compressor.py 40.8 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
W
whs 已提交
18
import copy
C
ceci3 已提交
19
import numpy as np
C
ceci3 已提交
20
import copy
C
ceci3 已提交
21
import inspect
C
ceci3 已提交
22
import shutil
W
whs 已提交
23
from time import gmtime, strftime
24
import platform
C
ceci3 已提交
25
import paddle
W
whs 已提交
26
import itertools
C
ceci3 已提交
27
import paddle.distributed.fleet as fleet
28
from ..quant.quanter import convert, quant_post
C
ceci3 已提交
29 30
from ..common.recover_program import recover_inference_program
from ..common import get_logger
C
ceci3 已提交
31 32
from ..common.patterns import get_patterns
from ..analysis import TableLatencyPredictor
Z
zhouzj 已提交
33
from .create_compressed_program import build_distill_program, build_quant_program, build_prune_program, remove_unused_var_nodes
C
ceci3 已提交
34
from .strategy_config import TrainConfig, ProgramInfo, merge_config
35
from .auto_strategy import prepare_strategy, get_final_quant_config, create_strategy_config, create_train_config
W
whs 已提交
36
from .config_helpers import load_config, extract_strategy_config, extract_train_config
37
from .utils.predict import with_variable_shape
C
ceci3 已提交
38
from .utils import get_feed_vars, wrap_dataloader, load_inference_model
C
ceci3 已提交
39 40 41

_logger = get_logger(__name__, level=logging.INFO)

C
ceci3 已提交
42 43
try:
    if platform.system().lower() == 'linux':
C
ceci3 已提交
44
        from ..quant import post_quant_hpo
C
ceci3 已提交
45 46 47
except Exception as e:
    _logger.warning(e)

C
ceci3 已提交
48 49 50 51 52 53 54 55

class AutoCompression:
    def __init__(self,
                 model_dir,
                 model_filename,
                 params_filename,
                 save_dir,
                 train_dataloader,
W
whs 已提交
56
                 config=None,
57
                 input_shapes=None,
C
ceci3 已提交
58
                 target_speedup=None,
59
                 eval_callback=None,
C
ceci3 已提交
60 61 62 63 64 65 66
                 eval_dataloader=None,
                 deploy_hardware='gpu'):
        """
        Compress inference model automatically.

        Args:
            model_dir(str): The path of inference model that will be compressed, and
C
ceci3 已提交
67
                the model and params that saved by ``paddle.static.save_inference_model``
C
ceci3 已提交
68
                are under the path.
C
ceci3 已提交
69 70
            model_filename(str):  The name of model file. 
            params_filename(str): The name of params file.
W
whs 已提交
71 72
            save_dir(str): The path to save compressed model. The models in this directory will be overwrited
                after calling 'compress()' function.
C
ceci3 已提交
73 74 75
            train_data_loader(Python Generator, Paddle.io.DataLoader): The
                Generator or Dataloader provides train data, and it could
                return a batch every time.
76 77 78 79 80 81 82
            input_shapes(dict|tuple|list): It is used when the model has implicit dimensions except batch size. 
                If it is a dict, the key is the name of input and the value is the shape. 
                Given the input shape of input "X" is [-1, 3, -1, -1] which means the batch size, hight
                and width is variable. And the input_shapes can be set {"X": [-1, 3, 512, 512]}.
                If it is a list or tuple, the number of model's inputs should be 1. And the shape of input
                will be set input_shapes. None means keeping the original shapes, then
                the compression strategies searching may be skipped. Default: None.
C
ceci3 已提交
83 84 85 86 87 88 89 90 91 92 93
            train_config(dict, optional): The train config in the compression process, the key can 
                reference `<https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L103>`_ . 
                Only one strategy(quant_post with hyperparameter optimization) can set train_config 
                to None. Default: None. 
            strategy_config(dict, list(dict), optional): The strategy config. You can set single config to get multi-strategy config, such as
                1. set ``Quantization`` and ``Distillation`` to get quant_aware and distillation compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                2. set ``Quantization`` and ``HyperParameterOptimization`` to get quant_post and hyperparameter optimization compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The HyperParameterOptimization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L73`_ .
C
ceci3 已提交
94 95
                3. set ``ChannelPrune`` and ``Distillation`` to get channel prune and distillation compress config.
                    The ChannelPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
C
ceci3 已提交
96
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
97 98 99 100 101 102 103
                4. set ``ASPPrune`` and ``Distillation`` to get asp prune and distillation compress config.
                    The ASPPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                5. set ``TransformerPrune`` and ``Distillation`` to get transformer prune and distillation compress config.
                    The TransformerPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                6. set ``UnstructurePrune`` and ``Distillation`` to get unstructureprune and distillation compress config.
C
ceci3 已提交
104 105
                    The UnstructurePrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L91`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
106
                7. set ``Distillation`` to use one teacher modol to distillation student model.
C
ceci3 已提交
107
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
108
                8. set ``MultiTeacherDistillation`` to use multi-teacher to distillation student model.
C
ceci3 已提交
109 110 111 112 113
                    The MultiTeacherDistillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L56`_ .

