Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
4434a362
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
接近 2 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4434a362
编写于
8月 12, 2022
作者:
G
Guanghua Yu
提交者:
GitHub
8月 12, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update YOLO act dataloader (#1336)
上级
cc7fd900
变更
22
隐藏空白更改
内联
并排
Showing
22 changed file
with
765 addition
and
647 deletion
+765
-647
example/auto_compression/pytorch_yolov5/configs/yolov5_reader.yml
...auto_compression/pytorch_yolov5/configs/yolov5_reader.yml
+0
-27
example/auto_compression/pytorch_yolov5/configs/yolov5s_qat_dis.yaml
...o_compression/pytorch_yolov5/configs/yolov5s_qat_dis.yaml
+6
-5
example/auto_compression/pytorch_yolov5/dataset.py
example/auto_compression/pytorch_yolov5/dataset.py
+113
-0
example/auto_compression/pytorch_yolov5/eval.py
example/auto_compression/pytorch_yolov5/eval.py
+30
-85
example/auto_compression/pytorch_yolov5/paddle_trt_infer.py
example/auto_compression/pytorch_yolov5/paddle_trt_infer.py
+2
-5
example/auto_compression/pytorch_yolov5/post_process.py
example/auto_compression/pytorch_yolov5/post_process.py
+58
-0
example/auto_compression/pytorch_yolov5/run.py
example/auto_compression/pytorch_yolov5/run.py
+42
-95
example/auto_compression/pytorch_yolov6/configs/yolov6_reader.yml
...auto_compression/pytorch_yolov6/configs/yolov6_reader.yml
+0
-27
example/auto_compression/pytorch_yolov6/configs/yolov6s_qat_dis.yaml
...o_compression/pytorch_yolov6/configs/yolov6s_qat_dis.yaml
+6
-5
example/auto_compression/pytorch_yolov6/dataset.py
example/auto_compression/pytorch_yolov6/dataset.py
+113
-0
example/auto_compression/pytorch_yolov6/eval.py
example/auto_compression/pytorch_yolov6/eval.py
+28
-83
example/auto_compression/pytorch_yolov6/paddle_trt_infer.py
example/auto_compression/pytorch_yolov6/paddle_trt_infer.py
+2
-5
example/auto_compression/pytorch_yolov6/post_process.py
example/auto_compression/pytorch_yolov6/post_process.py
+58
-0
example/auto_compression/pytorch_yolov6/run.py
example/auto_compression/pytorch_yolov6/run.py
+39
-94
example/auto_compression/pytorch_yolov7/configs/yolov7_qat_dis.yaml
...to_compression/pytorch_yolov7/configs/yolov7_qat_dis.yaml
+7
-5
example/auto_compression/pytorch_yolov7/configs/yolov7_reader.yaml
...uto_compression/pytorch_yolov7/configs/yolov7_reader.yaml
+0
-27
example/auto_compression/pytorch_yolov7/dataset.py
example/auto_compression/pytorch_yolov7/dataset.py
+113
-0
example/auto_compression/pytorch_yolov7/eval.py
example/auto_compression/pytorch_yolov7/eval.py
+31
-78
example/auto_compression/pytorch_yolov7/paddle_trt_infer.py
example/auto_compression/pytorch_yolov7/paddle_trt_infer.py
+2
-5
example/auto_compression/pytorch_yolov7/post_process.py
example/auto_compression/pytorch_yolov7/post_process.py
+58
-0
example/auto_compression/pytorch_yolov7/run.py
example/auto_compression/pytorch_yolov7/run.py
+42
-88
paddleslim/auto_compression/compressor.py
paddleslim/auto_compression/compressor.py
+15
-13
未找到文件。
example/auto_compression/pytorch_yolov5/configs/yolov5_reader.yml
已删除
100644 → 0
浏览文件 @
cc7fd900
metric
:
COCO
num_classes
:
80
# Datset configuration
TrainDataset
:
!COCODataSet
image_dir
:
train2017
anno_path
:
annotations/instances_train2017.json
dataset_dir
:
dataset/coco/
EvalDataset
:
!COCODataSet
image_dir
:
val2017
anno_path
:
annotations/instances_val2017.json
dataset_dir
:
dataset/coco/
worker_num
:
0
# preprocess reader in test
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
target_size
:
[
640
,
640
],
keep_ratio
:
True
}
-
Pad
:
{
size
:
[
640
,
640
],
fill_value
:
[
114.
,
114.
,
114.
]}
-
NormalizeImage
:
{
mean
:
[
0
,
0
,
0
],
std
:
[
1
,
1
,
1
],
is_scale
:
True
}
-
Permute
:
{}
batch_size
:
1
example/auto_compression/pytorch_yolov5/configs/yolov5s_qat_dis.yaml
浏览文件 @
4434a362
Global
:
reader_config
:
configs/yolov5_reader.yml
input_list
:
{
'
image'
:
'
x2paddle_images'
}
Evaluation
:
True
arch
:
'
YOLOv5'
model_dir
:
./yolov5s.onnx
dataset_dir
:
dataset/coco/
train_image_dir
:
train2017
val_image_dir
:
val2017
train_anno_path
:
annotations/instances_train2017.json
val_anno_path
:
annotations/instances_val2017.json
Evaluation
:
True
Distillation
:
alpha
:
1.0
...
...
example/auto_compression/pytorch_yolov5/dataset.py
0 → 100644
浏览文件 @
4434a362
from
pycocotools.coco
import
COCO
import
cv2
import
os
import
numpy
as
np
import
paddle
class
COCOValDataset
(
paddle
.
io
.
Dataset
):
def
__init__
(
self
,
dataset_dir
=
None
,
image_dir
=
None
,
anno_path
=
None
,
img_size
=
[
640
,
640
]):
self
.
dataset_dir
=
dataset_dir
self
.
image_dir
=
image_dir
self
.
img_size
=
img_size
self
.
ann_file
=
os
.
path
.
join
(
dataset_dir
,
anno_path
)
self
.
coco
=
COCO
(
self
.
ann_file
)
ori_ids
=
list
(
sorted
(
self
.
coco
.
imgs
.
keys
()))
# check gt bbox
clean_ids
=
[]
for
idx
in
ori_ids
:
ins_anno_ids
=
self
.
coco
.
getAnnIds
(
imgIds
=
[
idx
],
iscrowd
=
False
)
instances
=
self
.
coco
.
loadAnns
(
ins_anno_ids
)
num_bbox
=
0
for
inst
in
instances
:
if
inst
.
get
(
'ignore'
,
False
):
continue
if
'bbox'
not
in
inst
.
keys
():
continue
elif
not
any
(
np
.
array
(
inst
[
'bbox'
])):
continue
else
:
num_bbox
+=
1
if
num_bbox
>
0
:
clean_ids
.
append
(
idx
)
self
.
ids
=
clean_ids
def
__getitem__
(
self
,
idx
):
img_id
=
self
.
ids
[
idx
]
img
=
self
.
_get_img_data_from_img_id
(
img_id
)
img
,
scale_factor
=
self
.
image_preprocess
(
img
,
self
.
img_size
)
return
{
'image'
:
img
,
'im_id'
:
np
.
array
([
img_id
]),
'scale_factor'
:
scale_factor
}
def
__len__
(
self
):
return
len
(
self
.
ids
)
def
_get_img_data_from_img_id
(
self
,
img_id
):
img_info
=
self
.
coco
.
loadImgs
(
img_id
)[
0
]
img_path
=
os
.
path
.
join
(
self
.
dataset_dir
,
self
.
image_dir
,
img_info
[
'file_name'
])
img
=
cv2
.
imread
(
img_path
)
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2RGB
)
return
img
def
_generate_scale
(
self
,
im
,
target_shape
,
keep_ratio
=
True
):
"""
Args:
im (np.ndarray): image (np.ndarray)
Returns:
im_scale_x: the resize ratio of X
im_scale_y: the resize ratio of Y
"""
origin_shape
=
im
.
shape
[:
2
]
if
keep_ratio
:
im_size_min
=
np
.
min
(
origin_shape
)
im_size_max
=
np
.
max
(
origin_shape
)
target_size_min
=
np
.
min
(
target_shape
)
target_size_max
=
np
.
max
(
target_shape
)
im_scale
=
float
(
target_size_min
)
/
float
(
im_size_min
)
if
np
.
round
(
im_scale
*
im_size_max
)
>
target_size_max
:
im_scale
=
float
(
target_size_max
)
/
float
(
im_size_max
)
im_scale_x
=
im_scale
im_scale_y
=
im_scale
else
:
resize_h
,
resize_w
=
target_shape
im_scale_y
=
resize_h
/
float
(
origin_shape
[
0
])
im_scale_x
=
resize_w
/
float
(
origin_shape
[
1
])
return
im_scale_y
,
im_scale_x
def
image_preprocess
(
self
,
img
,
target_shape
):
# Resize image
im_scale_y
,
im_scale_x
=
self
.
_generate_scale
(
img
,
target_shape
)
img
=
cv2
.
resize
(
img
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
cv2
.
INTER_LINEAR
)
# Pad
im_h
,
im_w
=
img
.
shape
[:
2
]
h
,
w
=
target_shape
[:]
if
h
!=
im_h
or
w
!=
im_w
:
canvas
=
np
.
ones
((
h
,
w
,
3
),
dtype
=
np
.
float32
)
canvas
*=
np
.
array
([
114.0
,
114.0
,
114.0
],
dtype
=
np
.
float32
)
canvas
[
0
:
im_h
,
0
:
im_w
,
:]
=
img
.
astype
(
np
.
float32
)
img
=
canvas
img
=
np
.
transpose
(
img
/
255
,
[
2
,
0
,
1
])
scale_factor
=
np
.
array
([
im_scale_y
,
im_scale_x
])
return
img
.
astype
(
np
.
float32
),
scale_factor
class
COCOTrainDataset
(
COCOValDataset
):
def
__getitem__
(
self
,
idx
):
img_id
=
self
.
ids
[
idx
]
img
=
self
.
