compressor.py 43.5 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
W
whs 已提交
18
import copy
C
ceci3 已提交
19
import numpy as np
C
ceci3 已提交
20
import copy
C
ceci3 已提交
21
import inspect
C
ceci3 已提交
22
import shutil
W
whs 已提交
23
from time import gmtime, strftime
24
import platform
C
ceci3 已提交
25
import paddle
W
whs 已提交
26
import itertools
C
ceci3 已提交
27
import paddle.distributed.fleet as fleet
28
from ..quant.quanter import convert, quant_post
C
ceci3 已提交
29 30
from ..common.recover_program import recover_inference_program
from ..common import get_logger
31
from ..common.patterns import get_patterns, find_final_nodes
G
Guanghua Yu 已提交
32
from ..common.load_model import load_inference_model, get_model_dir, export_onnx
33 34
from ..common.dataloader import wrap_dataloader, get_feed_vars
from ..common.config_helper import load_config
C
ceci3 已提交
35
from ..analysis import TableLatencyPredictor
Z
zhouzj 已提交
36
from .create_compressed_program import build_distill_program, build_quant_program, build_prune_program, remove_unused_var_nodes
C
ceci3 已提交
37
from .strategy_config import TrainConfig, ProgramInfo, merge_config
38
from .auto_strategy import prepare_strategy, get_final_quant_config, create_strategy_config, create_train_config
39
from .config_helpers import extract_strategy_config, extract_train_config
40
from .utils.predict import with_variable_shape
C
ceci3 已提交
41 42 43

_logger = get_logger(__name__, level=logging.INFO)

C
ceci3 已提交
44 45
try:
    if platform.system().lower() == 'linux':
C
ceci3 已提交
46
        from ..quant import post_quant_hpo
C
ceci3 已提交
47 48 49
except Exception as e:
    _logger.warning(e)

C
ceci3 已提交
50 51 52 53 54

class AutoCompression:
    def __init__(self,
                 model_dir,
                 train_dataloader,
55 56 57
                 model_filename=None,
                 params_filename=None,
                 save_dir='./output',
W
whs 已提交
58
                 config=None,
59
                 input_shapes=None,
C
ceci3 已提交
60
                 target_speedup=None,
61
                 eval_callback=None,
C
ceci3 已提交
62 63 64 65 66 67 68
                 eval_dataloader=None,
                 deploy_hardware='gpu'):
        """
        Compress inference model automatically.

        Args:
            model_dir(str): The path of inference model that will be compressed, and
C
ceci3 已提交
69
                the model and params that saved by ``paddle.static.save_inference_model``
C
ceci3 已提交
70
                are under the path.
G
Guanghua Yu 已提交
71
            train_dataloader(Python Generator, Paddle.io.DataLoader): The
72 73
                Generator or Dataloader provides train data, and it could
                return a batch every time.
C
ceci3 已提交
74 75
            model_filename(str):  The name of model file. 
            params_filename(str): The name of params file.
W
whs 已提交
76 77
            save_dir(str): The path to save compressed model. The models in this directory will be overwrited
                after calling 'compress()' function.
78 79 80 81 82 83 84
            input_shapes(dict|tuple|list): It is used when the model has implicit dimensions except batch size. 
                If it is a dict, the key is the name of input and the value is the shape. 
                Given the input shape of input "X" is [-1, 3, -1, -1] which means the batch size, hight
                and width is variable. And the input_shapes can be set {"X": [-1, 3, 512, 512]}.
                If it is a list or tuple, the number of model's inputs should be 1. And the shape of input
                will be set input_shapes. None means keeping the original shapes, then
                the compression strategies searching may be skipped. Default: None.
C
ceci3 已提交
85 86 87 88 89 90 91 92 93 94 95
            train_config(dict, optional): The train config in the compression process, the key can 
                reference `<https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L103>`_ . 
                Only one strategy(quant_post with hyperparameter optimization) can set train_config 
                to None. Default: None. 
            strategy_config(dict, list(dict), optional): The strategy config. You can set single config to get multi-strategy config, such as
                1. set ``Quantization`` and ``Distillation`` to get quant_aware and distillation compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                2. set ``Quantization`` and ``HyperParameterOptimization`` to get quant_post and hyperparameter optimization compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The HyperParameterOptimization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L73`_ .
C
ceci3 已提交
96 97
                3. set ``ChannelPrune`` and ``Distillation`` to get channel prune and distillation compress config.
                    The ChannelPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
C
ceci3 已提交
98
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
99 100 101 102 103 104 105
                4. set ``ASPPrune`` and ``Distillation`` to get asp prune and distillation compress config.
                    The ASPPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                5. set ``TransformerPrune`` and ``Distillation`` to get transformer prune and distillation compress config.
                    The TransformerPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                6. set ``UnstructurePrune`` and ``Distillation`` to get unstructureprune and distillation compress config.
C
ceci3 已提交
106 107
                    The UnstructurePrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L91`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
108
                7. set ``Distillation`` to use one teacher modol to distillation student model.
C
ceci3 已提交
109
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
110
                8. set ``MultiTeacherDistillation`` to use multi-teacher to distillation student model.
C
ceci3 已提交
111 112 113 114 115
                    The MultiTeacherDistillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L56`_ .