                If set to None, will choose a strategy automatically. Default: None.
            target_speedup(float, optional): target speedup ratio by the way of auto compress. Default: None.
            eval_callback(function, optional): eval function, define by yourself to return the metric of the inference program, can be used to judge the metric of compressed model. The documents of how to write eval function is `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/auto-compression/custom_function.rst`_ . ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
114 115 116
            eval_dataloader(paddle.io.Dataloader, optional):  The Generator or Dataloader provides eval data, and it could
                 return a batch every time. If eval_dataloader is None, will take first 5000 sample from train_dataloader 
                 as eval_dataloader, and the metric of eval_dataloader for reference only. Dafault: None.
C
ceci3 已提交
117 118
            deploy_hardware(str, optional): The hardware you want to deploy. Default: 'gpu'.
        """
G
Guanghua Yu 已提交
119
        self.model_dir = model_dir.rstrip('/')
C
ceci3 已提交
120

C
ceci3 已提交
121 122
        if model_filename == 'None':
            model_filename = None
C
ceci3 已提交
123
        self.model_filename = model_filename
C
ceci3 已提交
124 125
        if params_filename == 'None':
            params_filename = None
C
ceci3 已提交
126
        self.params_filename = params_filename
C
ceci3 已提交
127 128 129 130 131 132

        if params_filename is None and model_filename is not None:
            raise NotImplementedError(
                "NOT SUPPORT parameters saved in separate files. Please convert it to single binary file first."
            )

C
ceci3 已提交
133
        self.final_dir = save_dir
W
whs 已提交
134 135
        if not os.path.exists(self.final_dir):
            os.makedirs(self.final_dir)
W
whs 已提交
136 137 138 139

        # load config
        if isinstance(config, str):
            config = load_config(config)
C
ceci3 已提交
140 141 142
            self.train_config = extract_train_config(config)
        elif isinstance(config, dict):
            if 'TrainConfig' in config:
C
ceci3 已提交
143
                self.train_config = TrainConfig(**config.pop('TrainConfig'))
C
ceci3 已提交
144 145
            else:
                self.train_config = None
C
ceci3 已提交
146
        self.strategy_config = extract_strategy_config(config)
W
whs 已提交
147 148

        # prepare dataloader
G
Guanghua Yu 已提交
149
        self.feed_vars = get_feed_vars(self.model_dir, model_filename,
W
whs 已提交
150 151 152 153 154 155 156
                                       params_filename)
        self.train_dataloader = wrap_dataloader(train_dataloader,
                                                self.feed_vars)
        self.eval_dataloader = wrap_dataloader(eval_dataloader, self.feed_vars)
        if eval_dataloader is None:
            eval_dataloader = self._get_eval_dataloader(self.train_dataloader)

C
ceci3 已提交
157 158
        self.target_speedup = target_speedup
        self.eval_function = eval_callback
159
        self.deploy_hardware = deploy_hardware
160

C
ceci3 已提交
161
        paddle.enable_static()
C
ceci3 已提交
162
        self._exe, self._places = self._prepare_envs()
G
Guanghua Yu 已提交
163
        self.model_type = self._get_model_type(self._exe, self.model_dir,
C
ceci3 已提交
164
                                               model_filename, params_filename)
C
ceci3 已提交
165

166
        if self.train_config is not None and self.train_config.use_fleet:
C
ceci3 已提交
167 168
            fleet.init(is_collective=True)

169 170 171 172 173 174 175
        if with_variable_shape(
                self.model_dir,
                model_filename=model_filename,
                params_filename=params_filename) and input_shapes is not None:

            infer_shape_model = self.create_tmp_dir(
                self.final_dir, prefix="infer_shape_model_")
G
Guanghua Yu 已提交
176
            self._infer_shape(self.model_dir, self.model_filename,
177 178 179 180 181
                              self.params_filename, input_shapes,
                              infer_shape_model)
            self.model_dir = infer_shape_model
            self.model_filename = "infered_shape.pdmodel"
            self.params_filename = "infered_shape.pdiparams"
W
whs 已提交
182

C
ceci3 已提交
183 184
        if self.strategy_config is None:
            strategy_config = prepare_strategy(
C
ceci3 已提交
185 186 187
                self._exe, self._places, self.model_dir, self.model_filename,
                self.params_filename, self.target_speedup, self.deploy_hardware,
                self.model_type)
C
ceci3 已提交
188 189 190 191 192 193 194 195 196 197
            self.strategy_config = strategy_config
        elif isinstance(self.strategy_config, dict):
            self.strategy_config = [self.strategy_config]
        elif isinstance(self.strategy_config, str):
            strategy_config = create_strategy_config(self.strategy_config,
                                                     self.model_type)

        self._strategy, self._config = self._prepare_strategy(
            self.strategy_config)