_get_img_data_from_img_id
(
img_id
)
img
,
scale_factor
=
self
.
image_preprocess
(
img
,
self
.
img_size
)
return
{
'x2paddle_images'
:
img
}
example/auto_compression/pytorch_yolov5/eval.py
浏览文件 @
4434a362
...
...
@@ -16,13 +16,12 @@ import os
import
sys
import
numpy
as
np
import
argparse
from
tqdm
import
tqdm
import
paddle
from
ppdet.core.workspace
import
load_config
,
merge_config
from
ppdet.core.workspace
import
create
from
ppdet.metrics
import
COCOMetric
,
VOCMetric
from
paddleslim.auto_compression.config_helpers
import
load_config
as
load_slim_config
from
paddleslim.common
import
load_onnx_model
from
post_process
import
YOLOv5PostProcess
from
post_process
import
YOLOv5PostProcess
,
coco_metric
from
dataset
import
COCOValDataset
def
argsparser
():
...
...
@@ -42,104 +41,50 @@ def argsparser():
return
parser
def
reader_wrapper
(
reader
,
input_list
):
def
gen
():
for
data
in
reader
:
in_dict
=
{}
if
isinstance
(
input_list
,
list
):
for
input_name
in
input_list
:
in_dict
[
input_name
]
=
data
[
input_name
]
elif
isinstance
(
input_list
,
dict
):
for
input_name
in
input_list
.
keys
():
in_dict
[
input_list
[
input_name
]]
=
data
[
input_name
]
yield
in_dict
return
gen
def
convert_numpy_data
(
data
,
metric
):
data_all
=
{}
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
if
isinstance
(
metric
,
VOCMetric
):
for
k
,
v
in
data_all
.
items
():
if
not
isinstance
(
v
[
0
],
np
.
ndarray
):
tmp_list
=
[]
for
t
in
v
:
tmp_list
.
append
(
np
.
array
(
t
))
data_all
[
k
]
=
np
.
array
(
tmp_list
)
else
:
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
return
data_all
def
eval
():
place
=
paddle
.
CUDAPlace
(
0
)
if
FLAGS
.
devices
==
'gpu'
else
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
val_program
,
feed_target_names
,
fetch_targets
=
load_onnx_model
(
global_config
[
"model_dir"
])
metric
=
global_config
[
'metric'
]
for
batch_id
,
data
in
enumerate
(
val_loader
):
data_all
=
convert_numpy_data
(
data
,
metric
)
data_input
=
{}
for
k
,
v
in
data
.
items
():
if
isinstance
(
global_config
[
'input_list'
],
list
):
if
k
in
global_config
[
'input_list'
]:
data_input
[
k
]
=
np
.
array
(
v
)
elif
isinstance
(
global_config
[
'input_list'
],
dict
):
if
k
in
global_config
[
'input_list'
].
keys
():
data_input
[
global_config
[
'input_list'
][
k
]]
=
np
.
array
(
v
)
outs
=
exe
.
run
(
val_program
,
feed
=
data_input
,
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
res
=
{}
if
'arch'
in
global_config
and
global_config
[
'arch'
]
==
'YOLOv5'
:
bboxes_list
,
bbox_nums_list
,
image_id_list
=
[],
[],
[]
with
tqdm
(
total
=
len
(
val_loader
),
bar_format
=
'Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}'
,
ncols
=
80
)
as
t
:
for
data
in
val_loader
:
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
outs
=
exe
.
run
(
val_program
,
feed
=
{
feed_target_names
[
0
]:
data_all
[
'image'
]},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
res
=
{}
postprocess
=
YOLOv5PostProcess
(
score_threshold
=
0.001
,
nms_threshold
=
0.6
,
multi_label
=
True
)
score_threshold
=
0.001
,
nms_threshold
=
0.6
5
,
multi_label
=
True
)
res
=
postprocess
(
np
.
array
(
outs
[
0
]),
data_all
[
'scale_factor'
])
else
:
for
out
in
outs
:
v
=
np
.
array
(
out
)
if
len
(
v
.
shape
)
>
1
:
res
[
'bbox'
]
=
v
else
:
res
[
'bbox_num'
]
=
v
metric
.
update
(
data_all
,
res
)
if
batch_id
%
100
==
0
:
print
(
'Eval iter:'
,
batch_id
)
metric
.
accumulate
()
metric
.
log
()
metric
.
reset
()
bboxes_list
.
append
(
res
[
'bbox'
])
bbox_nums_list
.
append
(
res
[
'bbox_num'
])
image_id_list
.
append
(
np
.
array
(
data_all
[
'im_id'
]))
t
.
update
()
coco_metric
(
anno_file
,
bboxes_list
,
bbox_nums_list
,
image_id_list
)
def
main
():
global
global_config
all_config
=
load_slim_config
(
FLAGS
.
config_path
)
global_config
=
all_config
[
"Global"
]
reader_cfg
=
load_config
(
global_config
[
'reader_config'
])
dataset
=
reader_cfg
[
'EvalDataset'
]
global
val_loader
val_loader
=
create
(
'EvalReader'
)(
reader_cfg
[
'EvalDataset'
],
reader_cfg
[
'worker_num'
],
return_list
=
True
)
metric
=
None
if
reader_cfg
[
'metric'
]
==
'COCO'
:
clsid2catid
=
{
v
:
k
for
k
,
v
in
dataset
.
catid2clsid
.
items
()}
anno_file
=
dataset
.
get_anno
()
metric
=
COCOMetric
(
anno_file
=
anno_file
,
clsid2catid
=
clsid2catid
,
IouType
=
'bbox'
)
elif
reader_cfg
[
'metric'
]
==
'VOC'
:
metric
=
VOCMetric
(
label_list
=
dataset
.
get_label_list
(),
class_num
=
reader_cfg
[
'num_classes'
],
map_type
=
reader_cfg
[
'map_type'
])
else
:
raise
ValueError
(
"metric currently only supports COCO and VOC."
)
global_config
[
'metric'
]
=
metric
dataset
=
COCOValDataset
(
dataset_dir
=
global_config
[
'dataset_dir'
],
image_dir
=
global_config
[
'val_image_dir'
],
anno_path
=
global_config
[
'val_anno_path'
])
global
anno_file
anno_file
=
dataset
.
ann_file
val_loader
=
paddle
.
io
.
DataLoader
(
dataset
,
batch_size
=
1
)
eval
()
...
...
example/auto_compression/pytorch_yolov5/paddle_trt_infer.py
浏览文件 @
4434a362
...
...
@@ -241,12 +241,9 @@ def predict_image(predictor,
image_shape
=
[
640
,
640
],
warmup
=
1
,
repeats
=
1
,
threshold
=
0.5
,
arch
=
'YOLOv5'
):
threshold
=
0.5
):
img
,
scale_factor
=
image_preprocess
(
image_file
,
image_shape
)
inputs
=
{}
if
arch
==
'YOLOv5'
:
inputs
[
'x2paddle_images'
]
=
img
inputs
[
'x2paddle_images'
]
=
img
input_names
=
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
predictor
.
get_input_handle
(
input_names
[
i
])
...
...
example/auto_compression/pytorch_yolov5/post_process.py
浏览文件 @
4434a362
...
...
@@ -14,6 +14,8 @@
import
numpy
as
np
import
cv2
import
json
import
sys
def
box_area
(
boxes
):
...
...
@@ -171,3 +173,59 @@ class YOLOv5PostProcess(object):
bboxs
=
np
.
concatenate
(
bboxs
,
axis
=
0
)
box_nums
=
np
.
array
(
box_nums
)
return
{
'bbox'
:
bboxs
,
'bbox_num'
:
box_nums
}
def
coco_metric
(
anno_file
,
bboxes_list
,
bbox_nums_list
,
image_id_list
):
try
:
from
pycocotools.coco
import
COCO
from
pycocotools.cocoeval
import
COCOeval
except
:
print
(
"[ERROR] Not found pycocotools, please install by `pip install pycocotools`"
)
sys
.
exit
(
1
)
coco_gt
=
COCO
(
anno_file
)
cats
=
coco_gt
.
loadCats
(
coco_gt
.
getCatIds
())
clsid2catid
=
{
i
:
cat
[
'id'
]
for
i
,
cat
in
enumerate
(
cats
)}
results
=
[]
for
bboxes
,
bbox_nums
,
image_id
in
zip
(
bboxes_list
,
bbox_nums_list
,
image_id_list
):
results
+=
_get_det_res
(
bboxes
,
bbox_nums
,
image_id
,
clsid2catid
)
output
=
"bbox.json"
with
open
(
output
,
'w'
)
as
f
:
json
.
dump
(
results
,
f
)
coco_dt
=
coco_gt
.
loadRes
(
output
)
coco_eval
=
COCOeval
(
coco_gt
,
coco_dt
,
'bbox'
)
coco_eval
.
evaluate
()
coco_eval
.
accumulate
()
coco_eval
.
summarize
()
return
coco_eval
.
stats
def
_get_det_res
(
bboxes
,
bbox_nums
,
image_id
,
label_to_cat_id_map
):
det_res
=
[]
k
=
0
for
i
in
range
(
len
(
bbox_nums
)):
cur_image_id
=
int
(
image_id
[
i
][
0
])
det_nums
=
bbox_nums
[
i
]
for
j
in
range
(
det_nums
):
dt
=
bboxes
[
k
]
k
=
k
+
1
num_id
,
score
,
xmin
,
ymin
,
xmax
,
ymax
=
dt
.
tolist
()
if
int
(
num_id
)
<
0
:
continue
category_id
=
label_to_cat_id_map
[
int
(
num_id
)]
w
=
xmax
-
xmin
h
=
ymax
-
ymin
bbox
=
[
xmin
,
ymin
,
w
,
h
]
dt_res
=
{
'image_id'
:
cur_image_id
,
'category_id'
:
category_id
,
'bbox'
:
bbox
,
'score'
:
score
}
det_res
.
append
(
dt_res
)
return
det_res
example/auto_compression/pytorch_yolov5/run.py
浏览文件 @
4434a362
...
