_train(self, train_program_info, test_program_info, strategy,
                     train_config):
C
ceci3 已提交
687
        best_metric = -1.0
G
Guanghua Yu 已提交
688 689
        total_epochs = self.train_config.epochs if self.train_config.epochs else 100
        total_train_iter = 0
G
Guanghua Yu 已提交
690
        for epoch_id in range(total_epochs):
C
ceci3 已提交
691 692 693 694
            for batch_id, data in enumerate(self.train_dataloader()):
                np_probs_float, = self._exe.run(train_program_info.program, \
                    feed=data, \
                    fetch_list=train_program_info.fetch_targets)
695 696
                if not isinstance(train_program_info.learning_rate, float):
                    train_program_info.learning_rate.step()
C
ceci3 已提交
697
                if 'unstructure' in strategy:
C
ceci3 已提交
698 699
                    self._pruner.step()

C
ceci3 已提交
700
                if train_config.logging_iter is None:
C
ceci3 已提交
701 702
                    logging_iter = 10
                else:
C
ceci3 已提交
703
                    logging_iter = train_config.logging_iter
C
ceci3 已提交
704
                if batch_id % int(logging_iter) == 0:
G
Guanghua Yu 已提交
705 706 707 708 709 710 711
                    _logger.info(
                        "Total iter: {}, epoch: {}, batch: {}, loss: {}".format(
                            total_train_iter, epoch_id, batch_id,
                            np_probs_float))
                total_train_iter += 1
                if total_train_iter % int(self.train_config.eval_iter
                                          ) == 0 and total_train_iter != 0:
C
ceci3 已提交
712 713 714
                    if self.eval_function is not None:

                        # GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation. 
C
ceci3 已提交
715
                        if 'unstructure' in strategy:
C
ceci3 已提交
716 717 718 719 720 721 722 723
                            self._pruner.update_params()

                        metric = self.eval_function(
                            self._exe, test_program_info.program,
                            test_program_info.feed_target_names,
                            test_program_info.fetch_targets)

                        _logger.info(
G
Guanghua Yu 已提交
724 725 726
                            "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
                            format(epoch_id, metric, best_metric))

C
ceci3 已提交
727 728 729
                        if metric > best_metric:
                            paddle.static.save(
                                program=test_program_info.program._program,
W
whs 已提交
730
                                model_path=os.path.join(self.tmp_dir,
C
ceci3 已提交
731
                                                        'best_model'))
C
ceci3 已提交
732 733 734 735 736 737
                            best_metric = metric
                            if self.metric_before_compressed is not None and float(
                                    abs(best_metric -
                                        self.metric_before_compressed)
                            ) / self.metric_before_compressed <= 0.005:
                                break
C
ceci3 已提交
738 739
                        if train_config.target_metric is not None:
                            if metric > float(train_config.target_metric):
C
ceci3 已提交
740
                                break
C
ceci3 已提交
741 742

                    else:
743 744 745
                        _logger.warning(
                            "Not set eval function, so unable to test accuracy performance."
                        )
G
Guanghua Yu 已提交
746
                if self.train_config.train_iter and total_train_iter >= self.train_config.train_iter:
G
Guanghua Yu 已提交
747
                    break
C
ceci3 已提交
748

C
ceci3 已提交
749
        if 'unstructure' in self._strategy or train_config.sparse_model:
Z
zhouzj 已提交
750 751
            self._pruner.update_params()

C
ceci3 已提交
752 753
        return test_program_info

C
ceci3 已提交
754
    def _save_model(self, test_program_info, strategy, strategy_idx):
C
ceci3 已提交
755 756 757
        test_program = test_program_info.program._program if isinstance(
            test_program_info.program,
            paddle.static.CompiledProgram) else test_program_info.program
C
ceci3 已提交
758

W
whs 已提交
759
        if os.path.exists(os.path.join(self.tmp_dir, 'best_model.pdparams')):
760
            paddle.static.load(test_program,
W
whs 已提交
761 762 763 764
                               os.path.join(self.tmp_dir, 'best_model'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdmodel'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdopt'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdparams'))
C
ceci3 已提交
765 766

        if 'qat' in strategy:
G
Guanghua Yu 已提交
767
            test_program, int8_program = convert(test_program, self._places, self._quant_config, \
C
ceci3 已提交
768 769 770
                                          scope=paddle.static.global_scope(), \
                                          save_int8=True)

W
whs 已提交
771
        model_dir = os.path.join(self.tmp_dir,
C
ceci3 已提交
772 773 774 775 776 777 778
                                 'strategy_{}'.format(str(strategy_idx + 1)))
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
        paddle.fluid.io.save_inference_model(
            dirname=str(model_dir),
            feeded_var_names=test_program_info.feed_target_names,
            target_vars=test_program_info.fetch_targets,
C
ceci3 已提交
779
            executor=self._exe,
780
            main_program=test_program,
C
ceci3 已提交
781 782
            model_filename=self.model_filename,
            params_filename=self.params_filename)