C
ceci3 已提交
198
        self.train_config = self._get_final_train_config(
199 200
            self.train_config, self._strategy, self.model_type)
        _logger.info(f"Selected strategies: {self._strategy}")
C
ceci3 已提交
201 202 203

    def _get_final_train_config(self, train_config, strategy_config,
                                model_type):
204
        # If train_config is None, set default train_config
C
ceci3 已提交
205 206 207 208 209
        if train_config is None:
            train_config = create_train_config(strategy_config, model_type)

        train_configs = [train_config]
        for idx in range(1, len(self._strategy)):
C
ceci3 已提交
210 211 212
            if 'qat' in self._strategy[idx] or 'ptq' in self._strategy[idx]:
                ### If compress strategy more than one, the TrainConfig in the yaml only used in prune.
                ### The TrainConfig for quantization is extrapolate from above.
C
ceci3 已提交
213 214
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                ### the epoch, train_iter, learning rate of quant is 10% of the prune compress
C
ceci3 已提交
215 216 217
                if self.model_type != 'transformer':
                    tmp_train_config['epochs'] = max(
                        int(train_config.epochs * 0.1), 1)
C
ceci3 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
                if train_config.train_iter is not None:
                    tmp_train_config['train_iter'] = int(
                        train_config.train_iter * 0.1)
                if isinstance(train_config.learning_rate, float):
                    tmp_train_config[
                        'learning_rate'] = train_config.learning_rate * 0.1
                else:
                    if 'learning_rate' in train_config.learning_rate:
                        tmp_train_config['learning_rate'][
                            'learning_rate'] = train_config.learning_rate[
                                'learning_rate'] * 0.1
                    else:  ### learning rate decay is PiecewiseDecay
                        tmp_train_config['learning_rate']['values'] = list(
                            map(lambda x: x * 0.1, train_config.learning_rate[
                                'values']))
                train_cfg = TrainConfig(**tmp_train_config)
            else:
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                train_cfg = TrainConfig(**tmp_train_config)

            train_configs.append(train_cfg)
        return train_configs
240

241 242 243 244 245 246 247
    def _infer_shape(self, model_dir, model_filename, params_filename,
                     input_shapes, save_path):
        assert type(input_shapes) in [
            dict, list, tuple
        ], f'Type of input_shapes should be in [dict, tuple or list] but got {type(input_shapes)}.'
        paddle.enable_static()
        exe = paddle.static.Executor(paddle.CPUPlace())
C
ceci3 已提交
248 249 250
        [inference_program, feed_target_names,
         fetch_targets] = (load_inference_model(model_dir, exe, model_filename,
                                                params_filename))
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

        if type(input_shapes) in [list, tuple]:
            assert len(
                feed_target_names
            ) == 1, f"The number of model's inputs should be 1 but got {feed_target_names}."
            input_shapes = {feed_target_names[0]: input_shapes}

        feed_vars = []
        for var_ in inference_program.list_vars():
            if var_.name in feed_target_names:
                feed_vars.append(var_)
                var_.desc.set_shape(input_shapes[var_.name])

        for block in inference_program.blocks:
            for op in block.ops:
                if op.type not in ["feed", "fetch"]:
                    op.desc.infer_shape(block.desc)

        save_path = os.path.join(save_path, "infered_shape")
        os.makedirs(save_path)
        paddle.static.save_inference_model(
            save_path, feed_vars, fetch_targets, exe, program=inference_program)
        _logger.info(f"Saved model infered shape to {save_path}")

    @property
    def deploy_hardware(self):
        return self._deploy_hardware

    @deploy_hardware.setter
    def deploy_hardware(self, value):
281 282 283 284
        supported_hardware = TableLatencyPredictor.hardware_list + [
            'gpu',  # nvidia gpu
            "cpu",  # intel cpu
        ]
285 286 287
        if value is not None:
            # Fail-fast when deploy hardware is set explicitly
            assert (
288 289
                value in supported_hardware
            ), f"Hardware should be in supported list {supported_hardware} but got {value}. Or you can set deploy_hardware None."
290 291
        self._deploy_hardware = value

292 293 294 295 296 297 298 299 300 301 302
    def _get_eval_dataloader(self, train_dataloader):
        def _gen():
            len_loader = len(list(train_dataloader()))
            ### max eval_dataloader is 5000 if use train_dataloader as eval_dataloader
            slice_len = min(5000, len_loader)
            ret = list(itertools.islice(train_dataloader(), slice_len))
            for i in ret:
                yield i

        return _gen

C
ceci3 已提交
303 304
    def _prepare_envs(self):
        devices = paddle.device.get_device().split(':')[0]
C
ceci3 已提交
305
        places = paddle.device._convert_to_place(devices)
W
whs 已提交
306
        _logger.info(f"devices: {devices}")
C
ceci3 已提交
307 308 309
        exe = paddle.static.Executor(places)
        return exe, places