...
@@ -16,14 +16,12 @@ import os
import
sys
import
numpy
as
np
import
argparse
from
tqdm
import
tqdm
import
paddle
from
ppdet.core.workspace
import
load_config
,
merge_config
from
ppdet.core.workspace
import
create
from
ppdet.metrics
import
COCOMetric
,
VOCMetric
from
paddleslim.auto_compression.config_helpers
import
load_config
as
load_slim_config
from
paddleslim.auto_compression
import
AutoCompression
from
post_process
import
YOLOv5PostProcess
from
dataset
import
COCOValDataset
,
COCOTrainDataset
from
post_process
import
YOLOv5PostProcess
,
coco_metric
def
argsparser
():
...
...
@@ -44,77 +42,34 @@ def argsparser():
type
=
str
,
default
=
'gpu'
,
help
=
"which device used to compress."
)
parser
.
add_argument
(
'--eval'
,
type
=
bool
,
default
=
False
,
help
=
"whether to run evaluation."
)
return
parser
def
reader_wrapper
(
reader
,
input_list
):
def
gen
():
for
data
in
reader
:
in_dict
=
{}
if
isinstance
(
input_list
,
list
):
for
input_name
in
input_list
:
in_dict
[
input_name
]
=
data
[
input_name
]
elif
isinstance
(
input_list
,
dict
):
for
input_name
in
input_list
.
keys
():
in_dict
[
input_list
[
input_name
]]
=
data
[
input_name
]
yield
in_dict
return
gen
def
convert_numpy_data
(
data
,
metric
):
data_all
=
{}
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
if
isinstance
(
metric
,
VOCMetric
):
for
k
,
v
in
data_all
.
items
():
if
not
isinstance
(
v
[
0
],
np
.
ndarray
):
tmp_list
=
[]
for
t
in
v
:
tmp_list
.
append
(
np
.
array
(
t
))
data_all
[
k
]
=
np
.
array
(
tmp_list
)
else
:
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
return
data_all
def
eval_function
(
exe
,
compiled_test_program
,
test_feed_names
,
test_fetch_list
):
metric
=
global_config
[
'metric'
]
for
batch_id
,
data
in
enumerate
(
val_loader
):
data_all
=
convert_numpy_data
(
data
,
metric
)
data_input
=
{}
for
k
,
v
in
data
.
items
():
if
isinstance
(
global_config
[
'input_list'
],
list
):
if
k
in
test_feed_names
:
data_input
[
k
]
=
np
.
array
(
v
)
elif
isinstance
(
global_config
[
'input_list'
],
dict
):
if
k
in
global_config
[
'input_list'
].
keys
():
data_input
[
global_config
[
'input_list'
][
k
]]
=
np
.
array
(
v
)
outs
=
exe
.
run
(
compiled_test_program
,
feed
=
data_input
,
fetch_list
=
test_fetch_list
,
return_numpy
=
False
)
res
=
{}
if
'arch'
in
global_config
and
global_config
[
'arch'
]
==
'YOLOv5'
:
bboxes_list
,
bbox_nums_list
,
image_id_list
=
[],
[],
[]
with
tqdm
(
total
=
len
(
val_loader
),
bar_format
=
'Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}'
,
ncols
=
80
)
as
t
:
for
data
in
val_loader
:
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
outs
=
exe
.
run
(
compiled_test_program
,
feed
=
{
test_feed_names
[
0
]:
data_all
[
'image'
]},
fetch_list
=
test_fetch_list
,
return_numpy
=
False
)
res
=
{}
postprocess
=
YOLOv5PostProcess
(
score_threshold
=
0.001
,
nms_threshold
=
0.6
,
multi_label
=
True
)
score_threshold
=
0.001
,
nms_threshold
=
0.6
5
,
multi_label
=
True
)
res
=
postprocess
(
np
.
array
(
outs
[
0
]),
data_all
[
'scale_factor'
])
else
:
for
out
in
outs
:
v
=
np
.
array
(
out
)
if
len
(
v
.
shape
)
>
1
:
res
[
'bbox'
]
=
v
else
:
res
[
'bbox_num'
]
=
v
metric
.
update
(
data_all
,
res
)
if
batch_id
%
100
==
0
:
print
(
'Eval iter:'
,
batch_id
)
metric
.
accumulate
()
metric
.
log
()
map_res
=
metric
.
get_results
()
metric
.
reset
()
return
map_res
[
'bbox'
][
0
]
bboxes_list
.
append
(
res
[
'bbox'
])
bbox_nums_list
.
append
(
res
[
'bbox_num'
])
image_id_list
.
append
(
np
.
array
(
data_all
[
'im_id'
]))
t
.
update
()
map_res
=
coco_metric
(
anno_file
,
bboxes_list
,
bbox_nums_list
,
image_id_list
)
return
map_res
[
0
]
def
main
():
...
...
@@ -122,38 +77,30 @@ def main():
all_config
=
load_slim_config
(
FLAGS
.
config_path
)
assert
"Global"
in
all_config
,
f
"Key 'Global' not found in config file.
\n
{
all_config
}
"
global_config
=
all_config
[
"Global"
]
reader_cfg
=
load_config
(
global_config
[
'reader_config'
])
train_loader
=
create
(
'EvalReader'
)(
reader_cfg
[
'TrainDataset'
],
reader_cfg
[
'worker_num'
],
return_list
=
True
)
train_loader
=
reader_wrapper
(
train_loader
,
global_config
[
'input_list'
])
dataset
=
COCOTrainDataset
(
dataset_dir
=
global_config
[
'dataset_dir'
],
image_dir
=
global_config
[
'train_image_dir'
],
anno_path
=
global_config
[
'train_anno_path'
])
train_loader
=
paddle
.
io
.
DataLoader
(
dataset
,
batch_size
=
1
,
shuffle
=
True
,
drop_last
=
True
,
num_workers
=
0
)
if
'Evaluation'
in
global_config
.
keys
()
and
global_config
[
'Evaluation'
]
and
paddle
.
distributed
.
get_rank
()
==
0
:
eval_func
=
eval_function
dataset
=
reader_cfg
[
'EvalDataset'
]
global
val_loader
_eval_batch_sampler
=
paddle
.
io
.
BatchSampler
(
dataset
,
batch_size
=
reader_cfg
[
'EvalReader'
][
'batch_size'
])
val_loader
=
create
(
'EvalReader'
)(
dataset
,
reader_cfg
[
'worker_num'
],
batch_sampler
=
_eval_batch_sampler
,
return_list
=
True
)
metric
=
None
if
reader_cfg
[
'metric'
]
==
'COCO'
:
clsid2catid
=
{
v
:
k
for
k
,
v
in
dataset
.
catid2clsid
.
items
()}
anno_file
=
dataset
.
get_anno
()
metric
=
COCOMetric
(
anno_file
=
anno_file
,
clsid2catid
=
clsid2catid
,
IouType
=
'bbox'
)
elif
reader_cfg
[
'metric'
]
==
'VOC'
:
metric
=
VOCMetric
(
label_list
=
dataset
.
get_label_list
(),
class_num
=
reader_cfg
[
'num_classes'
],
map_type
=
reader_cfg
[
'map_type'
])
else
:
raise
ValueError
(
"metric currently only supports COCO and VOC."
)
global_config
[
'metric'
]
=
metric
dataset
=
COCOValDataset
(
dataset_dir
=
global_config
[
'dataset_dir'
],
image_dir
=
global_config
[
'val_image_dir'
],
anno_path
=
global_config
[
'val_anno_path'
])
global
anno_file
anno_file
=
dataset
.
ann_file
val_loader
=
paddle
.
io
.
DataLoader
(
dataset
,
batch_size
=
1
,
shuffle
=
False
,
drop_last
=
False
,
num_workers
=
0
)
else
:
eval_func
=
None
...
...
example/auto_compression/pytorch_yolov6/configs/yolov6_reader.yml
已删除
100644 → 0
浏览文件 @
cc7fd900
metric
:
COCO
num_classes
:
80
# Datset configuration
TrainDataset
:
!COCODataSet
image_dir
:
train2017
anno_path
:
annotations/instances_train2017.json
dataset_dir
:
dataset/coco/
EvalDataset
:
!COCODataSet
image_dir
:
val2017
anno_path
:
annotations/instances_val2017.json
dataset_dir
:
dataset/coco/
worker_num
:
0
# preprocess reader in test
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
target_size
:
[
640
,
640
],
keep_ratio
:
True
}
-
Pad
:
{
size
:
[
640
,
640
],
fill_value
:
[
114.
,
114.
,
114.
]}
-
NormalizeImage
:
{
mean
:
[
0
,
0
,
0
],
std
:
[
1
,
1
,
1
],
is_scale
:
True
}
-
Permute
:
{}
batch_size
:
1
example/auto_compression/pytorch_yolov6/configs/yolov6s_qat_dis.yaml
浏览文件 @
4434a362
Global
:
reader_config
:
configs/yolov6_reader.yml
input_list
:
{
'
image'
:
'
x2paddle_image_arrays'
}
Evaluation
:
True
arch
:
'
YOLOv6'
model_dir
:
./yolov6s.onnx
dataset_dir
:
dataset/coco/
train_image_dir
:
train2017
val_image_dir
:
val2017
train_anno_path
:
annotations/instances_train2017.json
val_anno_path
:
annotations/instances_val2017.json
Evaluation
:
True
Distillation
:
alpha
:
1.0
...
