compressor.py 40.7 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
W
whs 已提交
18
import copy
C
ceci3 已提交
19
import numpy as np
C
ceci3 已提交
20
import copy
C
ceci3 已提交
21
import inspect
C
ceci3 已提交
22
import shutil
W
whs 已提交
23
from time import gmtime, strftime
24
import platform
C
ceci3 已提交
25
import paddle
W
whs 已提交
26
import itertools
C
ceci3 已提交
27
import paddle.distributed.fleet as fleet
28
from ..quant.quanter import convert, quant_post
C
ceci3 已提交
29 30
from ..common.recover_program import recover_inference_program
from ..common import get_logger
C
ceci3 已提交
31 32
from ..common.patterns import get_patterns
from ..analysis import TableLatencyPredictor
Z
zhouzj 已提交
33
from .create_compressed_program import build_distill_program, build_quant_program, build_prune_program, remove_unused_var_nodes
C
ceci3 已提交
34
from .strategy_config import TrainConfig, ProgramInfo, merge_config
35
from .auto_strategy import prepare_strategy, get_final_quant_config, create_strategy_config, create_train_config
W
whs 已提交
36
from .config_helpers import load_config, extract_strategy_config, extract_train_config
37
from .utils.predict import with_variable_shape
C
ceci3 已提交
38
from .utils import get_feed_vars, wrap_dataloader, load_inference_model
C
ceci3 已提交
39 40 41

_logger = get_logger(__name__, level=logging.INFO)

C
ceci3 已提交
42 43
try:
    if platform.system().lower() == 'linux':
C
ceci3 已提交
44
        from ..quant import post_quant_hpo
C
ceci3 已提交
45 46 47
except Exception as e:
    _logger.warning(e)

C
ceci3 已提交
48 49 50 51 52 53 54 55

class AutoCompression:
    def __init__(self,
                 model_dir,
                 model_filename,
                 params_filename,
                 save_dir,
                 train_dataloader,
W
whs 已提交
56
                 config=None,
57
                 input_shapes=None,
C
ceci3 已提交
58
                 target_speedup=None,
59
                 eval_callback=None,
C
ceci3 已提交
60 61 62 63 64 65 66
                 eval_dataloader=None,
                 deploy_hardware='gpu'):
        """
        Compress inference model automatically.

        Args:
            model_dir(str): The path of inference model that will be compressed, and
C
ceci3 已提交
67
                the model and params that saved by ``paddle.static.save_inference_model``
C
ceci3 已提交
68
                are under the path.
C
ceci3 已提交
69 70
            model_filename(str):  The name of model file. 
            params_filename(str): The name of params file.
W
whs 已提交
71 72
            save_dir(str): The path to save compressed model. The models in this directory will be overwrited
                after calling 'compress()' function.
C
ceci3 已提交
73 74 75
            train_data_loader(Python Generator, Paddle.io.DataLoader): The
                Generator or Dataloader provides train data, and it could
                return a batch every time.
76 77 78 79 80 81 82
            input_shapes(dict|tuple|list): It is used when the model has implicit dimensions except batch size. 
                If it is a dict, the key is the name of input and the value is the shape. 
                Given the input shape of input "X" is [-1, 3, -1, -1] which means the batch size, hight
                and width is variable. And the input_shapes can be set {"X": [-1, 3, 512, 512]}.
                If it is a list or tuple, the number of model's inputs should be 1. And the shape of input
                will be set input_shapes. None means keeping the original shapes, then
                the compression strategies searching may be skipped. Default: None.
C
ceci3 已提交
83 84 85 86 87 88 89 90 91 92 93
            train_config(dict, optional): The train config in the compression process, the key can 
                reference `<https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L103>`_ . 
                Only one strategy(quant_post with hyperparameter optimization) can set train_config 
                to None. Default: None. 
            strategy_config(dict, list(dict), optional): The strategy config. You can set single config to get multi-strategy config, such as
                1. set ``Quantization`` and ``Distillation`` to get quant_aware and distillation compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                2. set ``Quantization`` and ``HyperParameterOptimization`` to get quant_post and hyperparameter optimization compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The HyperParameterOptimization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L73`_ .
C
ceci3 已提交
94 95
                3. set ``ChannelPrune`` and ``Distillation`` to get channel prune and distillation compress config.
                    The ChannelPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
C
ceci3 已提交
96
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
97 98 99 100 101 102 103
                4. set ``ASPPrune`` and ``Distillation`` to get asp prune and distillation compress config.
                    The ASPPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                5. set ``TransformerPrune`` and ``Distillation`` to get transformer prune and distillation compress config.
                    The TransformerPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                6. set ``UnstructurePrune`` and ``Distillation`` to get unstructureprune and distillation compress config.
C
ceci3 已提交
104 105
                    The UnstructurePrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L91`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
106
                7. set ``Distillation`` to use one teacher modol to distillation student model.
C
ceci3 已提交
107
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
C
ceci3 已提交
108
                8. set ``MultiTeacherDistillation`` to use multi-teacher to distillation student model.
C
ceci3 已提交
109 110 111 112 113
                    The MultiTeacherDistillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L56`_ .