                If set to None, will choose a strategy automatically. Default: None.
            target_speedup(float, optional): target speedup ratio by the way of auto compress. Default: None.
            eval_callback(function, optional): eval function, define by yourself to return the metric of the inference program, can be used to judge the metric of compressed model. The documents of how to write eval function is `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/auto-compression/custom_function.rst`_ . ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
116 117 118
            eval_dataloader(paddle.io.Dataloader, optional):  The Generator or Dataloader provides eval data, and it could
                 return a batch every time. If eval_dataloader is None, will take first 5000 sample from train_dataloader 
                 as eval_dataloader, and the metric of eval_dataloader for reference only. Dafault: None.
C
ceci3 已提交
119 120
            deploy_hardware(str, optional): The hardware you want to deploy. Default: 'gpu'.
        """
G
Guanghua Yu 已提交
121
        self.model_dir = model_dir.rstrip('/')
122 123
        self.updated_model_dir, self.model_filename, self.params_filename = get_model_dir(
            model_dir, model_filename, params_filename)
C
ceci3 已提交
124

C
ceci3 已提交
125
        self.final_dir = save_dir
W
whs 已提交
126 127
        if not os.path.exists(self.final_dir):
            os.makedirs(self.final_dir)
W
whs 已提交
128 129 130 131

        # load config
        if isinstance(config, str):
            config = load_config(config)
C
ceci3 已提交
132 133 134
            self.train_config = extract_train_config(config)
        elif isinstance(config, dict):
            if 'TrainConfig' in config:
C
ceci3 已提交
135
                self.train_config = TrainConfig(**config.pop('TrainConfig'))
C
ceci3 已提交
136 137
            else:
                self.train_config = None
C
ceci3 已提交
138 139
        else:
            self.train_config = None
C
ceci3 已提交
140
        self.strategy_config = extract_strategy_config(config)
W
whs 已提交
141 142

        # prepare dataloader
G
Guanghua Yu 已提交
143
        self.feed_vars = get_feed_vars(self.model_dir, model_filename,
W
whs 已提交
144 145 146 147
                                       params_filename)
        self.train_dataloader = wrap_dataloader(train_dataloader,
                                                self.feed_vars)
        self.eval_dataloader = wrap_dataloader(eval_dataloader, self.feed_vars)
C
ceci3 已提交
148 149 150
        if self.eval_dataloader is None:
            self.eval_dataloader = self._get_eval_dataloader(
                self.train_dataloader)
W
whs 已提交
151

C
ceci3 已提交
152 153
        self.target_speedup = target_speedup
        self.eval_function = eval_callback
154
        self.deploy_hardware = deploy_hardware
155

C
ceci3 已提交
156
        paddle.enable_static()
C
ceci3 已提交
157
        self._exe, self._places = self._prepare_envs()
158
        self.default_distill_node_pair, self.model_type = self._get_model_info()
C
ceci3 已提交
159

160
        if self.train_config is not None and self.train_config.use_fleet:
C
ceci3 已提交
161 162
            fleet.init(is_collective=True)

163 164 165 166 167 168 169
        if with_variable_shape(
                self.model_dir,
                model_filename=model_filename,
                params_filename=params_filename) and input_shapes is not None:

            infer_shape_model = self.create_tmp_dir(
                self.final_dir, prefix="infer_shape_model_")
G
Guanghua Yu 已提交
170
            self._infer_shape(self.model_dir, self.model_filename,
171 172 173 174 175
                              self.params_filename, input_shapes,
                              infer_shape_model)
            self.model_dir = infer_shape_model
            self.model_filename = "infered_shape.pdmodel"
            self.params_filename = "infered_shape.pdiparams"
W
whs 已提交
176

C
ceci3 已提交
177 178
        if self.strategy_config is None:
            strategy_config = prepare_strategy(
C
ceci3 已提交
179 180 181
                self._exe, self._places, self.model_dir, self.model_filename,
                self.params_filename, self.target_speedup, self.deploy_hardware,
                self.model_type)
C
ceci3 已提交
182 183 184 185 186 187 188 189 190
            self.strategy_config = strategy_config
        elif isinstance(self.strategy_config, dict):
            self.strategy_config = [self.strategy_config]
        elif isinstance(self.strategy_config, str):
            strategy_config = create_strategy_config(self.strategy_config,
                                                     self.model_type)

        self._strategy, self._config = self._prepare_strategy(
            self.strategy_config)
C
ceci3 已提交
191
        self.train_config = self._get_final_train_config(
192 193
            self.train_config, self._strategy, self.model_type)
        _logger.info(f"Selected strategies: {self._strategy}")
C
ceci3 已提交
194 195 196

    def _get_final_train_config(self, train_config, strategy_config,
                                model_type):
197
        # If train_config is None, set default train_config
C
ceci3 已提交
198 199 200 201 202
        if train_config is None:
            train_config = create_train_config(strategy_config, model_type)