C
ceci3 已提交
310
    def _get_model_type(self, exe, model_dir, model_filename, params_filename):
C
ceci3 已提交
311 312
        [inference_program, _, _]= (load_inference_model( \
            model_dir, \
C
ceci3 已提交
313
            model_filename=model_filename, params_filename=params_filename,
C
ceci3 已提交
314
            executor=exe))
C
ceci3 已提交
315
        _, _, model_type = get_patterns(inference_program)
W
whs 已提交
316
        _logger.info(f"Detect model type: {model_type}")
C
ceci3 已提交
317 318 319 320 321 322 323 324 325 326 327
        return model_type

    def _prepare_strategy(self, strategy_config):
        if not isinstance(strategy_config, list):
            strategy_config = list(list(strategy_config))

        strategy = []
        config = []
        for strategy_c in strategy_config:
            quant_config = strategy_c.get("Quantization", None)
            hpo_config = strategy_c.get("HyperParameterOptimization", None)
C
ceci3 已提交
328 329 330
            prune_config = strategy_c.get("ChannelPrune", None)
            asp_config = strategy_c.get("ASPPrune", None)
            transformer_prune_config = strategy_c.get("TransformerPrune", None)
C
ceci3 已提交
331 332 333
            unstructure_prune_config = strategy_c.get("UnstructurePrune", None)
            single_teacher_distill_config = strategy_c.get("Distillation", None)
            if single_teacher_distill_config is not None and single_teacher_distill_config.teacher_model_dir is None:
C
ceci3 已提交
334 335 336
                single_teacher_distill_config.teacher_model_dir = self.model_dir
                single_teacher_distill_config.teacher_model_filename = self.model_filename
                single_teacher_distill_config.teacher_params_filename = self.params_filename
C
ceci3 已提交
337 338 339 340 341 342 343 344 345 346

            multi_teacher_distill_config = strategy_c.get(
                "MultiTeacherDistillation", None)

            assert (single_teacher_distill_config is None) or (multi_teacher_distill_config is None), \
                "Distillation and MultiTeacherDistillation cannot be set at the same time."
            self._distill_config = single_teacher_distill_config if \
                   single_teacher_distill_config is not None else \
                   multi_teacher_distill_config

C
ceci3 已提交
347
            only_distillation = True
C
ceci3 已提交
348

C
ceci3 已提交
349 350 351
            ### case1: prune_config & distill config
            if prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
352
                strategy.append('channel_prune_dis')
C
ceci3 已提交
353 354
                config.append(merge_config(prune_config, self._distill_config))

C
ceci3 已提交
355 356 357
            ### case2: asp_config & distill config
            if asp_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
358 359 360
                strategy.append('asp_prune_dis')
                config.append(merge_config(asp_config, self._distill_config))

C
ceci3 已提交
361 362 363
            ### case3: transformer_prune_config & distill config
            if transformer_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
364 365 366 367 368
                strategy.append('transformer_prune_dis')
                config.append(
                    merge_config(transformer_prune_config,
                                 self._distill_config))

C
ceci3 已提交
369 370 371
            ### case4: unstructure_config & distill config
            if unstructure_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
372 373 374 375 376
                strategy.append('unstructure_prune_dis')
                config.append(
                    merge_config(unstructure_prune_config,
                                 self._distill_config))

C
ceci3 已提交
377 378 379 380 381 382 383 384 385 386 387 388
            ### case5: quant_config & hpo_config ==> PTQ & HPO
            if quant_config is not None and hpo_config is not None:
                only_distillation = False
                strategy.append('ptq_hpo')
                config.append(merge_config(quant_config, hpo_config))

            ### case6: quant_config & distill config ==> QAT & Distill
            if quant_config is not None and self._distill_config is not None:
                only_distillation = False
                strategy.append('qat_dis')
                config.append(merge_config(quant_config, self._distill_config))

C
ceci3 已提交
389
            ### case7: distill_config
C
ceci3 已提交
390
            if only_distillation == True and self._distill_config is not None:
C
ceci3 已提交
391 392 393 394 395 396
                if single_teacher_distill_config is not None:
                    strategy.append('single_teacher_dis')
                    config.append(single_teacher_distill_config)
                else:
                    strategy.append('multi_teacher_dis')
                    config.append(multi_teacher_distill_config)
C
ceci3 已提交
397