                If set to None, will choose a strategy automatically. Default: None.
            target_speedup(float, optional): target speedup ratio by the way of auto compress. Default: None.
            eval_callback(function, optional): eval function, define by yourself to return the metric of the inference program, can be used to judge the metric of compressed model. The documents of how to write eval function is `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/auto-compression/custom_function.rst`_ . ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
114 115 116
            eval_dataloader(paddle.io.Dataloader, optional):  The Generator or Dataloader provides eval data, and it could
                 return a batch every time. If eval_dataloader is None, will take first 5000 sample from train_dataloader 
                 as eval_dataloader, and the metric of eval_dataloader for reference only. Dafault: None.
C
ceci3 已提交
117 118
            deploy_hardware(str, optional): The hardware you want to deploy. Default: 'gpu'.
        """
G
Guanghua Yu 已提交
119
        self.model_dir = model_dir.rstrip('/')
C
ceci3 已提交
120

C
ceci3 已提交
121 122
        if model_filename == 'None':
            model_filename = None
C
ceci3 已提交
123
        self.model_filename = model_filename
C
ceci3 已提交
124 125
        if params_filename == 'None':
            params_filename = None
C
ceci3 已提交
126
        self.params_filename = params_filename
C
ceci3 已提交
127 128 129 130 131 132

        if params_filename is None and model_filename is not None:
            raise NotImplementedError(
                "NOT SUPPORT parameters saved in separate files. Please convert it to single binary file first."
            )

C
ceci3 已提交
133
        self.final_dir = save_dir
W
whs 已提交
134 135
        if not os.path.exists(self.final_dir):
            os.makedirs(self.final_dir)
W
whs 已提交
136 137 138 139 140 141 142 143 144 145 146

        # load config
        assert type(config) in [
            dict, str, set, list, tuple
        ], f"The type of config should be in [dict, str, set, list, tuple] but got {type(config)}"
        if isinstance(config, str):
            config = load_config(config)
        self.strategy_config = extract_strategy_config(config)
        self.train_config = extract_train_config(config)

        # prepare dataloader
G
Guanghua Yu 已提交
147
        self.feed_vars = get_feed_vars(self.model_dir, model_filename,
W
whs 已提交
148 149 150 151 152 153 154
                                       params_filename)
        self.train_dataloader = wrap_dataloader(train_dataloader,
                                                self.feed_vars)
        self.eval_dataloader = wrap_dataloader(eval_dataloader, self.feed_vars)
        if eval_dataloader is None:
            eval_dataloader = self._get_eval_dataloader(self.train_dataloader)

C
ceci3 已提交
155 156
        self.target_speedup = target_speedup
        self.eval_function = eval_callback
157
        self.deploy_hardware = deploy_hardware
158

C
ceci3 已提交
159
        paddle.enable_static()
C
ceci3 已提交
160
        self._exe, self._places = self._prepare_envs()
G
Guanghua Yu 已提交
161
        self.model_type = self._get_model_type(self._exe, self.model_dir,
C
ceci3 已提交
162
                                               model_filename, params_filename)
C
ceci3 已提交
163

164
        if self.train_config is not None and self.train_config.use_fleet:
C
ceci3 已提交
165 166
            fleet.init(is_collective=True)

167 168 169 170 171 172 173
        if with_variable_shape(
                self.model_dir,
                model_filename=model_filename,
                params_filename=params_filename) and input_shapes is not None:

            infer_shape_model = self.create_tmp_dir(
                self.final_dir, prefix="infer_shape_model_")
G
Guanghua Yu 已提交
174
            self._infer_shape(self.model_dir, self.model_filename,
175 176 177 178 179
                              self.params_filename, input_shapes,
                              infer_shape_model)
            self.model_dir = infer_shape_model
            self.model_filename = "infered_shape.pdmodel"
            self.params_filename = "infered_shape.pdiparams"
W
whs 已提交
180

C
ceci3 已提交
181 182
        if self.strategy_config is None:
            strategy_config = prepare_strategy(
C
ceci3 已提交
183 184 185
                self._exe, self._places, self.model_dir, self.model_filename,
                self.params_filename, self.target_speedup, self.deploy_hardware,
                self.model_type)
C
ceci3 已提交
186 187 188 189 190 191 192 193 194 195
            self.strategy_config = strategy_config
        elif isinstance(self.strategy_config, dict):
            self.strategy_config = [self.strategy_config]
        elif isinstance(self.strategy_config, str):
            strategy_config = create_strategy_config(self.strategy_config,
                                                     self.model_type)

        self._strategy, self._config = self._prepare_strategy(
            self.strategy_config)