        train_configs = [train_config]
        for idx in range(1, len(self._strategy)):
C
ceci3 已提交
203 204 205
            if 'qat' in self._strategy[idx] or 'ptq' in self._strategy[idx]:
                ### If compress strategy more than one, the TrainConfig in the yaml only used in prune.
                ### The TrainConfig for quantization is extrapolate from above.
C
ceci3 已提交
206 207
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                ### the epoch, train_iter, learning rate of quant is 10% of the prune compress
208
                if self.model_type != 'transformer' and train_config.epochs is not None:
C
ceci3 已提交
209 210
                    tmp_train_config['epochs'] = max(
                        int(train_config.epochs * 0.1), 1)
C
ceci3 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
                if train_config.train_iter is not None:
                    tmp_train_config['train_iter'] = int(
                        train_config.train_iter * 0.1)
                if isinstance(train_config.learning_rate, float):
                    tmp_train_config[
                        'learning_rate'] = train_config.learning_rate * 0.1
                else:
                    if 'learning_rate' in train_config.learning_rate:
                        tmp_train_config['learning_rate'][
                            'learning_rate'] = train_config.learning_rate[
                                'learning_rate'] * 0.1
                    else:  ### learning rate decay is PiecewiseDecay
                        tmp_train_config['learning_rate']['values'] = list(
                            map(lambda x: x * 0.1, train_config.learning_rate[
                                'values']))
                train_cfg = TrainConfig(**tmp_train_config)
            else:
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                train_cfg = TrainConfig(**tmp_train_config)

            train_configs.append(train_cfg)
        return train_configs
233

234 235 236 237 238 239 240
    def _infer_shape(self, model_dir, model_filename, params_filename,
                     input_shapes, save_path):
        assert type(input_shapes) in [
            dict, list, tuple
        ], f'Type of input_shapes should be in [dict, tuple or list] but got {type(input_shapes)}.'
        paddle.enable_static()
        exe = paddle.static.Executor(paddle.CPUPlace())
C
ceci3 已提交
241
        [inference_program, feed_target_names,
242 243
         fetch_targets] = load_inference_model(model_dir, exe, model_filename,
                                               params_filename)
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

        if type(input_shapes) in [list, tuple]:
            assert len(
                feed_target_names
            ) == 1, f"The number of model's inputs should be 1 but got {feed_target_names}."
            input_shapes = {feed_target_names[0]: input_shapes}

        feed_vars = []
        for var_ in inference_program.list_vars():
            if var_.name in feed_target_names:
                feed_vars.append(var_)
                var_.desc.set_shape(input_shapes[var_.name])

        for block in inference_program.blocks:
            for op in block.ops:
                if op.type not in ["feed", "fetch"]:
                    op.desc.infer_shape(block.desc)

        save_path = os.path.join(save_path, "infered_shape")
        os.makedirs(save_path)
        paddle.static.save_inference_model(
            save_path, feed_vars, fetch_targets, exe, program=inference_program)
        _logger.info(f"Saved model infered shape to {save_path}")

    @property
    def deploy_hardware(self):
        return self._deploy_hardware

    @deploy_hardware.setter
    def deploy_hardware(self, value):
274 275 276 277
        supported_hardware = TableLatencyPredictor.hardware_list + [
            'gpu',  # nvidia gpu
            "cpu",  # intel cpu
        ]
278 279 280
        if value is not None:
            # Fail-fast when deploy hardware is set explicitly
            assert (
281 282
                value in supported_hardware
            ), f"Hardware should be in supported list {supported_hardware} but got {value}. Or you can set deploy_hardware None."
283 284
        self._deploy_hardware = value

285 286 287 288 289 290 291 292 293 294 295
    def _get_eval_dataloader(self, train_dataloader):
        def _gen():
            len_loader = len(list(train_dataloader()))
            ### max eval_dataloader is 5000 if use train_dataloader as eval_dataloader
            slice_len = min(5000, len_loader)
            ret = list(itertools.islice(train_dataloader(), slice_len))
            for i in ret:
                yield i

        return _gen

C
ceci3 已提交
296 297
    def _prepare_envs(self):
        devices = paddle.device.get_device().split(':')[0]
C
ceci3 已提交
298
        places = paddle.device._convert_to_place(devices)
W
whs 已提交
299
        _logger.info(f"devices: {devices}")
C
ceci3 已提交
300 301 302
        exe = paddle.static.Executor(places)
        return exe, places

303
    def _get_model_info(self):
304 305 306 307 308
        [inference_program, _, _] = (load_inference_model(
            self.model_dir,
            model_filename=self.model_filename,
            params_filename=self.params_filename,
            executor=self._exe))
309 310 311 312 313 314 315 316 317 318 319 320 321

        ### set the output of final weight node as the default distillation node
        distill_node = []
        final_weight_node = find_final_nodes(inference_program)
        for out_var in final_weight_node:
            distill_node.append('teacher_' + out_var.name())
            distill_node.append(out_var.name())

        model_type = None
        if not isinstance(self.strategy_config, dict):
            _, model_type = get_patterns(inference_program)
            _logger.info(f"Detect model type: {model_type}")