C
ceci3 已提交
398 399 400 401 402 403 404 405 406 407 408 409
        ### NOTE: keep quantation in the last step
        idx = -1
        if 'qat_dis' in strategy and strategy.index('qat_dis') != (
                len(strategy) - 1):
            idx = strategy.index('qat_dis')
        elif 'ptq_hpo' in strategy and strategy.index('ptq_hpo') != (
                len(strategy) - 1):
            idx = strategy.index('ptq_hpo')

        if idx != -1:
            strategy = strategy[:idx] + strategy[idx + 1:] + [strategy[idx]]
            config = config[:idx] + config[idx + 1:] + [config[idx]]
C
ceci3 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

        return strategy, config

    def _prepare_fleet_strategy(train_config):
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()

        strategy = fleet.DistributedStrategy()
        strategy.build_strategy = build_strategy
        if train_config.recompute_config is not None:
            strategy.recompute = True
            strategy.recompute_configs = { ** train_config.recompute_config}
        if train_config.sharding_config is not None:
            strategy.sharding = True
            strategy.sharding_configs = { ** train_config.sharding_config}
        if train_config.amp_config is not None:
            strategy.amp = True
            strategy.amp_configs = { ** train_config.amp_config}
428 429
        if train_config.asp_config is not None:
            strategy.asp = True
C
ceci3 已提交
430 431
        return strategy

C
ceci3 已提交
432
    def _prepare_program(self, program, feed_target_names, fetch_targets,
C
ceci3 已提交
433 434
                         patterns, default_distill_node_pair, strategy, config,
                         train_config):
C
ceci3 已提交
435 436 437 438 439
        train_program = recover_inference_program(program)
        startup_program = paddle.static.Program()
        train_program_info = ProgramInfo(startup_program, train_program,
                                         feed_target_names, fetch_targets)

C
ceci3 已提交
440
        config_dict = config.__dict__
441 442 443
        if "prune_strategy" in config_dict and config_dict[
                "prune_strategy"] == "gmp" and config_dict[
                    'gmp_config'] is None:
Z
zhouzj 已提交
444 445 446
            _logger.info(
                "Calculating the iterations per epoch……(It will take some time)")
            # NOTE:XXX: This way of calculating the iters needs to be improved.
C
ceci3 已提交
447
            if train_config.epochs:
G
Guanghua Yu 已提交
448
                iters_per_epoch = len(list(self.train_dataloader()))
C
ceci3 已提交
449 450 451
                total_iters = train_config.epochs * iters_per_epoch
            elif train_config.train_iter:
                total_iters = train_config.train_iter
G
Guanghua Yu 已提交
452 453 454
            else:
                raise RuntimeError(
                    'train_config must has `epochs` or `train_iter` field.')
Z
zhouzj 已提交
455 456 457 458 459 460 461 462
            config_dict['gmp_config'] = {
                'stable_iterations': 0,
                'pruning_iterations': 0.45 * total_iters,
                'tunning_iterations': 0.45 * total_iters,
                'resume_iteration': -1,
                'pruning_steps': 100,
                'initial_ratio': 0.15,
            }
C
ceci3 已提交
463 464
        ### add prune program
        self._pruner = None
C
ceci3 已提交
465
        if 'prune' in strategy:
C
ceci3 已提交
466 467
            self._pruner, train_program_info = build_prune_program(
                self._exe, self._places, config_dict, train_program_info,
C
ceci3 已提交
468
                strategy, patterns, self.eval_dataloader)
C
ceci3 已提交
469

C
ceci3 已提交
470 471
        if train_config.use_fleet:
            dist_strategy = _prepare_fleet_strategy(train_config)
C
ceci3 已提交
472 473 474 475
        else:
            dist_strategy = None

        ### add distill program
C
ceci3 已提交
476
        if 'dis' in strategy:
C
ceci3 已提交
477 478 479 480
            train_program_info, test_program_info = build_distill_program(
                self._exe,
                self._places,
                config_dict,
C
ceci3 已提交
481
                train_config.__dict__,
C
ceci3 已提交
482 483
                train_program_info,
                pruner=self._pruner,
C
ceci3 已提交
484 485
                dist_strategy=dist_strategy,
                default_distill_node_pair=default_distill_node_pair)
C
ceci3 已提交
486 487 488

        self._quant_config = None
        ### add quant_aware program, quant always is last step
C
ceci3 已提交
489
        if 'qat' in strategy:
C
ceci3 已提交
490 491 492
            train_program_info, test_program_info, self._quant_config = build_quant_program(
                self._exe, self._places, config_dict, train_program_info,
                test_program_info)
C
ceci3 已提交
493
        if train_config.sparse_model:
Z
zhouzj 已提交
494
            from ..prune.unstructured_pruner import UnstructuredPruner
Z
zhouzj 已提交
495
            # NOTE: The initialization parameter of this pruner doesn't work, it is only used to call the 'set_static_masks' function
Z
zhouzj 已提交
496 497 498 499 500 501
            self._pruner = UnstructuredPruner(
                train_program_info.program,
                mode='ratio',
                ratio=0.75,
                prune_params_type='conv1x1_only',
                place=self._places)
Z
zhouzj 已提交
502
            self._pruner.set_static_masks()  # Fixed model sparsity
C
ceci3 已提交
503 504 505

        self._exe.run(train_program_info.startup_program)