C
ceci3 已提交
196
        self.train_config = self._get_final_train_config(
197 198
            self.train_config, self._strategy, self.model_type)
        _logger.info(f"Selected strategies: {self._strategy}")
C
ceci3 已提交
199 200 201

    def _get_final_train_config(self, train_config, strategy_config,
                                model_type):
202
        # If train_config is None, set default train_config
C
ceci3 已提交
203 204 205 206 207
        if train_config is None:
            train_config = create_train_config(strategy_config, model_type)

        train_configs = [train_config]
        for idx in range(1, len(self._strategy)):
C
ceci3 已提交
208 209 210
            if 'qat' in self._strategy[idx] or 'ptq' in self._strategy[idx]:
                ### If compress strategy more than one, the TrainConfig in the yaml only used in prune.
                ### The TrainConfig for quantization is extrapolate from above.
C
ceci3 已提交
211 212
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                ### the epoch, train_iter, learning rate of quant is 10% of the prune compress
C
ceci3 已提交
213 214 215
                if self.model_type != 'transformer':
                    tmp_train_config['epochs'] = max(
                        int(train_config.epochs * 0.1), 1)
C
ceci3 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
                if train_config.train_iter is not None:
                    tmp_train_config['train_iter'] = int(
                        train_config.train_iter * 0.1)
                if isinstance(train_config.learning_rate, float):
                    tmp_train_config[
                        'learning_rate'] = train_config.learning_rate * 0.1
                else:
                    if 'learning_rate' in train_config.learning_rate:
                        tmp_train_config['learning_rate'][
                            'learning_rate'] = train_config.learning_rate[
                                'learning_rate'] * 0.1
                    else:  ### learning rate decay is PiecewiseDecay
                        tmp_train_config['learning_rate']['values'] = list(
                            map(lambda x: x * 0.1, train_config.learning_rate[
                                'values']))
                train_cfg = TrainConfig(**tmp_train_config)
            else:
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                train_cfg = TrainConfig(**tmp_train_config)

            train_configs.append(train_cfg)
        return train_configs
238

239 240 241 242 243 244 245
    def _infer_shape(self, model_dir, model_filename, params_filename,
                     input_shapes, save_path):
        assert type(input_shapes) in [
            dict, list, tuple
        ], f'Type of input_shapes should be in [dict, tuple or list] but got {type(input_shapes)}.'
        paddle.enable_static()
        exe = paddle.static.Executor(paddle.CPUPlace())
C
ceci3 已提交
246 247 248
        [inference_program, feed_target_names,
         fetch_targets] = (load_inference_model(model_dir, exe, model_filename,
                                                params_filename))
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

        if type(input_shapes) in [list, tuple]:
            assert len(
                feed_target_names
            ) == 1, f"The number of model's inputs should be 1 but got {feed_target_names}."
            input_shapes = {feed_target_names[0]: input_shapes}

        feed_vars = []
        for var_ in inference_program.list_vars():
            if var_.name in feed_target_names:
                feed_vars.append(var_)
                var_.desc.set_shape(input_shapes[var_.name])

        for block in inference_program.blocks:
            for op in block.ops:
                if op.type not in ["feed", "fetch"]:
                    op.desc.infer_shape(block.desc)

        save_path = os.path.join(save_path, "infered_shape")
        os.makedirs(save_path)
        paddle.static.save_inference_model(
            save_path, feed_vars, fetch_targets, exe, program=inference_program)
        _logger.info(f"Saved model infered shape to {save_path}")

    @property
    def deploy_hardware(self):
        return self._deploy_hardware

    @deploy_hardware.setter
    def deploy_hardware(self, value):
279 280 281 282
        supported_hardware = TableLatencyPredictor.hardware_list + [
            'gpu',  # nvidia gpu
            "cpu",  # intel cpu
        ]
283 284 285
        if value is not None:
            # Fail-fast when deploy hardware is set explicitly
            assert (
286 287
                value in supported_hardware
            ), f"Hardware should be in supported list {supported_hardware} but got {value}. Or you can set deploy_hardware None."
288 289
        self._deploy_hardware = value

290 291 292 293 294 295 296 297 298 299 300
    def _get_eval_dataloader(self, train_dataloader):
        def _gen():
            len_loader = len(list(train_dataloader()))
            ### max eval_dataloader is 5000 if use train_dataloader as eval_dataloader
            slice_len = min(5000, len_loader)
            ret = list(itertools.islice(train_dataloader(), slice_len))
            for i in ret:
                yield i

        return _gen

C
ceci3 已提交
301 302
    def _prepare_envs(self):
        devices = paddle.device.get_device().split(':')[0]
C
ceci3 已提交
303
        places = paddle.device._convert_to_place(devices)
W
whs 已提交
304
        _logger.info(f"devices: {devices}")
C
ceci3 已提交
305 306 307
        exe = paddle.static.Executor(places)
        return exe, places