...
example/auto_compression/pytorch_yolov6/dataset.py
0 → 100644
浏览文件 @
4434a362
from
pycocotools.coco
import
COCO
import
cv2
import
os
import
numpy
as
np
import
paddle
class
COCOValDataset
(
paddle
.
io
.
Dataset
):
def
__init__
(
self
,
dataset_dir
=
None
,
image_dir
=
None
,
anno_path
=
None
,
img_size
=
[
640
,
640
]):
self
.
dataset_dir
=
dataset_dir
self
.
image_dir
=
image_dir
self
.
img_size
=
img_size
self
.
ann_file
=
os
.
path
.
join
(
dataset_dir
,
anno_path
)
self
.
coco
=
COCO
(
self
.
ann_file
)
ori_ids
=
list
(
sorted
(
self
.
coco
.
imgs
.
keys
()))
# check gt bbox
clean_ids
=
[]
for
idx
in
ori_ids
:
ins_anno_ids
=
self
.
coco
.
getAnnIds
(
imgIds
=
[
idx
],
iscrowd
=
False
)
instances
=
self
.
coco
.
loadAnns
(
ins_anno_ids
)
num_bbox
=
0
for
inst
in
instances
:
if
inst
.
get
(
'ignore'
,
False
):
continue
if
'bbox'
not
in
inst
.
keys
():
continue
elif
not
any
(
np
.
array
(
inst
[
'bbox'
])):
continue
else
:
num_bbox
+=
1
if
num_bbox
>
0
:
clean_ids
.
append
(
idx
)
self
.
ids
=
clean_ids
def
__getitem__
(
self
,
idx
):
img_id
=
self
.
ids
[
idx
]
img
=
self
.
_get_img_data_from_img_id
(
img_id
)
img
,
scale_factor
=
self
.
image_preprocess
(
img
,
self
.
img_size
)
return
{
'image'
:
img
,
'im_id'
:
np
.
array
([
img_id
]),
'scale_factor'
:
scale_factor
}
def
__len__
(
self
):
return
len
(
self
.
ids
)
def
_get_img_data_from_img_id
(
self
,
img_id
):
img_info
=
self
.
coco
.
loadImgs
(
img_id
)[
0
]
img_path
=
os
.
path
.
join
(
self
.
dataset_dir
,
self
.
image_dir
,
img_info
[
'file_name'
])
img
=
cv2
.
imread
(
img_path
)
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2RGB
)
return
img
def
_generate_scale
(
self
,
im
,
target_shape
,
keep_ratio
=
True
):
"""
Args:
im (np.ndarray): image (np.ndarray)
Returns:
im_scale_x: the resize ratio of X
im_scale_y: the resize ratio of Y
"""
origin_shape
=
im
.
shape
[:
2
]
if
keep_ratio
:
im_size_min
=
np
.
min
(
origin_shape
)
im_size_max
=
np
.
max
(
origin_shape
)
target_size_min
=
np
.
min
(
target_shape
)
target_size_max
=
np
.
max
(
target_shape
)
im_scale
=
float
(
target_size_min
)
/
float
(
im_size_min
)
if
np
.
round
(
im_scale
*
im_size_max
)
>
target_size_max
:
im_scale
=
float
(
target_size_max
)
/
float
(
im_size_max
)
im_scale_x
=
im_scale
im_scale_y
=
im_scale
else
:
resize_h
,
resize_w
=
target_shape
im_scale_y
=
resize_h
/
float
(
origin_shape
[
0
])
im_scale_x
=
resize_w
/
float
(
origin_shape
[
1
])
return
im_scale_y
,
im_scale_x
def
image_preprocess
(
self
,
img
,
target_shape
):
# Resize image
im_scale_y
,
im_scale_x
=
self
.
_generate_scale
(
img
,
target_shape
)
img
=
cv2
.
resize
(
img
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
cv2
.
INTER_LINEAR
)
# Pad
im_h
,
im_w
=
img
.
shape
[:
2
]
h
,
w
=
target_shape
[:]
if
h
!=
im_h
or
w
!=
im_w
:
canvas
=
np
.
ones
((
h
,
w
,
3
),
dtype
=
np
.
float32
)
canvas
*=
np
.
array
([
114.0
,
114.0
,
114.0
],
dtype
=
np
.
float32
)
canvas
[
0
:
im_h
,
0
:
im_w
,
:]
=
img
.
astype
(
np
.
float32
)
img
=
canvas
img
=
np
.
transpose
(
img
/
255
,
[
2
,
0
,
1
])
scale_factor
=
np
.
array
([
im_scale_y
,
im_scale_x
])
return
img
.
astype
(
np
.
float32
),
scale_factor
class
COCOTrainDataset
(
COCOValDataset
):
def
__getitem__
(
self
,
idx
):
img_id
=
self
.
ids
[
idx
]
img
=
self
.
_get_img_data_from_img_id
(
img_id
)
img
,
scale_factor
=
self
.
image_preprocess
(
img
,
self
.
img_size
)
return
{
'x2paddle_image_arrays'
:
img
}
example/auto_compression/pytorch_yolov6/eval.py
浏览文件 @
4434a362
...
...
@@ -16,13 +16,12 @@ import os
import
sys
import
numpy
as
np
import
argparse
from
tqdm
import
tqdm
import
paddle
from
ppdet.core.workspace
import
load_config
,
merge_config
from
ppdet.core.workspace
import
create
from
ppdet.metrics
import
COCOMetric
,
VOCMetric
from
paddleslim.auto_compression.config_helpers
import
load_config
as
load_slim_config
from
paddleslim.common
import
load_onnx_model
from
post_process
import
YOLOv6PostProcess
from
post_process
import
YOLOv6PostProcess
,
coco_metric
from
dataset
import
COCOValDataset
def
argsparser
():
...
...
@@ -42,36 +41,6 @@ def argsparser():
return
parser
def
reader_wrapper
(
reader
,
input_list
):
def
gen
():
for
data
in
reader
:
in_dict
=
{}
if
isinstance
(
input_list
,
list
):
for
input_name
in
input_list
:
in_dict
[
input_name
]
=
data
[
input_name
]
elif
isinstance
(
input_list
,
dict
):
for
input_name
in
input_list
.
keys
():
in_dict
[
input_list
[
input_name
]]
=
data
[
input_name
]
yield
in_dict
return
gen
def
convert_numpy_data
(
data
,
metric
):
data_all
=
{}
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
if
isinstance
(
metric
,
VOCMetric
):
for
k
,
v
in
data_all
.
items
():
if
not
isinstance
(
v
[
0
],
np
.
ndarray
):
tmp_list
=
[]
for
t
in
v
:
tmp_list
.
append
(
np
.
array
(
t
))
data_all
[
k
]
=
np
.
array
(
tmp_list
)
else
:
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
return
data_all
def
eval
():
place
=
paddle
.
CUDAPlace
(
0
)
if
FLAGS
.
devices
==
'gpu'
else
paddle
.
CPUPlace
()
...
...
@@ -80,66 +49,42 @@ def eval():
val_program
,
feed_target_names
,
fetch_targets
=
load_onnx_model
(
global_config
[
"model_dir"
])
metric
=
global_config
[
'metric'
]
for
batch_id
,
data
in
enumerate
(
val_loader
):
data_all
=
convert_numpy_data
(
data
,
metric
)
data_input
=
{}
for
k
,
v
in
data
.
items
():
if
isinstance
(
global_config
[
'input_list'
],
list
):
if
k
in
global_config
[
'input_list'
]:
data_input
[
k
]
=
np
.
array
(
v
)
elif
isinstance
(
global_config
[
'input_list'
],
dict
):
if
k
in
global_config
[
'input_list'
].
keys
():
data_input
[
global_config
[
'input_list'
][
k
]]
=
np
.
array
(
v
)
outs
=
exe
.
run
(
val_program
,
feed
=
data_input
,
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
res
=
{}
if
'arch'
in
global_config
and
global_config
[
'arch'
]
==
'YOLOv6'
:
bboxes_list
,
bbox_nums_list
,
image_id_list
=
[],
[],
[]
with
tqdm
(
total
=
len
(
val_loader
),
bar_format
=
'Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}'
,
ncols
=
80
)
as
t
:
for
data
in
val_loader
:
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
outs
=
exe
.
run
(
val_program
,
feed
=
{
feed_target_names
[
0
]:
data_all
[
'image'
]},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
res
=
{}
postprocess
=
YOLOv6PostProcess
(
score_threshold
=
0.001
,
nms_threshold
=
0.65
,
multi_label
=
True
)
res
=
postprocess
(
np
.
array
(
outs
[
0
]),
data_all
[
'scale_factor'
])
else
:
for
out
in
outs
:
v
=
np
.
array
(
out
)
if
len
(
v
.
shape
)
>
1
:
res
[
'bbox'
]
=
v
else
:
res
[
'bbox_num'
]
=
v
metric
.
update
(
data_all
,
res
)
if
batch_id
%
100
==
0
:
print
(
'Eval iter:'
,
batch_id
)
metric
.
accumulate
()
metric
.
log
()
metric
.
reset
()
bboxes_list
.
append
(
res
[
'bbox'
])
bbox_nums_list
.
append
(
res
[
'bbox_num'
])
image_id_list
.
append
(
np
.
array
(
data_all
[
'im_id'
]))
t
.
update
()
coco_metric
(
anno_file
,
bboxes_list
,
bbox_nums_list
,
image_id_list
)
def
main
():
global
global_config
all_config
=
load_slim_config
(
FLAGS
.
config_path
)
global_config
=
all_config
[
"Global"
]
reader_cfg
=
load_config
(
global_config
[
'reader_config'
])
dataset
=
reader_cfg
[
'EvalDataset'
]
global
val_loader
val_loader
=
create
(
'EvalReader'
)(
reader_cfg
[
'EvalDataset'
],
reader_cfg
[
'worker_num'
],
return_list
=
True
)
metric
=
None
if
reader_cfg
[
'metric'
]
==
'COCO'
:
clsid2catid
=
{
v
:
k
for
k
,
v
in
dataset
.
catid2clsid
.
items
()}
anno_file
=
dataset
.
get_anno
()
metric
=
COCOMetric
(
anno_file
=
anno_file
,
clsid2catid
=
clsid2catid
,
IouType
=
'bbox'
)
elif
reader_cfg
[
'metric'
]
==
'VOC'
:
metric
=
VOCMetric
(
label_list
=
dataset
.
get_label_list
(),
class_num
=
reader_cfg
[
'num_classes'
],
map_type
=
reader_cfg
[
'map_type'
])
else
:
raise
ValueError
(
"metric currently only supports COCO and VOC."
