Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
6fa4ff18
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6fa4ff18
编写于
6月 17, 2022
作者:
W
whs
提交者:
GitHub
6月 17, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Make ACT support inputs with implicit dimensions (#1175)
上级
b928d0c3
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
86 addition
and
18 deletion
+86
-18
paddleslim/analysis/latency_predictor.py
paddleslim/analysis/latency_predictor.py
+2
-1
paddleslim/auto_compression/compressor.py
paddleslim/auto_compression/compressor.py
+82
-14
paddleslim/auto_compression/utils/fake_ptq.py
paddleslim/auto_compression/utils/fake_ptq.py
+0
-1
paddleslim/auto_compression/utils/predict.py
paddleslim/auto_compression/utils/predict.py
+2
-2
未找到文件。
paddleslim/analysis/latency_predictor.py
浏览文件 @
6fa4ff18
...
...
@@ -239,6 +239,7 @@ class TableLatencyPredictor(LatencyPredictor):
data_type
=
data_type
)
features
=
get_features_from_paramkey
(
param_key
,
op_type
,
data_type
)
latency
=
nearest_interpolate
(
features
,
data
)
assert
latency
!=
None
,
f
'
{
param_key
}
is not in the table.'
if
latency
is
None
:
return
0.
return
latency
paddleslim/auto_compression/compressor.py
浏览文件 @
6fa4ff18
...
...
@@ -30,6 +30,7 @@ from ..analysis import TableLatencyPredictor
from
.create_compressed_program
import
build_distill_program
,
build_quant_program
,
build_prune_program
,
remove_unused_var_nodes
from
.strategy_config
import
ProgramInfo
,
merge_config
from
.auto_strategy
import
prepare_strategy
,
get_final_quant_config
,
create_strategy_config
,
create_train_config
from
.utils.predict
import
with_variable_shape
_logger
=
get_logger
(
__name__
,
level
=
logging
.
INFO
)
...
...
@@ -47,6 +48,7 @@ class AutoCompression:
params_filename
,
save_dir
,
train_dataloader
,
input_shapes
=
None
,
train_config
=
None
,
strategy_config
=
None
,
target_speedup
=
None
,
...
...
@@ -71,6 +73,13 @@ class AutoCompression:
train_data_loader(Python Generator, Paddle.io.DataLoader): The
Generator or Dataloader provides train data, and it could
return a batch every time.
input_shapes(dict|tuple|list): It is used when the model has implicit dimensions except batch size.
If it is a dict, the key is the name of input and the value is the shape.
Given the input shape of input "X" is [-1, 3, -1, -1] which means the batch size, hight
and width is variable. And the input_shapes can be set {"X": [-1, 3, 512, 512]}.
If it is a list or tuple, the number of model's inputs should be 1. And the shape of input
will be set input_shapes. None means keeping the original shapes, then
the compression strategies searching may be skipped. Default: None.
train_config(dict, optional): The train config in the compression process, the key can
reference `<https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L103>`_ .
Only one strategy(quant_post with hyperparameter optimization) can set train_config
...
...
@@ -122,18 +131,13 @@ class AutoCompression:
self
.
train_dataloader
=
train_dataloader
self
.
target_speedup
=
target_speedup
self
.
eval_function
=
eval_callback
self
.
deploy_hardware
=
deploy_hardware
if
eval_dataloader
is
None
:
eval_dataloader
=
self
.
_get_eval_dataloader
(
train_dataloader
)
self
.
eval_dataloader
=
eval_dataloader
paddle
.
enable_static
()
if
deploy_hardware
in
TableLatencyPredictor
.
hardware_list
:
self
.
deploy_hardware
=
deploy_hardware
else
:
self
.
deploy_hardware
=
None
self
.
_exe
,
self
.
_places
=
self
.
_prepare_envs
()
self
.
model_type
=
self
.
_get_model_type
(
self
.
_exe
,
model_dir
,
model_filename
,
params_filename
)
...
...
@@ -141,6 +145,19 @@ class AutoCompression:
if
self
.
train_config
is
not
None
and
self
.
train_config
.
use_fleet
:
fleet
.
init
(
is_collective
=
True
)
if
with_variable_shape
(
self
.
model_dir
,
model_filename
=
model_filename
,
params_filename
=
params_filename
)
and
input_shapes
is
not
None
:
infer_shape_model
=
self
.
create_tmp_dir
(
self
.
final_dir
,
prefix
=
"infer_shape_model_"
)
self
.
_infer_shape
(
model_dir
,
self
.
model_filename
,
self
.
params_filename
,
input_shapes
,
infer_shape_model
)
self
.
model_dir
=
infer_shape_model
self
.
model_filename
=
"infered_shape.pdmodel"
self
.
params_filename
=
"infered_shape.pdiparams"
if
self
.
strategy_config
is
None
:
strategy_config
=
prepare_strategy
(
self
.
_exe
,
self
.
_places
,
self
.
model_dir
,
self
.
model_filename
,
...
...
@@ -155,14 +172,62 @@ class AutoCompression:
self
.
_strategy
,
self
.
_config
=
self
.