C
ceci3 已提交
308
    def _get_model_type(self, exe, model_dir, model_filename, params_filename):
C
ceci3 已提交
309 310
        [inference_program, _, _]= (load_inference_model( \
            model_dir, \
C
ceci3 已提交
311
            model_filename=model_filename, params_filename=params_filename,
C
ceci3 已提交
312
            executor=exe))
C
ceci3 已提交
313
        _, _, model_type = get_patterns(inference_program)
W
whs 已提交
314
        _logger.info(f"Detect model type: {model_type}")
C
ceci3 已提交
315 316 317 318 319 320 321 322 323 324 325
        return model_type

    def _prepare_strategy(self, strategy_config):
        if not isinstance(strategy_config, list):
            strategy_config = list(list(strategy_config))

        strategy = []
        config = []
        for strategy_c in strategy_config:
            quant_config = strategy_c.get("Quantization", None)
            hpo_config = strategy_c.get("HyperParameterOptimization", None)
C
ceci3 已提交
326 327 328
            prune_config = strategy_c.get("ChannelPrune", None)
            asp_config = strategy_c.get("ASPPrune", None)
            transformer_prune_config = strategy_c.get("TransformerPrune", None)
C
ceci3 已提交
329 330 331
            unstructure_prune_config = strategy_c.get("UnstructurePrune", None)
            single_teacher_distill_config = strategy_c.get("Distillation", None)
            if single_teacher_distill_config is not None and single_teacher_distill_config.teacher_model_dir is None:
C
ceci3 已提交
332 333 334
                single_teacher_distill_config.teacher_model_dir = self.model_dir
                single_teacher_distill_config.teacher_model_filename = self.model_filename
                single_teacher_distill_config.teacher_params_filename = self.params_filename
C
ceci3 已提交
335 336 337 338 339 340 341 342 343 344

            multi_teacher_distill_config = strategy_c.get(
                "MultiTeacherDistillation", None)

            assert (single_teacher_distill_config is None) or (multi_teacher_distill_config is None), \
                "Distillation and MultiTeacherDistillation cannot be set at the same time."
            self._distill_config = single_teacher_distill_config if \
                   single_teacher_distill_config is not None else \
                   multi_teacher_distill_config

C
ceci3 已提交
345
            only_distillation = True
C
ceci3 已提交
346

C
ceci3 已提交
347 348 349
            ### case1: prune_config & distill config
            if prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
350
                strategy.append('channel_prune_dis')
C
ceci3 已提交
351 352
                config.append(merge_config(prune_config, self._distill_config))

C
ceci3 已提交
353 354 355
            ### case2: asp_config & distill config
            if asp_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
356 357 358
                strategy.append('asp_prune_dis')
                config.append(merge_config(asp_config, self._distill_config))

C
ceci3 已提交
359 360 361
            ### case3: transformer_prune_config & distill config
            if transformer_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
362 363 364 365 366
                strategy.append('transformer_prune_dis')
                config.append(
                    merge_config(transformer_prune_config,
                                 self._distill_config))

C
ceci3 已提交
367 368 369
            ### case4: unstructure_config & distill config
            if unstructure_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
370 371 372 373 374
                strategy.append('unstructure_prune_dis')
                config.append(
                    merge_config(unstructure_prune_config,
                                 self._distill_config))

C
ceci3 已提交
375 376 377 378 379 380 381 382 383 384 385 386
            ### case5: quant_config & hpo_config ==> PTQ & HPO
            if quant_config is not None and hpo_config is not None:
                only_distillation = False
                strategy.append('ptq_hpo')
                config.append(merge_config(quant_config, hpo_config))

            ### case6: quant_config & distill config ==> QAT & Distill
            if quant_config is not None and self._distill_config is not None:
                only_distillation = False
                strategy.append('qat_dis')
                config.append(merge_config(quant_config, self._distill_config))

C
ceci3 已提交
387
            ### case7: distill_config
C
ceci3 已提交
388
            if only_distillation == True and self._distill_config is not None:
C
ceci3 已提交
389 390 391 392 393 394
                if single_teacher_distill_config is not None:
                    strategy.append('single_teacher_dis')
                    config.append(single_teacher_distill_config)
                else:
                    strategy.append('multi_teacher_dis')
                    config.append(multi_teacher_distill_config)
C
ceci3 已提交
395