C
ceci3 已提交
506 507 508 509
        if (not train_config.use_fleet) and train_config.amp_config is not None:
            if hasattr(
                    train_config.amp_config,
                    'use_pure_fp16') and train_config.amp_config.use_pure_fp16:
C
ceci3 已提交
510 511 512
                train_program_info.optimizer.amp_init(
                    self._places, scope=paddle.static.global_scope())

C
ceci3 已提交
513
        if 'asp' in strategy:
C
ceci3 已提交
514 515 516
            ### prune weight in scope
            self._pruner.prune_model(train_program_info.program)

C
ceci3 已提交
517
        if not train_config.use_fleet:
C
ceci3 已提交
518
            train_program_info = self._compiled_program(train_program_info,
C
ceci3 已提交
519
                                                        strategy)
C
ceci3 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
            test_program_info = self._compiled_program(test_program_info,
                                                       self._strategy)
        return train_program_info, test_program_info

    def _compiled_program(self, program_info, strategy):
        compiled_prog = paddle.static.CompiledProgram(program_info.program)
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()
        if 'qat' in strategy:
            build_strategy.memory_optimize = False
            build_strategy.enable_inplace = False
            build_strategy.fuse_all_reduce_ops = False
            build_strategy.sync_batch_norm = False

        compiled_prog = compiled_prog.with_data_parallel(
            loss_name=program_info.fetch_targets[0].name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)
        program_info.program = compiled_prog
        return program_info

541
    def create_tmp_dir(self, base_dir, prefix="tmp"):
W
whs 已提交
542
        # create a new temp directory in final dir
543 544 545 546 547 548
        s_datetime = strftime("%Y-%m-%d-%H:%M:%S", gmtime())
        tmp_base_name = "_".join([prefix, str(os.getpid()), s_datetime])
        tmp_dir = os.path.join(base_dir, tmp_base_name)
        if not os.path.exists(tmp_dir):
            os.makedirs(tmp_dir)
        return tmp_dir
W
whs 已提交
549

550
    def compress(self):
551
        assert len(self._strategy) > 0
552
        self.tmp_dir = self.create_tmp_dir(self.final_dir)
553 554 555 556
        strategy = None
        config = None
        train_config = None
        strategy_idx = None
C
ceci3 已提交
557
        for strategy_idx, (
C
ceci3 已提交
558 559 560 561
                strategy, config, train_config
        ) in enumerate(zip(self._strategy, self._config, self.train_config)):
            self.single_strategy_compress(strategy, config, strategy_idx,
                                          train_config)
C
ceci3 已提交
562 563 564

        if strategy == 'ptq_hpo' and config.max_quant_count == 1 and platform.system(
        ).lower() == 'linux':
C
ceci3 已提交
565
            ptq_loss = post_quant_hpo.g_min_emd_loss
C
ceci3 已提交
566

C
ceci3 已提交
567 568
            final_quant_config = get_final_quant_config(ptq_loss,
                                                        self.model_type)
C
ceci3 已提交
569 570 571 572
            if final_quant_config is not None:
                quant_strategy, quant_config = self._prepare_strategy(
                    final_quant_config)
                self.single_strategy_compress(quant_strategy[0],
C
ceci3 已提交
573 574
                                              quant_config[0], strategy_idx,
                                              train_config)
575
        tmp_model_path = os.path.join(
W
whs 已提交
576
            self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1)))
C
ceci3 已提交
577
        final_model_path = os.path.join(self.final_dir)
578 579
        if not os.path.exists(final_model_path):
            os.makedirs(final_model_path)
C
ceci3 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593

        tmp_model_file = ".".join([tmp_model_path, "pdmodel"])
        if not os.path.exists(tmp_model_file):
            tmp_model_file = os.path.join(tmp_model_path, self.model_filename)

        tmp_params_file = ".".join([tmp_model_path, "pdiparams"])
        if not os.path.exists(tmp_params_file):
            tmp_params_file = os.path.join(tmp_model_path, self.params_filename)

        if self.model_filename is None:
            self.model_filename = "infer.pdmodel"
        if self.params_filename is None:
            self.params_filename = "infer.pdiparams"

C
ceci3 已提交
594 595
        final_model_file = os.path.join(final_model_path, self.model_filename)
        final_params_file = os.path.join(final_model_path, self.params_filename)
C
ceci3 已提交
596

C
ceci3 已提交
597 598 599
        if paddle.distributed.get_rank() == 0:
            shutil.move(tmp_model_file, final_model_file)
            shutil.move(tmp_params_file, final_params_file)
W
whs 已提交
600
            shutil.rmtree(self.tmp_dir)
C
ceci3 已提交
601
            _logger.info(
G
Guanghua Yu 已提交
602
                "==> The ACT compression has been completed and the final model is saved in `{}`".
C
ceci3 已提交
603
                format(final_model_path))
C
ceci3 已提交
604 605
        os._exit(0)