C
ceci3 已提交
322
        if self.model_filename is None:
323
            opt_model_filename = '__opt_model__'
C
ceci3 已提交
324
        else:
325
            opt_model_filename = 'opt_' + self.model_filename
C
ceci3 已提交
326 327
        program_bytes = inference_program._remove_training_info(
            clip_extra=False).desc.serialize_to_string()
328 329 330
        with open(
                os.path.join(self.updated_model_dir, opt_model_filename),
                "wb") as f:
C
ceci3 已提交
331 332
            f.write(program_bytes)
        shutil.move(
333 334
            os.path.join(self.updated_model_dir, opt_model_filename),
            os.path.join(self.updated_model_dir, self.model_filename))
335 336

        return distill_node, model_type
C
ceci3 已提交
337 338 339 340 341 342 343 344 345 346

    def _prepare_strategy(self, strategy_config):
        if not isinstance(strategy_config, list):
            strategy_config = list(list(strategy_config))

        strategy = []
        config = []
        for strategy_c in strategy_config:
            quant_config = strategy_c.get("Quantization", None)
            hpo_config = strategy_c.get("HyperParameterOptimization", None)
C
ceci3 已提交
347 348 349
            prune_config = strategy_c.get("ChannelPrune", None)
            asp_config = strategy_c.get("ASPPrune", None)
            transformer_prune_config = strategy_c.get("TransformerPrune", None)
C
ceci3 已提交
350 351 352
            unstructure_prune_config = strategy_c.get("UnstructurePrune", None)
            single_teacher_distill_config = strategy_c.get("Distillation", None)
            if single_teacher_distill_config is not None and single_teacher_distill_config.teacher_model_dir is None:
C
ceci3 已提交
353 354 355
                single_teacher_distill_config.teacher_model_dir = self.model_dir
                single_teacher_distill_config.teacher_model_filename = self.model_filename
                single_teacher_distill_config.teacher_params_filename = self.params_filename
C
ceci3 已提交
356 357 358 359 360 361 362 363 364 365

            multi_teacher_distill_config = strategy_c.get(
                "MultiTeacherDistillation", None)

            assert (single_teacher_distill_config is None) or (multi_teacher_distill_config is None), \
                "Distillation and MultiTeacherDistillation cannot be set at the same time."
            self._distill_config = single_teacher_distill_config if \
                   single_teacher_distill_config is not None else \
                   multi_teacher_distill_config

C
ceci3 已提交
366
            only_distillation = True
C
ceci3 已提交
367

C
ceci3 已提交
368 369 370
            ### case1: prune_config & distill config
            if prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
371
                strategy.append('channel_prune_dis')
C
ceci3 已提交
372 373
                config.append(merge_config(prune_config, self._distill_config))

C
ceci3 已提交
374 375 376
            ### case2: asp_config & distill config
            if asp_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
377 378 379
                strategy.append('asp_prune_dis')
                config.append(merge_config(asp_config, self._distill_config))

C
ceci3 已提交
380 381 382
            ### case3: transformer_prune_config & distill config
            if transformer_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
383 384 385 386 387
                strategy.append('transformer_prune_dis')
                config.append(
                    merge_config(transformer_prune_config,
                                 self._distill_config))

C
ceci3 已提交
388 389 390
            ### case4: unstructure_config & distill config
            if unstructure_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
391 392 393 394 395
                strategy.append('unstructure_prune_dis')
                config.append(
                    merge_config(unstructure_prune_config,
                                 self._distill_config))

C
ceci3 已提交
396 397 398 399 400 401 402
            ### case5: quant_config & hpo_config ==> PTQ & HPO
            if quant_config is not None and hpo_config is not None:
                only_distillation = False
                strategy.append('ptq_hpo')
                config.append(merge_config(quant_config, hpo_config))

            ### case6: quant_config & distill config ==> QAT & Distill
C
ceci3 已提交
403
            if quant_config is not None and self._distill_config is not None and 'ptq_hpo' not in strategy:
C
ceci3 已提交
404 405 406 407
                only_distillation = False
                strategy.append('qat_dis')
                config.append(merge_config(quant_config, self._distill_config))

C
ceci3 已提交
408
            ### case7: distill_config
C
ceci3 已提交
409
            if only_distillation == True and self._distill_config is not None:
C
ceci3 已提交
410 411 412 413 414 415
                if single_teacher_distill_config is not None:
                    strategy.append('single_teacher_dis')
                    config.append(single_teacher_distill_config)
                else:
                    strategy.append('multi_teacher_dis')
                    config.append(multi_teacher_distill_config)
C
ceci3 已提交
416

C
ceci3 已提交
417 418 419 420 421 422 423 424 425 426 427 428
        ### NOTE: keep quantation in the last step
        idx = -1
        if 'qat_dis' in strategy and strategy.index('qat_dis') != (
                len(strategy) - 1):
            idx = strategy.index('qat_dis')
        elif 'ptq_hpo' in strategy and strategy.index('ptq_hpo') != (
                len(strategy) - 1):
            idx = strategy.index('ptq_hpo')

        if idx != -1:
            strategy = strategy[:idx] + strategy[idx + 1:] + [strategy[idx]]
            config = config[:idx] + config[idx + 1:] + [config[idx]]
C
ceci3 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

        return strategy, config

    def _prepare_fleet_strategy(train_config):
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()

        strategy = fleet.DistributedStrategy()
        strategy.build_strategy = build_strategy
        if train_config.recompute_config is not None:
            strategy.recompute = True
            strategy.recompute_configs = { ** train_config.recompute_config}
        if train_config.sharding_config is not None:
            strategy.sharding = True
            strategy.sharding_configs = { ** train_config.sharding_config}
        if train_config.amp_config is not None:
            strategy.amp = True
            strategy.amp_configs = { ** train_config.amp_config}
447 448
        if train_config.asp_config is not None:
            strategy.asp = True
C
ceci3 已提交
449 450
        return strategy