C
ceci3 已提交
396 397 398 399 400 401 402 403 404 405 406 407
        ### NOTE: keep quantation in the last step
        idx = -1
        if 'qat_dis' in strategy and strategy.index('qat_dis') != (
                len(strategy) - 1):
            idx = strategy.index('qat_dis')
        elif 'ptq_hpo' in strategy and strategy.index('ptq_hpo') != (
                len(strategy) - 1):
            idx = strategy.index('ptq_hpo')

        if idx != -1:
            strategy = strategy[:idx] + strategy[idx + 1:] + [strategy[idx]]
            config = config[:idx] + config[idx + 1:] + [config[idx]]
C
ceci3 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425

        return strategy, config

    def _prepare_fleet_strategy(train_config):
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()

        strategy = fleet.DistributedStrategy()
        strategy.build_strategy = build_strategy
        if train_config.recompute_config is not None:
            strategy.recompute = True
            strategy.recompute_configs = { ** train_config.recompute_config}
        if train_config.sharding_config is not None:
            strategy.sharding = True
            strategy.sharding_configs = { ** train_config.sharding_config}
        if train_config.amp_config is not None:
            strategy.amp = True
            strategy.amp_configs = { ** train_config.amp_config}
426 427
        if train_config.asp_config is not None:
            strategy.asp = True
C
ceci3 已提交
428 429
        return strategy

C
ceci3 已提交
430
    def _prepare_program(self, program, feed_target_names, fetch_targets,
C
ceci3 已提交
431 432
                         patterns, default_distill_node_pair, strategy, config,
                         train_config):
C
ceci3 已提交
433 434 435 436 437
        train_program = recover_inference_program(program)
        startup_program = paddle.static.Program()
        train_program_info = ProgramInfo(startup_program, train_program,
                                         feed_target_names, fetch_targets)

C
ceci3 已提交
438
        config_dict = config.__dict__
439 440 441
        if "prune_strategy" in config_dict and config_dict[
                "prune_strategy"] == "gmp" and config_dict[
                    'gmp_config'] is None:
Z
zhouzj 已提交
442 443 444
            _logger.info(
                "Calculating the iterations per epoch……(It will take some time)")
            # NOTE:XXX: This way of calculating the iters needs to be improved.
C
ceci3 已提交
445
            if train_config.epochs:
G
Guanghua Yu 已提交
446
                iters_per_epoch = len(list(self.train_dataloader()))
C
ceci3 已提交
447 448 449
                total_iters = train_config.epochs * iters_per_epoch
            elif train_config.train_iter:
                total_iters = train_config.train_iter
G
Guanghua Yu 已提交
450 451 452
            else:
                raise RuntimeError(
                    'train_config must has `epochs` or `train_iter` field.')
Z
zhouzj 已提交
453 454 455 456 457 458 459 460
            config_dict['gmp_config'] = {
                'stable_iterations': 0,
                'pruning_iterations': 0.45 * total_iters,
                'tunning_iterations': 0.45 * total_iters,
                'resume_iteration': -1,
                'pruning_steps': 100,
                'initial_ratio': 0.15,
            }
C
ceci3 已提交
461 462
        ### add prune program
        self._pruner = None
C
ceci3 已提交
463
        if 'prune' in strategy:
C
ceci3 已提交
464 465
            self._pruner, train_program_info = build_prune_program(
                self._exe, self._places, config_dict, train_program_info,
C
ceci3 已提交
466
                strategy, patterns, self.eval_dataloader)
C
ceci3 已提交
467

C
ceci3 已提交
468 469
        if train_config.use_fleet:
            dist_strategy = _prepare_fleet_strategy(train_config)
C
ceci3 已提交
470 471 472 473
        else:
            dist_strategy = None

        ### add distill program
C
ceci3 已提交
474
        if 'dis' in strategy:
C
ceci3 已提交
475 476 477 478
            train_program_info, test_program_info = build_distill_program(
                self._exe,
                self._places,
                config_dict,
C
ceci3 已提交
479
                train_config.__dict__,
C
ceci3 已提交
480 481
                train_program_info,
                pruner=self._pruner,
C
ceci3 已提交
482 483
                dist_strategy=dist_strategy,
                default_distill_node_pair=default_distill_node_pair)
C
ceci3 已提交
484 485 486

        self._quant_config = None
        ### add quant_aware program, quant always is last step
C
ceci3 已提交
487
        if 'qat' in strategy:
C
ceci3 已提交
488 489 490
            train_program_info, test_program_info, self._quant_config = build_quant_program(
                self._exe, self._places, config_dict, train_program_info,
                test_program_info)
C
ceci3 已提交
491
        if train_config.sparse_model:
Z
zhouzj 已提交
492
            from ..prune.unstructured_pruner import UnstructuredPruner
Z
zhouzj 已提交
493
            # NOTE: The initialization parameter of this pruner doesn't work, it is only used to call the 'set_static_masks' function
Z
zhouzj 已提交
494 495 496 497 498 499
            self._pruner = UnstructuredPruner(
                train_program_info.program,
                mode='ratio',
                ratio=0.75,
                prune_params_type='conv1x1_only',
                place=self._places)
Z
zhouzj 已提交
500
            self._pruner.set_static_masks()  # Fixed model sparsity
C
ceci3 已提交
501 502 503

        self._exe.run(train_program_info.startup_program)