)
global_config
[
'metric'
]
=
metric
dataset
=
COCOValDataset
(
dataset_dir
=
global_config
[
'dataset_dir'
],
image_dir
=
global_config
[
'val_image_dir'
],
anno_path
=
global_config
[
'val_anno_path'
])
global
anno_file
anno_file
=
dataset
.
ann_file
val_loader
=
paddle
.
io
.
DataLoader
(
dataset
,
batch_size
=
1
)
eval
()
...
...
example/auto_compression/pytorch_yolov6/paddle_trt_infer.py
浏览文件 @
4434a362
...
...
@@ -241,12 +241,9 @@ def predict_image(predictor,
image_shape
=
[
640
,
640
],
warmup
=
1
,
repeats
=
1
,
threshold
=
0.5
,
arch
=
'YOLOv5'
):
threshold
=
0.5
):
img
,
scale_factor
=
image_preprocess
(
image_file
,
image_shape
)
inputs
=
{}
if
arch
==
'YOLOv5'
:
inputs
[
'x2paddle_image_arrays'
]
=
img
inputs
[
'x2paddle_image_arrays'
]
=
img
input_names
=
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
predictor
.
get_input_handle
(
input_names
[
i
])
...
...
example/auto_compression/pytorch_yolov6/post_process.py
浏览文件 @
4434a362
...
...
@@ -14,6 +14,8 @@
import
numpy
as
np
import
cv2
import
json
import
sys
def
box_area
(
boxes
):
...
...
@@ -171,3 +173,59 @@ class YOLOv6PostProcess(object):
bboxs
=
np
.
concatenate
(
bboxs
,
axis
=
0
)
box_nums
=
np
.
array
(
box_nums
)
return
{
'bbox'
:
bboxs
,
'bbox_num'
:
box_nums
}
def
coco_metric
(
anno_file
,
bboxes_list
,
bbox_nums_list
,
image_id_list
):
try
:
from
pycocotools.coco
import
COCO
from
pycocotools.cocoeval
import
COCOeval
except
:
print
(
"[ERROR] Not found pycocotools, please install by `pip install pycocotools`"
)
sys
.
exit
(
1
)
coco_gt
=
COCO
(
anno_file
)
cats
=
coco_gt
.
loadCats
(
coco_gt
.
getCatIds
())
clsid2catid
=
{
i
:
cat
[
'id'
]
for
i
,
cat
in
enumerate
(
cats
)}
results
=
[]
for
bboxes
,
bbox_nums
,
image_id
in
zip
(
bboxes_list
,
bbox_nums_list
,
image_id_list
):
results
+=
_get_det_res
(
bboxes
,
bbox_nums
,
image_id
,
clsid2catid
)
output
=
"bbox.json"
with
open
(
output
,
'w'
)
as
f
:
json
.
dump
(
results
,
f
)
coco_dt
=
coco_gt
.
loadRes
(
output
)
coco_eval
=
COCOeval
(
coco_gt
,
coco_dt
,
'bbox'
)
coco_eval
.
evaluate
()
coco_eval
.
accumulate
()
coco_eval
.
summarize
()
return
coco_eval
.
stats
def
_get_det_res
(
bboxes
,
bbox_nums
,
image_id
,
label_to_cat_id_map
):
det_res
=
[]
k
=
0
for
i
in
range
(
len
(
bbox_nums
)):
cur_image_id
=
int
(
image_id
[
i
][
0
])
det_nums
=
bbox_nums
[
i
]
for
j
in
range
(
det_nums
):
dt
=
bboxes
[
k
]
k
=
k
+
1
num_id
,
score
,
xmin
,
ymin
,
xmax
,
ymax
=
dt
.
tolist
()
if
int
(
num_id
)
<
0
:
continue
category_id
=
label_to_cat_id_map
[
int
(
num_id
)]
w
=
xmax
-
xmin
h
=
ymax
-
ymin
bbox
=
[
xmin
,
ymin
,
w
,
h
]
dt_res
=
{
'image_id'
:
cur_image_id
,
'category_id'
:
category_id
,
'bbox'
:
bbox
,
'score'
:
score
}
det_res
.
append
(
dt_res
)
return
det_res
example/auto_compression/pytorch_yolov6/run.py
浏览文件 @
4434a362
...
...
@@ -16,14 +16,12 @@ import os
import
sys
import
numpy
as
np
import
argparse
from
tqdm
import
tqdm
import
paddle
from
ppdet.core.workspace
import
load_config
,
merge_config
from
ppdet.core.workspace
import
create
from
ppdet.metrics
import
COCOMetric
,
VOCMetric
from
paddleslim.auto_compression.config_helpers
import
load_config
as
load_slim_config
from
paddleslim.auto_compression
import
AutoCompression
from
post_process
import
YOLOv6PostProcess
from
dataset
import
COCOValDataset
,
COCOTrainDataset
from
post_process
import
YOLOv6PostProcess
,
coco_metric
def
argsparser
():
...
...
@@ -50,73 +48,28 @@ def argsparser():
return
parser
def
reader_wrapper
(
reader
,
input_list
):
def
gen
():
for
data
in
reader
:
in_dict
=
{}
if
isinstance
(
input_list
,
list
):
for
input_name
in
input_list
:
in_dict
[
input_name
]
=
data
[
input_name
]
elif
isinstance
(
input_list
,
dict
):
for
input_name
in
input_list
.
keys
():
in_dict
[
input_list
[
input_name
]]
=
data
[
input_name
]
yield
in_dict
return
gen
def
convert_numpy_data
(
data
,
metric
):
data_all
=
{}
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
if
isinstance
(
metric
,
VOCMetric
):
for
k
,
v
in
data_all
.
items
():
if
not
isinstance
(
v
[
0
],
np
.
ndarray
):
tmp_list
=
[]
for
t
in
v
:
tmp_list
.
append
(
np
.
array
(
t
))
data_all
[
k
]
=
np
.
array
(
tmp_list
)
else
:
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
return
data_all
def
eval_function
(
exe
,
compiled_test_program
,
test_feed_names
,
test_fetch_list
):
metric
=
global_config
[
'metric'
]
for
batch_id
,
data
in
enumerate
(
val_loader
):
data_all
=
convert_numpy_data
(
data
,
metric
)
data_input
=
{}
for
k
,
v
in
data
.
items
():
if
isinstance
(
global_config
[
'input_list'
],
list
):
if
k
in
test_feed_names
:
data_input
[
k
]
=
np
.
array
(
v
)
elif
isinstance
(
global_config
[
'input_list'
],
dict
):
if
k
in
global_config
[
'input_list'
].
keys
():
data_input
[
global_config
[
'input_list'
][
k
]]
=
np
.
array
(
v
)
outs
=
exe
.
run
(
compiled_test_program
,
feed
=
data_input
,
fetch_list
=
test_fetch_list
,
return_numpy
=
False
)
res
=
{}
if
'arch'
in
global_config
and
global_config
[
'arch'
]
==
'YOLOv6'
:
bboxes_list
,
bbox_nums_list
,
image_id_list
=
[],
[],
[]
with
tqdm
(
total
=
len
(
val_loader
),
bar_format
=
'Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}'
,
ncols
=
80
)
as
t
:
for
data
in
val_loader
:
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
outs
=
exe
.
run
(
compiled_test_program
,
feed
=
{
test_feed_names
[
0
]:
data_all
[
'image'
]},
fetch_list
=
test_fetch_list
,
return_numpy
=
False
)
res
=
{}
postprocess
=
YOLOv6PostProcess
(
score_threshold
=
0.001
,
nms_threshold
=
0.65
,
multi_label
=
True
)
res
=
postprocess
(
np
.
array
(
outs
[
0
]),
data_all
[
'scale_factor'
])
else
:
for
out
in
outs
:
v
=
np
.
array
(
out
)
if
len
(
v
.
shape
)
>
1
:
res
[
'bbox'
]
=
v
else
:
res
[
'bbox_num'
]
=
v
metric
.
update
(
data_all
,
res
)
if
batch_id
%
100
==
0
:
print
(
'Eval iter:'
,
batch_id
)
metric
.
accumulate
()
metric
.
log
()
map_res
=
metric
.
get_results
()
metric
.
reset
()
return
map_res
[
'bbox'
][
0
]
bboxes_list
.
append
(
res
[
'bbox'
])
bbox_nums_list
.
append
(
res
[
'bbox_num'
])
image_id_list
.
append
(
np
.
array
(
data_all
[
'im_id'
]))
t
.
update
()
map_res
=
coco_metric
(
anno_file
,
bboxes_list
,
bbox_nums_list
,
image_id_list
)
return
map_res
[
0
]
def
main
():
...