C
ceci3 已提交
451
    def _prepare_program(self, program, feed_target_names, fetch_targets,
452
                         patterns, strategy, config, train_config):
C
ceci3 已提交
453 454 455 456 457
        train_program = recover_inference_program(program)
        startup_program = paddle.static.Program()
        train_program_info = ProgramInfo(startup_program, train_program,
                                         feed_target_names, fetch_targets)

C
ceci3 已提交
458
        config_dict = config.__dict__
459 460 461
        if "prune_strategy" in config_dict and config_dict[
                "prune_strategy"] == "gmp" and config_dict[
                    'gmp_config'] is None:
Z
zhouzj 已提交
462 463 464
            _logger.info(
                "Calculating the iterations per epoch……(It will take some time)")
            # NOTE:XXX: This way of calculating the iters needs to be improved.
C
ceci3 已提交
465
            if train_config.epochs:
G
Guanghua Yu 已提交
466
                iters_per_epoch = len(list(self.train_dataloader()))
C
ceci3 已提交
467 468 469
                total_iters = train_config.epochs * iters_per_epoch
            elif train_config.train_iter:
                total_iters = train_config.train_iter
G
Guanghua Yu 已提交
470 471 472
            else:
                raise RuntimeError(
                    'train_config must has `epochs` or `train_iter` field.')
Z
zhouzj 已提交
473 474
            config_dict['gmp_config'] = {
                'stable_iterations': 0,
C
ceci3 已提交
475 476
                'pruning_iterations': max(0.45 * total_iters, 30),
                'tunning_iterations': max(0.45 * total_iters, 30),
Z
zhouzj 已提交
477
                'resume_iteration': -1,
C
ceci3 已提交
478
                'pruning_steps': 100 if (0.45 * total_iters) > 1000 else 1,
Z
zhouzj 已提交
479 480
                'initial_ratio': 0.15,
            }
C
ceci3 已提交
481 482
        ### add prune program
        self._pruner = None
C
ceci3 已提交
483
        if 'prune' in strategy:
C
ceci3 已提交
484 485
            self._pruner, train_program_info = build_prune_program(
                self._exe, self._places, config_dict, train_program_info,
C
ceci3 已提交
486
                strategy, patterns, self.eval_dataloader)
C
ceci3 已提交
487

C
ceci3 已提交
488
        if train_config.use_fleet:
489
            dist_strategy = self._prepare_fleet_strategy(train_config)
C
ceci3 已提交
490 491 492 493
        else:
            dist_strategy = None

        ### add distill program
C
ceci3 已提交
494
        if 'dis' in strategy:
C
ceci3 已提交
495 496 497 498
            train_program_info, test_program_info = build_distill_program(
                self._exe,
                self._places,
                config_dict,
C
ceci3 已提交
499
                train_config.__dict__,
C
ceci3 已提交
500 501
                train_program_info,
                pruner=self._pruner,
C
ceci3 已提交
502
                dist_strategy=dist_strategy,
503
                default_distill_node_pair=self.default_distill_node_pair)
C
ceci3 已提交
504 505 506

        self._quant_config = None
        ### add quant_aware program, quant always is last step
C
ceci3 已提交
507
        if 'qat' in strategy:
C
ceci3 已提交
508 509 510
            train_program_info, test_program_info, self._quant_config = build_quant_program(
                self._exe, self._places, config_dict, train_program_info,
                test_program_info)
C
ceci3 已提交
511
        if train_config.sparse_model:
Z
zhouzj 已提交
512
            from ..prune.unstructured_pruner import UnstructuredPruner
Z
zhouzj 已提交
513
            # NOTE: The initialization parameter of this pruner doesn't work, it is only used to call the 'set_static_masks' function
Z
zhouzj 已提交
514 515 516 517 518 519
            self._pruner = UnstructuredPruner(
                train_program_info.program,
                mode='ratio',
                ratio=0.75,
                prune_params_type='conv1x1_only',
                place=self._places)
Z
zhouzj 已提交
520
            self._pruner.set_static_masks()  # Fixed model sparsity
C
ceci3 已提交
521 522 523

        self._exe.run(train_program_info.startup_program)

C
ceci3 已提交
524 525 526 527
        if (not train_config.use_fleet) and train_config.amp_config is not None:
            if hasattr(
                    train_config.amp_config,
                    'use_pure_fp16') and train_config.amp_config.use_pure_fp16:
C
ceci3 已提交
528 529 530
                train_program_info.optimizer.amp_init(
                    self._places, scope=paddle.static.global_scope())

C
ceci3 已提交
531
        if 'asp' in strategy:
C
ceci3 已提交
532 533 534
            ### prune weight in scope
            self._pruner.prune_model(train_program_info.program)