C
ceci3 已提交
504 505 506 507
        if (not train_config.use_fleet) and train_config.amp_config is not None:
            if hasattr(
                    train_config.amp_config,
                    'use_pure_fp16') and train_config.amp_config.use_pure_fp16:
C
ceci3 已提交
508 509 510
                train_program_info.optimizer.amp_init(
                    self._places, scope=paddle.static.global_scope())

C
ceci3 已提交
511
        if 'asp' in strategy:
C
ceci3 已提交
512 513 514
            ### prune weight in scope
            self._pruner.prune_model(train_program_info.program)

C
ceci3 已提交
515
        if not train_config.use_fleet:
C
ceci3 已提交
516
            train_program_info = self._compiled_program(train_program_info,
C
ceci3 已提交
517
                                                        strategy)
C
ceci3 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
            test_program_info = self._compiled_program(test_program_info,
                                                       self._strategy)
        return train_program_info, test_program_info

    def _compiled_program(self, program_info, strategy):
        compiled_prog = paddle.static.CompiledProgram(program_info.program)
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()
        if 'qat' in strategy:
            build_strategy.memory_optimize = False
            build_strategy.enable_inplace = False
            build_strategy.fuse_all_reduce_ops = False
            build_strategy.sync_batch_norm = False

        compiled_prog = compiled_prog.with_data_parallel(
            loss_name=program_info.fetch_targets[0].name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)
        program_info.program = compiled_prog
        return program_info

539
    def create_tmp_dir(self, base_dir, prefix="tmp"):
W
whs 已提交
540
        # create a new temp directory in final dir
541 542 543 544 545 546
        s_datetime = strftime("%Y-%m-%d-%H:%M:%S", gmtime())
        tmp_base_name = "_".join([prefix, str(os.getpid()), s_datetime])
        tmp_dir = os.path.join(base_dir, tmp_base_name)
        if not os.path.exists(tmp_dir):
            os.makedirs(tmp_dir)
        return tmp_dir
W
whs 已提交
547

548
    def compress(self):
549
        assert len(self._strategy) > 0
550
        self.tmp_dir = self.create_tmp_dir(self.final_dir)
551 552 553 554
        strategy = None
        config = None
        train_config = None
        strategy_idx = None
C
ceci3 已提交
555
        for strategy_idx, (
C
ceci3 已提交
556 557 558 559
                strategy, config, train_config
        ) in enumerate(zip(self._strategy, self._config, self.train_config)):
            self.single_strategy_compress(strategy, config, strategy_idx,
                                          train_config)
C
ceci3 已提交
560 561 562

        if strategy == 'ptq_hpo' and config.max_quant_count == 1 and platform.system(
        ).lower() == 'linux':
C
ceci3 已提交
563
            ptq_loss = post_quant_hpo.g_min_emd_loss
C
ceci3 已提交
564

C
ceci3 已提交
565 566 567 568 569
            final_quant_config = get_final_quant_config(ptq_loss)
            if final_quant_config is not None:
                quant_strategy, quant_config = self._prepare_strategy(
                    final_quant_config)
                self.single_strategy_compress(quant_strategy[0],
C
ceci3 已提交
570 571
                                              quant_config[0], strategy_idx,
                                              train_config)
572
        tmp_model_path = os.path.join(
W
whs 已提交
573
            self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1)))
C
ceci3 已提交
574
        final_model_path = os.path.join(self.final_dir)
575 576
        if not os.path.exists(final_model_path):
            os.makedirs(final_model_path)
C
ceci3 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590

        tmp_model_file = ".".join([tmp_model_path, "pdmodel"])
        if not os.path.exists(tmp_model_file):
            tmp_model_file = os.path.join(tmp_model_path, self.model_filename)

        tmp_params_file = ".".join([tmp_model_path, "pdiparams"])
        if not os.path.exists(tmp_params_file):
            tmp_params_file = os.path.join(tmp_model_path, self.params_filename)

        if self.model_filename is None:
            self.model_filename = "infer.pdmodel"
        if self.params_filename is None:
            self.params_filename = "infer.pdiparams"

C
ceci3 已提交
591 592
        final_model_file = os.path.join(final_model_path, self.model_filename)
        final_params_file = os.path.join(final_model_path, self.params_filename)
C
ceci3 已提交
593

C
ceci3 已提交
594 595 596
        if paddle.distributed.get_rank() == 0:
            shutil.move(tmp_model_file, final_model_file)
            shutil.move(tmp_params_file, final_params_file)
W
whs 已提交
597
            shutil.rmtree(self.tmp_dir)
C
ceci3 已提交
598
            _logger.info(
G
Guanghua Yu 已提交
599
                "==> The ACT compression has been completed and the final model is saved in `{}`".
C
ceci3 已提交
600
                format(final_model_path))
C
ceci3 已提交
601 602
        os._exit(0)