...
@@ -124,38 +77,30 @@ def main():
all_config
=
load_slim_config
(
FLAGS
.
config_path
)
assert
"Global"
in
all_config
,
f
"Key 'Global' not found in config file.
\n
{
all_config
}
"
global_config
=
all_config
[
"Global"
]
reader_cfg
=
load_config
(
global_config
[
'reader_config'
])
train_loader
=
create
(
'EvalReader'
)(
reader_cfg
[
'TrainDataset'
],
reader_cfg
[
'worker_num'
],
return_list
=
True
)
train_loader
=
reader_wrapper
(
train_loader
,
global_config
[
'input_list'
])
dataset
=
COCOTrainDataset
(
dataset_dir
=
global_config
[
'dataset_dir'
],
image_dir
=
global_config
[
'train_image_dir'
],
anno_path
=
global_config
[
'train_anno_path'
])
train_loader
=
paddle
.
io
.
DataLoader
(
dataset
,
batch_size
=
1
,
shuffle
=
True
,
drop_last
=
True
,
num_workers
=
0
)
if
'Evaluation'
in
global_config
.
keys
()
and
global_config
[
'Evaluation'
]
and
paddle
.
distributed
.
get_rank
()
==
0
:
eval_func
=
eval_function
dataset
=
reader_cfg
[
'EvalDataset'
]
global
val_loader
_eval_batch_sampler
=
paddle
.
io
.
BatchSampler
(
dataset
,
batch_size
=
reader_cfg
[
'EvalReader'
][
'batch_size'
])
val_loader
=
create
(
'EvalReader'
)(
dataset
,
reader_cfg
[
'worker_num'
],
batch_sampler
=
_eval_batch_sampler
,
return_list
=
True
)
metric
=
None
if
reader_cfg
[
'metric'
]
==
'COCO'
:
clsid2catid
=
{
v
:
k
for
k
,
v
in
dataset
.
catid2clsid
.
items
()}
anno_file
=
dataset
.
get_anno
()
metric
=
COCOMetric
(
anno_file
=
anno_file
,
clsid2catid
=
clsid2catid
,
IouType
=
'bbox'
)
elif
reader_cfg
[
'metric'
]
==
'VOC'
:
metric
=
VOCMetric
(
label_list
=
dataset
.
get_label_list
(),
class_num
=
reader_cfg
[
'num_classes'
],
map_type
=
reader_cfg
[
'map_type'
])
else
:
raise
ValueError
(
"metric currently only supports COCO and VOC."
)
global_config
[
'metric'
]
=
metric
dataset
=
COCOValDataset
(
dataset_dir
=
global_config
[
'dataset_dir'
],
image_dir
=
global_config
[
'val_image_dir'
],
anno_path
=
global_config
[
'val_anno_path'
])
global
anno_file
anno_file
=
dataset
.
ann_file
val_loader
=
paddle
.
io
.
DataLoader
(
dataset
,
batch_size
=
1
,
shuffle
=
False
,
drop_last
=
False
,
num_workers
=
0
)
else
:
eval_func
=
None
...
...
example/auto_compression/pytorch_yolov7/configs/yolov7_qat_dis.yaml
浏览文件 @
4434a362
Global
:
reader_config
:
configs/yolov7_reader.yaml
input_list
:
{
'
image'
:
'
x2paddle_images'
}
Evaluation
:
True
model_dir
:
./yolov7.onnx
dataset_dir
:
dataset/coco/
train_image_dir
:
train2017
val_image_dir
:
val2017
train_anno_path
:
annotations/instances_train2017.json
val_anno_path
:
annotations/instances_val2017.json
Evaluation
:
True
Distillation
:
alpha
:
1.0
...
...
@@ -17,7 +19,7 @@ Quantization:
-
depthwise_conv2d
TrainConfig
:
train_iter
:
8
000
train_iter
:
5
000
eval_iter
:
1000
learning_rate
:
type
:
CosineAnnealingDecay
...
...
example/auto_compression/pytorch_yolov7/configs/yolov7_reader.yaml
已删除
100644 → 0
浏览文件 @
cc7fd900
metric
:
COCO
num_classes
:
80
# Datset configuration
TrainDataset
:
!COCODataSet
image_dir
:
train2017
anno_path
:
annotations/instances_train2017.json
dataset_dir
:
dataset/coco/
EvalDataset
:
!COCODataSet
image_dir
:
val2017
anno_path
:
annotations/instances_val2017.json
dataset_dir
:
dataset/coco/
worker_num
:
0
# preprocess reader in test
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
target_size
:
[
640
,
640
],
keep_ratio
:
True
}
-
Pad
:
{
size
:
[
640
,
640
],
fill_value
:
[
114.
,
114.
,
114.
]}
-
NormalizeImage
:
{
mean
:
[
0
,
0
,
0
],
std
:
[
1
,
1
,
1
],
is_scale
:
True
}
-
Permute
:
{}
batch_size
:
1
example/auto_compression/pytorch_yolov7/dataset.py
0 → 100644
浏览文件 @
4434a362
from
pycocotools.coco
import
COCO
import
cv2
import
os
import
numpy
as
np
import
paddle
class
COCOValDataset
(
paddle
.
io
.
Dataset
):
def
__init__
(
self
,
dataset_dir
=
None
,
image_dir
=
None
,
anno_path
=
None
,
img_size
=
[
640
,
640
]):
self
.
dataset_dir
=
dataset_dir
self
.
image_dir
=
image_dir
self
.
img_size
=
img_size
self
.
ann_file
=
os
.
path
.
join
(
dataset_dir
,
anno_path
)
self
.
coco
=
COCO
(
self
.
ann_file
)
ori_ids
=
list
(
sorted
(
self
.
coco
.
imgs
.
keys
()))
# check gt bbox
clean_ids
=
[]
for
idx
in
ori_ids
:
ins_anno_ids
=
self
.
coco
.
getAnnIds
(
imgIds
=
[
idx
],
iscrowd
=
False
)
instances
=
self
.
coco
.
loadAnns
(
ins_anno_ids
)
num_bbox
=
0
for
inst
in
instances
:
if
inst
.
get
(
'ignore'
,
False
):
continue
if
'bbox'
not
in
inst
.
keys
():
continue
elif
not
any
(
np
.
array
(
inst
[
'bbox'
])):
continue
else
:
num_bbox
+=
1
if
num_bbox
>
0
:
clean_ids
.
append
(
idx
)
self
.
ids
=
clean_ids
def
__getitem__
(
self
,
idx
):
img_id
=
self
.
ids
[
idx
]
img
=
self
.
_get_img_data_from_img_id
(
img_id
)
img
,
scale_factor
=
self
.
image_preprocess
(
img
,
self
.
img_size
)
return
{
'image'
:
img
,
'im_id'
:
np
.
array
([
img_id
]),
'scale_factor'
:
scale_factor
}
def
__len__
(
self
):
return
len
(
self
.
ids
)
def
_get_img_data_from_img_id
(
self
,
img_id
):
img_info
=
self
.
coco
.
loadImgs
(
img_id
)[
0
]
img_path
=
os
.
path
.
join
(
self
.
dataset_dir
,
self
.
image_dir
,
img_info
[
'file_name'
])
img
=
cv2
.
imread
(
img_path
)
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2RGB
)
return
img
def
_generate_scale
(
self
,
im
,
target_shape
,
keep_ratio
=
True
):
"""
Args:
im (np.ndarray): image (np.ndarray)
Returns:
im_scale_x: the resize ratio of X
im_scale_y: the resize ratio of Y
"""
origin_shape
=
im
.
shape
[:
2
]
if
keep_ratio
:
im_size_min
=
np
.
min
(
origin_shape
)
im_size_max
=
np
.
max
(
origin_shape
)
target_size_min
=
np
.
min
(
target_shape
)
target_size_max
=
np
.
max
(
target_shape
)
im_scale
=
float
(
target_size_min
)
/
float
(
im_size_min
)
if
np
.
round
(
im_scale
*
im_size_max
)
>
target_size_max
:
im_scale
=
float
(
target_size_max
)
/
float
(
im_size_max
)
im_scale_x
=
im_scale
im_scale_y
=
im_scale
else
:
resize_h
,
resize_w
=
target_shape
im_scale_y
=
resize_h
/
float
(
origin_shape
[
0
])
im_scale_x
=
resize_w
/
float
(
origin_shape
[
1
])
return
im_scale_y
,
im_scale_x
def
image_preprocess
(
self
,
img
,
target_shape
):
# Resize image
im_scale_y
,
im_scale_x
=
self
.
_generate_scale
(
img
,
target_shape
)
img
=
cv2
.
resize
(
img
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
cv2
.
INTER_LINEAR
)
# Pad
im_h
,
im_w
=
img
.
shape
[:
2
]
h
,
w
=
target_shape
[:]
if
h
!=
im_h
or
w
!=
im_w
:
canvas
=
np
.
ones
((
h
,
w
,
3
),
dtype
=
np
.
float32
)
canvas
*=
np
.
array
([
114.0
,
114.0
,
114.0
],
dtype
=
np
.
float32
)
canvas
[
0
:
im_h
,
0
:
im_w
,
:]
=
img
.
astype
(
np
.
float32
)
img
=
canvas
img
=
np
.
transpose
(
img
/
255
,
[
2
,
0
,
1
])
scale_factor
=
np
.
array
([
im_scale_y
,
im_scale_x
])
return
img
.
astype
(
np
.
float32
),
scale_factor
class
COCOTrainDataset
(
COCOValDataset
):
def
__getitem__
(
self
,
idx
):
img_id
=
self
.
ids
[
idx
]
img
=
self
.