C
ceci3 已提交
606 607
    def single_strategy_compress(self, strategy, config, strategy_idx,
                                 train_config):
608 609 610 611 612 613 614
        # start compress, including train/eval model
        # TODO: add the emd loss of evaluation model.
        if strategy == 'quant_post':
            quant_post(
                self._exe,
                model_dir=self.model_dir,
                quantize_model_path=os.path.join(
W
whs 已提交
615
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
                data_loader=self.train_dataloader,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
                batch_size=1,
                batch_nums=config.batch_num,
                algo=config.ptq_algo,
                round_type='round',
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
                quantizable_op_type=config.quantize_op_types,
                is_full_quantize=config.is_full_quantize,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                activation_quantize_type='range_abs_max',
                weight_quantize_type=config.weight_quantize_type,
                onnx_format=False)

        elif strategy == 'ptq_hpo':
636 637 638 639
            if platform.system().lower() != 'linux':
                raise NotImplementedError(
                    "post-quant-hpo is not support in system other than linux")

C
ceci3 已提交
640
            post_quant_hpo.quant_post_hpo(
C
ceci3 已提交
641 642 643
                self._exe,
                self._places,
                model_dir=self.model_dir,
C
ceci3 已提交
644
                quantize_model_path=os.path.join(
W
whs 已提交
645
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
C
ceci3 已提交
646 647 648 649 650 651 652
                train_dataloader=self.train_dataloader,
                eval_dataloader=self.eval_dataloader,
                eval_function=self.eval_function,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
C
ceci3 已提交
653 654 655 656 657 658 659 660
                quantizable_op_type=config.quantize_op_types,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                weight_quantize_type=config.weight_quantize_type,
                is_full_quantize=config.is_full_quantize,
                algo=config.ptq_algo,
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
C
ceci3 已提交
661
                batch_size=[1],
C
ceci3 已提交
662 663
                batch_num=config.batch_num,
                runcount_limit=config.max_quant_count)
C
ceci3 已提交
664 665

        else:
C
ceci3 已提交
666 667 668 669 670 671
            assert 'dis' in strategy, "Only support optimizer compressed model by distillation loss."

            if strategy_idx == 0:
                model_dir = self.model_dir
            else:
                model_dir = os.path.join(
W
whs 已提交
672
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx)))
C
ceci3 已提交
673

C
ceci3 已提交
674 675
            [inference_program, feed_target_names, fetch_targets]= load_inference_model( \
                model_dir, \
C
ceci3 已提交
676 677 678 679
                model_filename=self.model_filename, params_filename=self.params_filename,
                executor=self._exe)

            ### used to check whether the dataloader is right
C
ceci3 已提交
680
            self.metric_before_compressed = None
C
ceci3 已提交
681
            if self.eval_function is not None and train_config.origin_metric is not None:
C
ceci3 已提交
682
                _logger.info("start to test metric before compress")
C
ceci3 已提交
683 684 685 686
                metric = self.eval_function(self._exe, inference_program,
                                            feed_target_names, fetch_targets)
                _logger.info("metric of compressed model is: {}".format(metric))
                buf = 0.05
C
ceci3 已提交
687 688
                if metric < (float(train_config.origin_metric) - buf) or \
                        metric > (float(train_config.origin_metric) + buf):
C
ceci3 已提交
689 690 691 692
                    raise RuntimeError("target metric of pretrained model is {}, \
                          but now is {}, Please check the format of evaluation dataset \
                          or check the origin_metric in train_config"
                                                                     .format(\
C
ceci3 已提交
693
                          train_config.origin_metric, metric))
C
ceci3 已提交
694 695 696 697
                self.metric_before_compressed = metric

            patterns, default_distill_node_pair, _ = get_patterns(
                inference_program)
C
ceci3 已提交
698 699

            train_program_info, test_program_info = self._prepare_program(
C
ceci3 已提交
700
                inference_program, feed_target_names, fetch_targets, patterns,
C
ceci3 已提交
701
                default_distill_node_pair, strategy, config, train_config)
Z
zhouzj 已提交
702 703 704
            if 'unstructure' in self._strategy:
                test_program_info.program._program = remove_unused_var_nodes(
                    test_program_info.program._program)
C
ceci3 已提交
705 706
            test_program_info = self._start_train(
                train_program_info, test_program_info, strategy, train_config)
C
ceci3 已提交
707
            self._save_model(test_program_info, strategy, strategy_idx)
C
ceci3 已提交
708

C
ceci3 已提交
709 710
    def _start_train(self, train_program_info, test_program_info, strategy,
                     train_config):
C
ceci3 已提交
711
        best_metric = -1.0
C
ceci3 已提交
712
        total_epochs = train_config.epochs if train_config.epochs else 100
G
Guanghua Yu 已提交
713
        total_train_iter = 0
G
Guanghua Yu 已提交
714
        for epoch_id in range(total_epochs):
C
ceci3 已提交
715 716 717 718
            for batch_id, data in enumerate(self.train_dataloader()):
                np_probs_float, = self._exe.run(train_program_info.program, \
                    feed=data, \
                    fetch_list=train_program_info.fetch_targets)
719 720
                if not isinstance(train_program_info.learning_rate, float):
                    train_program_info.learning_rate.step()
C
ceci3 已提交
721
                if 'unstructure' in strategy:
C
ceci3 已提交
722 723
                    self._pruner.step()