C
ceci3 已提交
603 604
    def single_strategy_compress(self, strategy, config, strategy_idx,
                                 train_config):
605 606 607 608 609 610 611
        # start compress, including train/eval model
        # TODO: add the emd loss of evaluation model.
        if strategy == 'quant_post':
            quant_post(
                self._exe,
                model_dir=self.model_dir,
                quantize_model_path=os.path.join(
W
whs 已提交
612
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
                data_loader=self.train_dataloader,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
                batch_size=1,
                batch_nums=config.batch_num,
                algo=config.ptq_algo,
                round_type='round',
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
                quantizable_op_type=config.quantize_op_types,
                is_full_quantize=config.is_full_quantize,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                activation_quantize_type='range_abs_max',
                weight_quantize_type=config.weight_quantize_type,
                onnx_format=False)

        elif strategy == 'ptq_hpo':
633 634 635 636
            if platform.system().lower() != 'linux':
                raise NotImplementedError(
                    "post-quant-hpo is not support in system other than linux")

C
ceci3 已提交
637
            post_quant_hpo.quant_post_hpo(
C
ceci3 已提交
638 639 640
                self._exe,
                self._places,
                model_dir=self.model_dir,
C
ceci3 已提交
641
                quantize_model_path=os.path.join(
W
whs 已提交
642
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
C
ceci3 已提交
643 644 645 646 647 648 649
                train_dataloader=self.train_dataloader,
                eval_dataloader=self.eval_dataloader,
                eval_function=self.eval_function,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
C
ceci3 已提交
650 651 652 653 654 655 656 657
                quantizable_op_type=config.quantize_op_types,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                weight_quantize_type=config.weight_quantize_type,
                is_full_quantize=config.is_full_quantize,
                algo=config.ptq_algo,
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
C
ceci3 已提交
658
                batch_size=[1],
C
ceci3 已提交
659 660
                batch_num=config.batch_num,
                runcount_limit=config.max_quant_count)
C
ceci3 已提交
661 662

        else:
C
ceci3 已提交
663 664 665 666 667 668
            assert 'dis' in strategy, "Only support optimizer compressed model by distillation loss."

            if strategy_idx == 0:
                model_dir = self.model_dir
            else:
                model_dir = os.path.join(
W
whs 已提交
669
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx)))
C
ceci3 已提交
670

C
ceci3 已提交
671 672
            [inference_program, feed_target_names, fetch_targets]= load_inference_model( \
                model_dir, \
C
ceci3 已提交
673 674 675 676
                model_filename=self.model_filename, params_filename=self.params_filename,
                executor=self._exe)

            ### used to check whether the dataloader is right
C
ceci3 已提交
677
            self.metric_before_compressed = None
C
ceci3 已提交
678
            if self.eval_function is not None and train_config.origin_metric is not None:
C
ceci3 已提交
679
                _logger.info("start to test metric before compress")
C
ceci3 已提交
680 681 682 683
                metric = self.eval_function(self._exe, inference_program,
                                            feed_target_names, fetch_targets)
                _logger.info("metric of compressed model is: {}".format(metric))
                buf = 0.05
C
ceci3 已提交
684 685
                if metric < (float(train_config.origin_metric) - buf) or \
                        metric > (float(train_config.origin_metric) + buf):
C
ceci3 已提交
686 687 688 689
                    raise RuntimeError("target metric of pretrained model is {}, \
                          but now is {}, Please check the format of evaluation dataset \
                          or check the origin_metric in train_config"
                                                                     .format(\
C
ceci3 已提交
690
                          train_config.origin_metric, metric))
C
ceci3 已提交
691 692 693 694
                self.metric_before_compressed = metric

            patterns, default_distill_node_pair, _ = get_patterns(
                inference_program)
C
ceci3 已提交
695 696

            train_program_info, test_program_info = self._prepare_program(
C
ceci3 已提交
697
                inference_program, feed_target_names, fetch_targets, patterns,
C
ceci3 已提交
698
                default_distill_node_pair, strategy, config, train_config)
Z
zhouzj 已提交
699 700 701
            if 'unstructure' in self._strategy:
                test_program_info.program._program = remove_unused_var_nodes(
                    test_program_info.program._program)
C
ceci3 已提交
702 703
            test_program_info = self._start_train(
                train_program_info, test_program_info, strategy, train_config)
C
ceci3 已提交
704
            self._save_model(test_program_info, strategy, strategy_idx)
C
ceci3 已提交
705

C
ceci3 已提交
706 707
    def _start_train(self, train_program_info, test_program_info, strategy,
                     train_config):
C
ceci3 已提交
708
        best_metric = -1.0
C
ceci3 已提交
709
        total_epochs = train_config.epochs if train_config.epochs else 100
G
Guanghua Yu 已提交
710
        total_train_iter = 0
G
Guanghua Yu 已提交
711
        for epoch_id in range(total_epochs):
C
ceci3 已提交
712 713 714 715
            for batch_id, data in enumerate(self.train_dataloader()):
                np_probs_float, = self._exe.run(train_program_info.program, \
                    feed=data, \
                    fetch_list=train_program_info.fetch_targets)
716 717
                if not isinstance(train_program_info.learning_rate, float):
                    train_program_info.learning_rate.step()
C
ceci3 已提交
718
                if 'unstructure' in strategy:
C
ceci3 已提交
719 720
                    self._pruner.step()