_get_img_data_from_img_id
(
img_id
)
img
,
scale_factor
=
self
.
image_preprocess
(
img
,
self
.
img_size
)
return
{
'x2paddle_images'
:
img
}
example/auto_compression/pytorch_yolov7/eval.py
浏览文件 @
4434a362
...
...
@@ -16,13 +16,12 @@ import os
import
sys
import
numpy
as
np
import
argparse
from
tqdm
import
tqdm
import
paddle
from
ppdet.core.workspace
import
load_config
,
merge_config
from
ppdet.core.workspace
import
create
from
ppdet.metrics
import
COCOMetric
,
VOCMetric
from
paddleslim.auto_compression.config_helpers
import
load_config
as
load_slim_config
from
paddleslim.common
import
load_onnx_model
from
post_process
import
YOLOv7PostProcess
from
post_process
import
YOLOv7PostProcess
,
coco_metric
from
dataset
import
COCOValDataset
def
argsparser
():
...
...
@@ -42,36 +41,6 @@ def argsparser():
return
parser
def
reader_wrapper
(
reader
,
input_list
):
def
gen
():
for
data
in
reader
:
in_dict
=
{}
if
isinstance
(
input_list
,
list
):
for
input_name
in
input_list
:
in_dict
[
input_name
]
=
data
[
input_name
]
elif
isinstance
(
input_list
,
dict
):
for
input_name
in
input_list
.
keys
():
in_dict
[
input_list
[
input_name
]]
=
data
[
input_name
]
yield
in_dict
return
gen
def
convert_numpy_data
(
data
,
metric
):
data_all
=
{}
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
if
isinstance
(
metric
,
VOCMetric
):
for
k
,
v
in
data_all
.
items
():
if
not
isinstance
(
v
[
0
],
np
.
ndarray
):
tmp_list
=
[]
for
t
in
v
:
tmp_list
.
append
(
np
.
array
(
t
))
data_all
[
k
]
=
np
.
array
(
tmp_list
)
else
:
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
return
data_all
def
eval
():
place
=
paddle
.
CUDAPlace
(
0
)
if
FLAGS
.
devices
==
'gpu'
else
paddle
.
CPUPlace
()
...
...
@@ -80,58 +49,42 @@ def eval():
val_program
,
feed_target_names
,
fetch_targets
=
load_onnx_model
(
global_config
[
"model_dir"
])
metric
=
global_config
[
'metric'
]
for
batch_id
,
data
in
enumerate
(
val_loader
):
data_all
=
convert_numpy_data
(
data
,
metric
)
data_input
=
{}
for
k
,
v
in
data
.
items
():
if
isinstance
(
global_config
[
'input_list'
],
list
):
if
k
in
global_config
[
'input_list'
]:
data_input
[
k
]
=
np
.
array
(
v
)
elif
isinstance
(
global_config
[
'input_list'
],
dict
):
if
k
in
global_config
[
'input_list'
].
keys
():
data_input
[
global_config
[
'input_list'
][
k
]]
=
np
.
array
(
v
)
outs
=
exe
.
run
(
val_program
,
feed
=
data_input
,
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
res
=
{}
postprocess
=
YOLOv7PostProcess
(
score_threshold
=
0.001
,
nms_threshold
=
0.65
,
multi_label
=
True
)
res
=
postprocess
(
np
.
array
(
outs
[
0
]),
data_all
[
'scale_factor'
])
metric
.
update
(
data_all
,
res
)
if
batch_id
%
100
==
0
:
print
(
'Eval iter:'
,
batch_id
)
metric
.
accumulate
()
metric
.
log
()
metric
.
reset
()
bboxes_list
,
bbox_nums_list
,
image_id_list
=
[],
[],
[]
with
tqdm
(
total
=
len
(
val_loader
),
bar_format
=
'Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}'
,
ncols
=
80
)
as
t
:
for
data
in
val_loader
:
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
outs
=
exe
.
run
(
val_program
,
feed
=
{
feed_target_names
[
0
]:
data_all
[
'image'
]},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
res
=
{}
postprocess
=
YOLOv7PostProcess
(
score_threshold
=
0.001
,
nms_threshold
=
0.65
,
multi_label
=
True
)
res
=
postprocess
(
np
.
array
(
outs
[
0
]),
data_all
[
'scale_factor'
])
bboxes_list
.
append
(
res
[
'bbox'
])
bbox_nums_list
.
append
(
res
[
'bbox_num'
])
image_id_list
.
append
(
np
.
array
(
data_all
[
'im_id'
]))
t
.
update
()
coco_metric
(
anno_file
,
bboxes_list
,
bbox_nums_list
,
image_id_list
)
def
main
():
global
global_config
all_config
=
load_slim_config
(
FLAGS
.
config_path
)
global_config
=
all_config
[
"Global"
]
reader_cfg
=
load_config
(
global_config
[
'reader_config'
])
dataset
=
reader_cfg
[
'EvalDataset'
]
global
val_loader
val_loader
=
create
(
'EvalReader'
)(
reader_cfg
[
'EvalDataset'
],
reader_cfg
[
'worker_num'
],
return_list
=
True
)
metric
=
None
if
reader_cfg
[
'metric'
]
==
'COCO'
:
clsid2catid
=
{
v
:
k
for
k
,
v
in
dataset
.
catid2clsid
.
items
()}
anno_file
=
dataset
.
get_anno
()
metric
=
COCOMetric
(
anno_file
=
anno_file
,
clsid2catid
=
clsid2catid
,
IouType
=
'bbox'
)
elif
reader_cfg
[
'metric'
]
==
'VOC'
:
metric
=
VOCMetric
(
label_list
=
dataset
.
get_label_list
(),
class_num
=
reader_cfg
[
'num_classes'
],
map_type
=
reader_cfg
[
'map_type'
])
else
:
raise
ValueError
(
"metric currently only supports COCO and VOC."
)
global_config
[
'metric'
]
=
metric
dataset
=
COCOValDataset
(
dataset_dir
=
global_config
[
'dataset_dir'
],
image_dir
=
global_config
[
'val_image_dir'
],
anno_path
=
global_config
[
'val_anno_path'
])
global
anno_file
anno_file
=
dataset
.
ann_file
val_loader
=
paddle
.
io
.
DataLoader
(
dataset
,
batch_size
=
1
)
eval
()
...
...
example/auto_compression/pytorch_yolov7/paddle_trt_infer.py
浏览文件 @
4434a362
...
...
@@ -241,12 +241,9 @@ def predict_image(predictor,
image_shape
=
[
640
,
640
],
warmup
=
1
,
repeats
=
1
,
threshold
=
0.5
,
arch
=
'YOLOv5'
):
threshold
=
0.5
):
img
,
scale_factor
=
image_preprocess
(
image_file
,
image_shape
)
inputs
=
{}
if
arch
==
'YOLOv5'
:
inputs
[
'x2paddle_images'
]
=
img
inputs
[
'x2paddle_images'
]
=
img
input_names
=
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
predictor
.
get_input_handle
(
input_names
[
i
])
...
...
example/auto_compression/pytorch_yolov7/post_process.py
浏览文件 @
4434a362
...
...
@@ -14,6 +14,8 @@
import
numpy
as
np
import
cv2
import
json
import
sys
def
box_area
(
boxes
):
...
...
@@ -171,3 +173,59 @@ class YOLOv7PostProcess(object):
bboxs
=
np
.
concatenate
(
bboxs
,
axis
=
0
)
box_nums
=
np
.
array
(
box_nums
)
return
{
'bbox'
:
bboxs
,
'bbox_num'
:
box_nums
}
def
coco_metric
(
anno_file
,
bboxes_list
,
bbox_nums_list
,
image_id_list
):
try
:
from
pycocotools.coco
import
COCO
from
pycocotools.cocoeval
import
COCOeval
except
:
print
(
"[ERROR] Not found pycocotools, please install by `pip install pycocotools`"
)
sys
.
exit
(
1
)
coco_gt
=
COCO
(
anno_file
)
cats
=
coco_gt
.
loadCats
(
coco_gt
.
getCatIds
())
clsid2catid
=
{
i
:
cat
[
'id'
]
for
i
,
cat
in
enumerate
(
cats
)}
results
=
[]
for
bboxes
,
bbox_nums
,
image_id
in
zip
(
bboxes_list
,
bbox_nums_list
,
image_id_list
):
results
+=
_get_det_res
(
bboxes
,
bbox_nums
,
image_id
,
clsid2catid
)
output
=
"bbox.json"
with
open
(
output
,
'w'
)
as
f
:
json
.
dump
(
results
,
f
)
coco_dt
=
coco_gt
.
loadRes
(
output
)
coco_eval
=
COCOeval
(
coco_gt
,
coco_dt
,
'bbox'
)
coco_eval
.
evaluate
()
coco_eval
.
accumulate
()
coco_eval
.
summarize
()
return
coco_eval
.
stats
def
_get_det_res
(
bboxes
,
bbox_nums
,
image_id
,
label_to_cat_id_map
):
det_res
=
[]
k
=
0
for
i
in
range
(
len
(
bbox_nums
)):
cur_image_id
=
int
(
image_id
[
i
][
0
])
det_nums
=
bbox_nums
[
i
]
for
j
in
range
(
det_nums
):
dt
=
bboxes
[
k
]
k
=
k
+
1
num_id
,
score
,
xmin
,
ymin
,
xmax
,
ymax
=
dt
.
tolist
()
if
int
(
num_id
)
<
0
:
continue
category_id
=
label_to_cat_id_map
[
int
(
num_id
)]
w
=
xmax
-
xmin
h
=
ymax
-
ymin
bbox
=
[
xmin
,
ymin
,
w
,
h
]
dt_res
=
{
'image_id'
:
cur_image_id
,
'category_id'
:
category_id
,
'bbox'
:
bbox
,
'score'
:
score
}
det_res
.
append
(
dt_res
)
return
det_res
example/auto_compression/pytorch_yolov7/run.py
浏览文件 @
4434a362
...