C
ceci3 已提交
724
                if train_config.logging_iter is None:
C
ceci3 已提交
725 726
                    logging_iter = 10
                else:
C
ceci3 已提交
727
                    logging_iter = train_config.logging_iter
C
ceci3 已提交
728
                if batch_id % int(logging_iter) == 0:
G
Guanghua Yu 已提交
729 730 731 732 733
                    _logger.info(
                        "Total iter: {}, epoch: {}, batch: {}, loss: {}".format(
                            total_train_iter, epoch_id, batch_id,
                            np_probs_float))
                total_train_iter += 1
C
ceci3 已提交
734 735
                if total_train_iter % int(
                        train_config.eval_iter) == 0 and total_train_iter != 0:
C
ceci3 已提交
736 737 738
                    if self.eval_function is not None:

                        # GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation. 
C
ceci3 已提交
739
                        if 'unstructure' in strategy:
C
ceci3 已提交
740 741 742 743 744 745 746 747 748 749
                            self._pruner.update_params()

                        metric = self.eval_function(
                            self._exe, test_program_info.program,
                            test_program_info.feed_target_names,
                            test_program_info.fetch_targets)

                        if metric > best_metric:
                            paddle.static.save(
                                program=test_program_info.program._program,
W
whs 已提交
750
                                model_path=os.path.join(self.tmp_dir,
C
ceci3 已提交
751
                                                        'best_model'))
C
ceci3 已提交
752
                            best_metric = metric
753 754 755
                            _logger.info(
                                "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
                                format(epoch_id, metric, best_metric))
C
ceci3 已提交
756 757 758 759 760
                            if self.metric_before_compressed is not None and float(
                                    abs(best_metric -
                                        self.metric_before_compressed)
                            ) / self.metric_before_compressed <= 0.005:
                                break
761 762 763 764
                        else:
                            _logger.info(
                                "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
                                format(epoch_id, metric, best_metric))
C
ceci3 已提交
765 766
                        if train_config.target_metric is not None:
                            if metric > float(train_config.target_metric):
C
ceci3 已提交
767
                                break
C
ceci3 已提交
768 769

                    else:
770 771 772
                        _logger.warning(
                            "Not set eval function, so unable to test accuracy performance."
                        )
C
ceci3 已提交
773
                if train_config.train_iter and total_train_iter >= train_config.train_iter:
774
                    epoch_id = total_epochs
G
Guanghua Yu 已提交
775
                    break
C
ceci3 已提交
776

C
ceci3 已提交
777
        if 'unstructure' in self._strategy or train_config.sparse_model:
Z
zhouzj 已提交
778 779
            self._pruner.update_params()

C
ceci3 已提交
780 781
        return test_program_info

C
ceci3 已提交
782
    def _save_model(self, test_program_info, strategy, strategy_idx):
C
ceci3 已提交
783 784 785
        test_program = test_program_info.program._program if isinstance(
            test_program_info.program,
            paddle.static.CompiledProgram) else test_program_info.program
C
ceci3 已提交
786

W
whs 已提交
787
        if os.path.exists(os.path.join(self.tmp_dir, 'best_model.pdparams')):
788
            paddle.static.load(test_program,
W
whs 已提交
789 790 791 792
                               os.path.join(self.tmp_dir, 'best_model'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdmodel'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdopt'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdparams'))
C
ceci3 已提交
793 794

        if 'qat' in strategy:
G
Guanghua Yu 已提交
795
            test_program, int8_program = convert(test_program, self._places, self._quant_config, \
C
ceci3 已提交
796 797 798
                                          scope=paddle.static.global_scope(), \
                                          save_int8=True)

W
whs 已提交
799
        model_dir = os.path.join(self.tmp_dir,
C
ceci3 已提交
800 801 802
                                 'strategy_{}'.format(str(strategy_idx + 1)))
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
C
ceci3 已提交
803 804 805 806 807
        feed_vars = [
            test_program.global_block().var(name)
            for name in test_program_info.feed_target_names
        ]

C
ceci3 已提交
808 809 810
        model_name = '.'.join(self.model_filename.split(
            '.')[:-1]) if self.model_filename is not None else 'model'
        path_prefix = os.path.join(model_dir, model_name)
C
ceci3 已提交
811
        paddle.static.save_inference_model(
C
ceci3 已提交
812
            path_prefix=path_prefix,
C
ceci3 已提交
813 814
            feed_vars=feed_vars,
            fetch_vars=test_program_info.fetch_targets,
C
ceci3 已提交
815
            executor=self._exe,
C
ceci3 已提交
816
            program=test_program)