C
ceci3 已提交
721
                if train_config.logging_iter is None:
C
ceci3 已提交
722 723
                    logging_iter = 10
                else:
C
ceci3 已提交
724
                    logging_iter = train_config.logging_iter
C
ceci3 已提交
725
                if batch_id % int(logging_iter) == 0:
G
Guanghua Yu 已提交
726 727 728 729 730
                    _logger.info(
                        "Total iter: {}, epoch: {}, batch: {}, loss: {}".format(
                            total_train_iter, epoch_id, batch_id,
                            np_probs_float))
                total_train_iter += 1
C
ceci3 已提交
731 732
                if total_train_iter % int(
                        train_config.eval_iter) == 0 and total_train_iter != 0:
C
ceci3 已提交
733 734 735
                    if self.eval_function is not None:

                        # GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation. 
C
ceci3 已提交
736
                        if 'unstructure' in strategy:
C
ceci3 已提交
737 738 739 740 741 742 743 744 745 746
                            self._pruner.update_params()

                        metric = self.eval_function(
                            self._exe, test_program_info.program,
                            test_program_info.feed_target_names,
                            test_program_info.fetch_targets)

                        if metric > best_metric:
                            paddle.static.save(
                                program=test_program_info.program._program,
W
whs 已提交
747
                                model_path=os.path.join(self.tmp_dir,
C
ceci3 已提交
748
                                                        'best_model'))
C
ceci3 已提交
749
                            best_metric = metric
750 751 752
                            _logger.info(
                                "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
                                format(epoch_id, metric, best_metric))
C
ceci3 已提交
753 754 755 756 757
                            if self.metric_before_compressed is not None and float(
                                    abs(best_metric -
                                        self.metric_before_compressed)
                            ) / self.metric_before_compressed <= 0.005:
                                break
758 759 760 761
                        else:
                            _logger.info(
                                "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
                                format(epoch_id, metric, best_metric))
C
ceci3 已提交
762 763
                        if train_config.target_metric is not None:
                            if metric > float(train_config.target_metric):
C
ceci3 已提交
764
                                break
C
ceci3 已提交
765 766

                    else:
767 768 769
                        _logger.warning(
                            "Not set eval function, so unable to test accuracy performance."
                        )
C
ceci3 已提交
770
                if train_config.train_iter and total_train_iter >= train_config.train_iter:
G
Guanghua Yu 已提交
771
                    break
C
ceci3 已提交
772

C
ceci3 已提交
773
        if 'unstructure' in self._strategy or train_config.sparse_model:
Z
zhouzj 已提交
774 775
            self._pruner.update_params()

C
ceci3 已提交
776 777
        return test_program_info

C
ceci3 已提交
778
    def _save_model(self, test_program_info, strategy, strategy_idx):
C
ceci3 已提交
779 780 781
        test_program = test_program_info.program._program if isinstance(
            test_program_info.program,
            paddle.static.CompiledProgram) else test_program_info.program
C
ceci3 已提交
782

W
whs 已提交
783
        if os.path.exists(os.path.join(self.tmp_dir, 'best_model.pdparams')):
784
            paddle.static.load(test_program,
W
whs 已提交
785 786 787 788
                               os.path.join(self.tmp_dir, 'best_model'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdmodel'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdopt'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdparams'))
C
ceci3 已提交
789 790

        if 'qat' in strategy:
G
Guanghua Yu 已提交
791
            test_program, int8_program = convert(test_program, self._places, self._quant_config, \
C
ceci3 已提交
792 793 794
                                          scope=paddle.static.global_scope(), \
                                          save_int8=True)

W
whs 已提交
795
        model_dir = os.path.join(self.tmp_dir,
C
ceci3 已提交
796 797 798
                                 'strategy_{}'.format(str(strategy_idx + 1)))
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
C
ceci3 已提交
799 800 801 802 803
        feed_vars = [
            test_program.global_block().var(name)
            for name in test_program_info.feed_target_names
        ]

C
ceci3 已提交
804 805 806
        model_name = '.'.join(self.model_filename.split(
            '.')[:-1]) if self.model_filename is not None else 'model'
        path_prefix = os.path.join(model_dir, model_name)
C
ceci3 已提交
807
        paddle.static.save_inference_model(
C
ceci3 已提交
808
            path_prefix=path_prefix,
C
ceci3 已提交
809 810
            feed_vars=feed_vars,
            fetch_vars=test_program_info.fetch_targets,
C
ceci3 已提交
811
            executor=self._exe,
C
ceci3 已提交
812
            program=test_program)