C
ceci3 已提交
535
        if not train_config.use_fleet:
C
ceci3 已提交
536
            train_program_info = self._compiled_program(train_program_info,
C
ceci3 已提交
537
                                                        strategy)
C
ceci3 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
            test_program_info = self._compiled_program(test_program_info,
                                                       self._strategy)
        return train_program_info, test_program_info

    def _compiled_program(self, program_info, strategy):
        compiled_prog = paddle.static.CompiledProgram(program_info.program)
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()
        if 'qat' in strategy:
            build_strategy.memory_optimize = False
            build_strategy.enable_inplace = False
            build_strategy.fuse_all_reduce_ops = False
            build_strategy.sync_batch_norm = False

        compiled_prog = compiled_prog.with_data_parallel(
            loss_name=program_info.fetch_targets[0].name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)
        program_info.program = compiled_prog
        return program_info

559
    def create_tmp_dir(self, base_dir, prefix="tmp"):
W
whs 已提交
560
        # create a new temp directory in final dir
561
        s_datetime = strftime("%Y_%m_%d_%H_%M_%S", gmtime())
562 563 564 565 566
        tmp_base_name = "_".join([prefix, str(os.getpid()), s_datetime])
        tmp_dir = os.path.join(base_dir, tmp_base_name)
        if not os.path.exists(tmp_dir):
            os.makedirs(tmp_dir)
        return tmp_dir
W
whs 已提交
567

568
    def compress(self):
569
        assert len(self._strategy) > 0
570
        self.tmp_dir = self.create_tmp_dir(self.final_dir)
571 572 573 574
        strategy = None
        config = None
        train_config = None
        strategy_idx = None
C
ceci3 已提交
575
        for strategy_idx, (
C
ceci3 已提交
576 577 578 579
                strategy, config, train_config
        ) in enumerate(zip(self._strategy, self._config, self.train_config)):
            self.single_strategy_compress(strategy, config, strategy_idx,
                                          train_config)
C
ceci3 已提交
580 581 582

        if strategy == 'ptq_hpo' and config.max_quant_count == 1 and platform.system(
        ).lower() == 'linux':
C
ceci3 已提交
583
            ptq_loss = post_quant_hpo.g_min_emd_loss
C
ceci3 已提交
584

C
ceci3 已提交
585 586
            final_quant_config = get_final_quant_config(ptq_loss,
                                                        self.model_type)
C
ceci3 已提交
587 588 589 590
            if final_quant_config is not None:
                quant_strategy, quant_config = self._prepare_strategy(
                    final_quant_config)
                self.single_strategy_compress(quant_strategy[0],
C
ceci3 已提交
591 592
                                              quant_config[0], strategy_idx,
                                              train_config)
593
        tmp_model_path = os.path.join(
W
whs 已提交
594
            self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1)))
C
ceci3 已提交
595
        final_model_path = os.path.join(self.final_dir)
C
ceci3 已提交
596
        if paddle.distributed.get_rank() == 0:
W
whs 已提交
597 598 599 600
            for _file in os.listdir(tmp_model_path):
                _file_path = os.path.join(tmp_model_path, _file)
                if os.path.isfile(_file_path):
                    shutil.copy(_file_path, final_model_path)
W
whs 已提交
601
            shutil.rmtree(self.tmp_dir)
C
ceci3 已提交
602
            _logger.info(
G
Guanghua Yu 已提交
603
                "==> The ACT compression has been completed and the final model is saved in `{}`".
C
ceci3 已提交
604
                format(final_model_path))
C
ceci3 已提交
605

C
ceci3 已提交
606 607
    def single_strategy_compress(self, strategy, config, strategy_idx,
                                 train_config):
608 609
        # start compress, including train/eval model
        # TODO: add the emd loss of evaluation model.
C
ceci3 已提交
610 611 612 613 614 615 616
        if strategy_idx == 0:
            model_dir = self.model_dir
        else:
            model_dir = os.path.join(self.tmp_dir,
                                     'strategy_{}'.format(str(strategy_idx)))

        if self.updated_model_dir != model_dir:
G
Guanghua Yu 已提交
617 618
            # If model is ONNX, convert it to inference model firstly.
            load_inference_model(
C
ceci3 已提交
619
                model_dir,
G
Guanghua Yu 已提交
620 621 622
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                executor=self._exe)
623 624 625
        if strategy == 'quant_post':
            quant_post(
                self._exe,
C
ceci3 已提交
626
                model_dir=model_dir,
627
                quantize_model_path=os.path.join(
W
whs 已提交
628
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
                data_loader=self.train_dataloader,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
                batch_size=1,
                batch_nums=config.batch_num,
                algo=config.ptq_algo,
                round_type='round',
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
                quantizable_op_type=config.quantize_op_types,
                is_full_quantize=config.is_full_quantize,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                activation_quantize_type='range_abs_max',
                weight_quantize_type=config.weight_quantize_type,
                onnx_format=False)