_prepare_strategy
(
self
.
strategy_config
)
#print(self._strategy, self._config[0].__dict__)
#sys.exit()
# If train_config is None, set default train_config
if
self
.
train_config
is
None
:
self
.
train_config
=
create_train_config
(
self
.
strategy_config
,
self
.
model_type
)
def
_infer_shape
(
self
,
model_dir
,
model_filename
,
params_filename
,
input_shapes
,
save_path
):
assert
type
(
input_shapes
)
in
[
dict
,
list
,
tuple
],
f
'Type of input_shapes should be in [dict, tuple or list] but got
{
type
(
input_shapes
)
}
.'
paddle
.
enable_static
()
exe
=
paddle
.
static
.
Executor
(
paddle
.
CPUPlace
())
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
(
paddle
.
static
.
load_inference_model
(
model_dir
,
exe
,
model_filename
=
model_filename
,
params_filename
=
params_filename
))
if
type
(
input_shapes
)
in
[
list
,
tuple
]:
assert
len
(
feed_target_names
)
==
1
,
f
"The number of model's inputs should be 1 but got
{
feed_target_names
}
."
input_shapes
=
{
feed_target_names
[
0
]:
input_shapes
}
feed_vars
=
[]
for
var_
in
inference_program
.
list_vars
():
if
var_
.
name
in
feed_target_names
:
feed_vars
.
append
(
var_
)
var_
.
desc
.
set_shape
(
input_shapes
[
var_
.
name
])
for
block
in
inference_program
.
blocks
:
for
op
in
block
.
ops
:
if
op
.
type
not
in
[
"feed"
,
"fetch"
]:
op
.
desc
.
infer_shape
(
block
.
desc
)
save_path
=
os
.
path
.
join
(
save_path
,
"infered_shape"
)
os
.
makedirs
(
save_path
)
paddle
.
static
.
save_inference_model
(
save_path
,
feed_vars
,
fetch_targets
,
exe
,
program
=
inference_program
)
_logger
.
info
(
f
"Saved model infered shape to
{
save_path
}
"
)
@
property
def
deploy_hardware
(
self
):
return
self
.
_deploy_hardware
@
deploy_hardware
.
setter
def
deploy_hardware
(
self
,
value
):
if
value
is
not
None
:
# Fail-fast when deploy hardware is set explicitly
assert
(
value
in
TableLatencyPredictor
.
hardware_list
),
f
"Hardware should be in supported list
{
TableLatencyPredictor
.
hardware_list
}
but got
{
value
}
. Or you can set deploy_hardware None."
self
.
_deploy_hardware
=
value
def
_get_eval_dataloader
(
self
,
train_dataloader
):
def
_gen
():
len_loader
=
len
(
list
(
train_dataloader
()))
...
...
@@ -394,14 +459,17 @@ class AutoCompression:
program_info
.
program
=
compiled_prog
return
program_info
def
c
ompress
(
self
):
def
c
reate_tmp_dir
(
self
,
base_dir
,
prefix
=
"tmp"
):
# create a new temp directory in final dir
s_datetime
=
strftime
(
"%Y-%m-%d-%H-%M-%S"
,
gmtime
())
tmp_base_name
=
"_"
.
join
([
"tmp"
,
str
(
os
.
getpid
()),
s_datetime
])
self
.
tmp_dir
=
os
.
path
.
join
(
self
.
final_dir
,
tmp_base_name
)
if
not
os
.
path
.
exists
(
self
.
tmp_dir
):
os
.
makedirs
(
self
.
tmp_dir
)
s_datetime
=
strftime
(
"%Y-%m-%d-%H:%M:%S"
,
gmtime
())
tmp_base_name
=
"_"
.
join
([
prefix
,
str
(
os
.
getpid
()),
s_datetime
])
tmp_dir
=
os
.
path
.
join
(
base_dir
,
tmp_base_name
)
if
not
os
.
path
.
exists
(
tmp_dir
):
os
.
makedirs
(
tmp_dir
)
return
tmp_dir
def
compress
(
self
):
self
.
tmp_dir
=
create_tmp_dir
(
self
.
final_dir
)
for
strategy_idx
,
(
strategy
,
config
)
in
enumerate
(
zip
(
self
.
_strategy
,
self
.
_config
)):
...
...
paddleslim/auto_compression/utils/fake_ptq.py
浏览文件 @
6fa4ff18
...
...
@@ -51,7 +51,6 @@ def post_quant_fake(executor,
for
op_type
in
_quantizable_op_type
:
assert
op_type
in
_support_quantize_op_type
,
\
op_type
+
" is not supported for quantization."
_program
,
_feed_list
,
_fetch_list
=
paddle
.
fluid
.
io
.
load_inference_model
(
model_dir
,
executor
,
...
...
paddleslim/auto_compression/utils/predict.py
浏览文件 @
6fa4ff18
...
...
@@ -11,8 +11,8 @@ def with_variable_shape(model_dir, model_filename=None, params_filename=None):
Whether the shape of model's input is variable.
Args:
path_prefix(str | None): Directory path to save model + model name without suffix.
model_filename(str): specify model_filename if you don't want to use default name. Default :
'None'
.
params_filename(str): specify params_filename if you don't want to use default name. Default :
'None'
.
model_filename(str): specify model_filename if you don't want to use default name. Default :
None
.
params_filename(str): specify params_filename if you don't want to use default name. Default :
None
.
Returns:
bool: Whether the shape of model's input is variable.
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录