...
@@ -16,14 +16,12 @@ import os
import
sys
import
numpy
as
np
import
argparse
from
tqdm
import
tqdm
import
paddle
from
ppdet.core.workspace
import
load_config
,
merge_config
from
ppdet.core.workspace
import
create
from
ppdet.metrics
import
COCOMetric
,
VOCMetric
from
paddleslim.auto_compression.config_helpers
import
load_config
as
load_slim_config
from
paddleslim.auto_compression
import
AutoCompression
from
post_process
import
YOLOv7PostProcess
from
dataset
import
COCOValDataset
,
COCOTrainDataset
from
post_process
import
YOLOv7PostProcess
,
coco_metric
def
argsparser
():
...
...
@@ -50,64 +48,28 @@ def argsparser():
return
parser
def
reader_wrapper
(
reader
,
input_list
):
def
gen
():
for
data
in
reader
:
in_dict
=
{}
if
isinstance
(
input_list
,
list
):
for
input_name
in
input_list
:
in_dict
[
input_name
]
=
data
[
input_name
]
elif
isinstance
(
input_list
,
dict
):
for
input_name
in
input_list
.
keys
():
in_dict
[
input_list
[
input_name
]]
=
data
[
input_name
]
yield
in_dict
return
gen
def
convert_numpy_data
(
data
,
metric
):
data_all
=
{}
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
if
isinstance
(
metric
,
VOCMetric
):
for
k
,
v
in
data_all
.
items
():
if
not
isinstance
(
v
[
0
],
np
.
ndarray
):
tmp_list
=
[]
for
t
in
v
:
tmp_list
.
append
(
np
.
array
(
t
))
data_all
[
k
]
=
np
.
array
(
tmp_list
)
else
:
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
return
data_all
def
eval_function
(
exe
,
compiled_test_program
,
test_feed_names
,
test_fetch_list
):
metric
=
global_config
[
'metric'
]
for
batch_id
,
data
in
enumerate
(
val_loader
):
data_all
=
convert_numpy_data
(
data
,
metric
)
data_input
=
{}
for
k
,
v
in
data
.
items
():
if
isinstance
(
global_config
[
'input_list'
],
list
):
if
k
in
test_feed_names
:
data_input
[
k
]
=
np
.
array
(
v
)
elif
isinstance
(
global_config
[
'input_list'
],
dict
):
if
k
in
global_config
[
'input_list'
].
keys
():
data_input
[
global_config
[
'input_list'
][
k
]]
=
np
.
array
(
v
)
outs
=
exe
.
run
(
compiled_test_program
,
feed
=
data_input
,
fetch_list
=
test_fetch_list
,
return_numpy
=
False
)
res
=
{}
postprocess
=
YOLOv7PostProcess
(
score_threshold
=
0.001
,
nms_threshold
=
0.65
,
multi_label
=
True
)
res
=
postprocess
(
np
.
array
(
outs
[
0
]),
data_all
[
'scale_factor'
])
metric
.
update
(
data_all
,
res
)
if
batch_id
%
100
==
0
:
print
(
'Eval iter:'
,
batch_id
)
metric
.
accumulate
()
metric
.
log
()
map_res
=
metric
.
get_results
()
metric
.
reset
()
return
map_res
[
'bbox'
][
0
]
bboxes_list
,
bbox_nums_list
,
image_id_list
=
[],
[],
[]
with
tqdm
(
total
=
len
(
val_loader
),
bar_format
=
'Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}'
,
ncols
=
80
)
as
t
:
for
data
in
val_loader
:
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
outs
=
exe
.
run
(
compiled_test_program
,
feed
=
{
test_feed_names
[
0
]:
data_all
[
'image'
]},
fetch_list
=
test_fetch_list
,
return_numpy
=
False
)
res
=
{}
postprocess
=
YOLOv7PostProcess
(
score_threshold
=
0.001
,
nms_threshold
=
0.65
,
multi_label
=
True
)
res
=
postprocess
(
np
.
array
(
outs
[
0
]),
data_all
[
'scale_factor'
])
bboxes_list
.
append
(
res
[
'bbox'
])
bbox_nums_list
.
append
(
res
[
'bbox_num'
])
image_id_list
.
append
(
np
.
array
(
data_all
[
'im_id'
]))
t
.
update
()
map_res
=
coco_metric
(
anno_file
,
bboxes_list
,
bbox_nums_list
,
image_id_list
)
return
map_res
[
0
]
def
main
():
...
...
@@ -115,38 +77,30 @@ def main():
all_config
=
load_slim_config
(
FLAGS
.
config_path
)
assert
"Global"
in
all_config
,
f
"Key 'Global' not found in config file.
\n
{
all_config
}
"
global_config
=
all_config
[
"Global"
]
reader_cfg
=
load_config
(
global_config
[
'reader_config'
])
train_loader
=
create
(
'EvalReader'
)(
reader_cfg
[
'TrainDataset'
],
reader_cfg
[
'worker_num'
],
return_list
=
True
)
train_loader
=
reader_wrapper
(
train_loader
,
global_config
[
'input_list'
])
dataset
=
COCOTrainDataset
(
dataset_dir
=
global_config
[
'dataset_dir'
],
image_dir
=
global_config
[
'train_image_dir'
],
anno_path
=
global_config
[
'train_anno_path'
])
train_loader
=
paddle
.
io
.
DataLoader
(
dataset
,
batch_size
=
1
,
shuffle
=
True
,
drop_last
=
True
,
num_workers
=
0
)
if
'Evaluation'
in
global_config
.
keys
()
and
global_config
[
'Evaluation'
]
and
paddle
.
distributed
.
get_rank
()
==
0
:
eval_func
=
eval_function
dataset
=
reader_cfg
[
'EvalDataset'
]
global
val_loader
_eval_batch_sampler
=
paddle
.
io
.
BatchSampler
(
dataset
,
batch_size
=
reader_cfg
[
'EvalReader'
][
'batch_size'
])
val_loader
=
create
(
'EvalReader'
)(
dataset
,
reader_cfg
[
'worker_num'
],
batch_sampler
=
_eval_batch_sampler
,
return_list
=
True
)
metric
=
None
if
reader_cfg
[
'metric'
]
==
'COCO'
:
clsid2catid
=
{
v
:
k
for
k
,
v
in
dataset
.
catid2clsid
.
items
()}
anno_file
=
dataset
.
get_anno
()
metric
=
COCOMetric
(
anno_file
=
anno_file
,
clsid2catid
=
clsid2catid
,
IouType
=
'bbox'
)
elif
reader_cfg
[
'metric'
]
==
'VOC'
:
metric
=
VOCMetric
(
label_list
=
dataset
.
get_label_list
(),
class_num
=
reader_cfg
[
'num_classes'
],
map_type
=
reader_cfg
[
'map_type'
])
else
:
raise
ValueError
(
"metric currently only supports COCO and VOC."
)
global_config
[
'metric'
]
=
metric
dataset
=
COCOValDataset
(
dataset_dir
=
global_config
[
'dataset_dir'
],
image_dir
=
global_config
[
'val_image_dir'
],
anno_path
=
global_config
[
'val_anno_path'
])
global
anno_file
anno_file
=
dataset
.
ann_file
val_loader
=
paddle
.
io
.
DataLoader
(
dataset
,
batch_size
=
1
,
shuffle
=
False
,
drop_last
=
False
,
num_workers
=
0
)
else
:
eval_func
=
None
...
...
paddleslim/auto_compression/compressor.py
浏览文件 @
4434a362
...
...
@@ -66,7 +66,7 @@ class AutoCompression:
model_dir(str): The path of inference model that will be compressed, and
the model and params that saved by ``paddle.static.save_inference_model``
are under the path.
train_data
_
loader(Python Generator, Paddle.io.DataLoader): The
train_dataloader(Python Generator, Paddle.io.DataLoader): The
Generator or Dataloader provides train data, and it could
return a batch every time.
model_filename(str): The name of model file.
...
...
@@ -595,12 +595,13 @@ class AutoCompression:
train_config
):
# start compress, including train/eval model
# TODO: add the emd loss of evaluation model.
# If model is ONNX, convert it to inference model firstly.
load_inference_model
(
self
.
model_dir
,
model_filename
=
self
.
model_filename
,
params_filename
=
self
.
params_filename
,
executor
=
self
.
_exe
)
if
self
.
updated_model_dir
!=
self
.
model_dir
:
# If model is ONNX, convert it to inference model firstly.
load_inference_model
(
self
.
model_dir
,
model_filename
=
self
.
model_filename
,
params_filename
=
self
.
params_filename
,
executor
=
self
.
_exe
)
if
strategy
==
'quant_post'
:
quant_post
(
self
.
_exe
,
...
...
@@ -630,12 +631,13 @@ class AutoCompression:
if
platform
.
system
().
lower
()
!=
'linux'
:
raise
NotImplementedError
(
"post-quant-hpo is not support in system other than linux"
)
# If model is ONNX, convert it to inference model firstly.
load_inference_model
(
self
.
model_dir
,
model_filename
=
self
.
model_filename
,
params_filename
=
self
.
params_filename
,
executor
=
self
.
_exe
)
if
self
.
updated_model_dir
!=
self
.
model_dir
:
# If model is ONNX, convert it to inference model firstly.
load_inference_model
(
self
.
model_dir
,
model_filename
=
self
.
model_filename
,
params_filename
=
self
.
params_filename
,
executor
=
self
.
_exe
)
post_quant_hpo
.
quant_post_hpo
(
self
.
_exe
,
self
.
_places
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录