        elif strategy == 'ptq_hpo':
649 650 651
            if platform.system().lower() != 'linux':
                raise NotImplementedError(
                    "post-quant-hpo is not support in system other than linux")
C
ceci3 已提交
652
            if self.updated_model_dir != model_dir:
G
Guanghua Yu 已提交
653 654
                # If model is ONNX, convert it to inference model firstly.
                load_inference_model(
C
ceci3 已提交
655
                    model_dir,
G
Guanghua Yu 已提交
656 657 658
                    model_filename=self.model_filename,
                    params_filename=self.params_filename,
                    executor=self._exe)
C
ceci3 已提交
659 660 661 662 663
            if self.eval_function is None:
                # If eval function is None, ptq_hpo will use emd distance to eval the quantized model, so need the dataloader without label
                eval_dataloader = self.train_dataloader
            else:
                eval_dataloader = self.eval_dataloader
C
ceci3 已提交
664
            post_quant_hpo.quant_post_hpo(
C
ceci3 已提交
665 666
                self._exe,
                self._places,
C
ceci3 已提交
667
                model_dir=model_dir,
C
ceci3 已提交
668
                quantize_model_path=os.path.join(
W
whs 已提交
669
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
C
ceci3 已提交
670
                train_dataloader=self.train_dataloader,
C
ceci3 已提交
671
                eval_dataloader=eval_dataloader,
C
ceci3 已提交
672 673 674 675 676
                eval_function=self.eval_function,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
C
ceci3 已提交
677 678 679 680 681 682 683 684
                quantizable_op_type=config.quantize_op_types,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                weight_quantize_type=config.weight_quantize_type,
                is_full_quantize=config.is_full_quantize,
                algo=config.ptq_algo,
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
C
ceci3 已提交
685
                batch_size=[1],
C
ceci3 已提交
686
                batch_num=config.batch_num,
C
ceci3 已提交
687
                onnx_format=config.onnx_format,
C
ceci3 已提交
688
                runcount_limit=config.max_quant_count)
C
ceci3 已提交
689 690

        else:
C
ceci3 已提交
691 692
            assert 'dis' in strategy, "Only support optimizer compressed model by distillation loss."

C
ceci3 已提交
693 694
            [inference_program, feed_target_names, fetch_targets]= load_inference_model( \
                model_dir, \
C
ceci3 已提交
695 696 697 698
                model_filename=self.model_filename, params_filename=self.params_filename,
                executor=self._exe)

            ### used to check whether the dataloader is right
C
ceci3 已提交
699
            self.metric_before_compressed = None
C
ceci3 已提交
700
            if self.eval_function is not None and train_config.origin_metric is not None:
C
ceci3 已提交
701
                _logger.info("start to test metric before compress")
C
ceci3 已提交
702 703 704 705
                metric = self.eval_function(self._exe, inference_program,
                                            feed_target_names, fetch_targets)
                _logger.info("metric of compressed model is: {}".format(metric))
                buf = 0.05
C
ceci3 已提交
706 707
                if metric < (float(train_config.origin_metric) - buf) or \
                        metric > (float(train_config.origin_metric) + buf):
C
ceci3 已提交
708 709 710 711
                    raise RuntimeError("target metric of pretrained model is {}, \
                          but now is {}, Please check the format of evaluation dataset \
                          or check the origin_metric in train_config"
                                                                     .format(\
C
ceci3 已提交
712
                          train_config.origin_metric, metric))
C
ceci3 已提交
713 714
                self.metric_before_compressed = metric

715 716 717
            patterns = None
            if 'transformer' in strategy:
                patterns, _ = get_patterns(inference_program)
C
ceci3 已提交
718
            train_program_info, test_program_info = self._prepare_program(
C
ceci3 已提交
719
                inference_program, feed_target_names, fetch_targets, patterns,
720
                strategy, config, train_config)
Z
zhouzj 已提交
721 722 723
            if 'unstructure' in self._strategy:
                test_program_info.program._program = remove_unused_var_nodes(
                    test_program_info.program._program)
C
ceci3 已提交
724 725
            test_program_info = self._start_train(
                train_program_info, test_program_info, strategy, train_config)
C
ceci3 已提交
726
            self._save_model(test_program_info, strategy, strategy_idx)
C
ceci3 已提交
727

C
ceci3 已提交
728 729
    def _start_train(self, train_program_info, test_program_info, strategy,
                     train_config):
C
ceci3 已提交
730
        best_metric = -1.0
C
ceci3 已提交
731
        total_epochs = train_config.epochs if train_config.epochs else 100
G
Guanghua Yu 已提交
732
        total_train_iter = 0
733
        stop_training = False
G
Guanghua Yu 已提交
734
        for epoch_id in range(total_epochs):
735 736
            if stop_training:
                break
C
ceci3 已提交
737 738 739 740
            for batch_id, data in enumerate(self.train_dataloader()):
                np_probs_float, = self._exe.run(train_program_info.program, \
                    feed=data, \
                    fetch_list=train_program_info.fetch_targets)
741 742
                if not isinstance(train_program_info.learning_rate, float):
                    train_program_info.learning_rate.step()
C
ceci3 已提交
743
                if 'unstructure' in strategy:
C
ceci3 已提交
744 745
                    self._pruner.step()

C
ceci3 已提交
746
                if train_config.logging_iter is None:
C
ceci3 已提交
747 748
                    logging_iter = 10
                else:
C
ceci3 已提交
749
                    logging_iter = train_config.logging_iter
C
ceci3 已提交
750
                if batch_id % int(logging_iter) == 0:
G
Guanghua Yu 已提交
751 752 753 754 755
                    _logger.info(
                        "Total iter: {}, epoch: {}, batch: {}, loss: {}".format(
                            total_train_iter, epoch_id, batch_id,
                            np_probs_float))
                total_train_iter += 1
C
ceci3 已提交
756 757
                if total_train_iter % int(
                        train_config.eval_iter) == 0 and total_train_iter != 0:
C
ceci3 已提交
758 759 760
                    if self.eval_function is not None:

                        # GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation. 
C
ceci3 已提交
761
                        if 'unstructure' in strategy:
C
ceci3 已提交
762 763 764 765 766 767 768 769 770 771
                            self._pruner.update_params()

                        metric = self.eval_function(
                            self._exe, test_program_info.program,
                            test_program_info.feed_target_names,
                            test_program_info.fetch_targets)

                        if metric > best_metric:
                            paddle.static.save(
                                program=test_program_info.program._program,
W
whs 已提交
772
                                model_path=os.path.join(self.tmp_dir,
C
ceci3 已提交
773
                                                        'best_model'))
C
ceci3 已提交
774
                            best_metric = metric
775 776 777
                            _logger.info(
                                "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
                                format(epoch_id, metric, best_metric))
C
ceci3 已提交
778 779 780 781
                            if self.metric_before_compressed is not None and float(
                                    abs(best_metric -
                                        self.metric_before_compressed)
                            ) / self.metric_before_compressed <= 0.005:
782 783 784 785
                                _logger.info(
                                    "The error rate between the compressed model and original model is less than 5%. The training process ends."
                                )
                                stop_training = True
C
ceci3 已提交
786
                                break
787 788 789 790
                        else:
                            _logger.info(
                                "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
                                format(epoch_id, metric, best_metric))
C
ceci3 已提交
791 792
                        if train_config.target_metric is not None:
                            if metric > float(train_config.target_metric):
793 794 795 796
                                stop_training = True
                                _logger.info(
                                    "The metric of compressed model has reached the target metric. The training process ends."
                                )
C
ceci3 已提交
797
                                break
C
ceci3 已提交
798 799

                    else:
800 801 802
                        _logger.warning(
                            "Not set eval function, so unable to test accuracy performance."
                        )
803 804
                if (train_config.train_iter and total_train_iter >=
                        train_config.train_iter) or stop_training:
G
Guanghua Yu 已提交
805
                    break
C
ceci3 已提交
806

C
ceci3 已提交
807
        if 'unstructure' in self._strategy or train_config.sparse_model:
Z
zhouzj 已提交
808 809
            self._pruner.update_params()

C
ceci3 已提交
810 811
        return test_program_info

C
ceci3 已提交
812
    def _save_model(self, test_program_info, strategy, strategy_idx):
C
ceci3 已提交
813 814 815
        test_program = test_program_info.program._program if isinstance(
            test_program_info.program,
            paddle.static.CompiledProgram) else test_program_info.program
C
ceci3 已提交
816

W
whs 已提交
817
        if os.path.exists(os.path.join(self.tmp_dir, 'best_model.pdparams')):
818
            paddle.static.load(test_program,
W
whs 已提交
819 820 821 822
                               os.path.join(self.tmp_dir, 'best_model'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdmodel'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdopt'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdparams'))
C
ceci3 已提交
823

W
whs 已提交
824
        model_dir = os.path.join(self.tmp_dir,
C
ceci3 已提交
825 826 827
                                 'strategy_{}'.format(str(strategy_idx + 1)))
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
828 829 830 831 832 833

        if 'qat' in strategy:
            test_program = convert(
                test_program,
                self._places,
                self._quant_config,
834 835
                scope=paddle.static.global_scope(),
                save_clip_ranges_path=self.final_dir)
836

C
ceci3 已提交
837 838 839 840 841
        feed_vars = [
            test_program.global_block().var(name)
            for name in test_program_info.feed_target_names
        ]

842 843 844 845 846 847 848 849
        model_name = None
        if self.model_filename is None:
            model_name = "model"
        elif self.model_filename.endswith(".pdmodel"):
            model_name = self.model_filename.rsplit(".", 1)[0]
        else:
            model_name = self.model_filename

C
ceci3 已提交
850
        path_prefix = os.path.join(model_dir, model_name)
C
ceci3 已提交
851
        paddle.static.save_inference_model(
C
ceci3 已提交
852
            path_prefix=path_prefix,
C
ceci3 已提交
853 854
            feed_vars=feed_vars,
            fetch_vars=test_program_info.fetch_targets,
C
ceci3 已提交
855
            executor=self._exe,
C
ceci3 已提交
856
            program=test_program)
G
Guanghua Yu 已提交
857 858 859 860 861 862 863 864

    def export_onnx(self,
                    model_name='quant_model.onnx',
                    deploy_backend='tensorrt'):
        infer_model_path = os.path.join(self.final_dir, self.model_filename)
        assert os.path.exists(
            infer_model_path), 'Not found {}, please check it.'.format(
                infer_model_path)
G
Guanghua Yu 已提交
865 866 867
        onnx_save_path = os.path.join(self.final_dir, 'ONNX')
        if not os.path.exists(onnx_save_path):
            os.makedirs(onnx_save_path)
G
Guanghua Yu 已提交
868 869 870 871
        export_onnx(
            self.final_dir,
            model_filename=self.model_filename,
            params_filename=self.params_filename,
G
Guanghua Yu 已提交
872
            save_file_path=os.path.join(onnx_save_path, model_name),
G
Guanghua Yu 已提交
873
            deploy_backend=deploy_backend)