compressor.py 29.6 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
import numpy as np
import inspect
C
ceci3 已提交
20
import shutil
C
ceci3 已提交
21 22
from collections import namedtuple
from collections.abc import Iterable
23
import platform
C
ceci3 已提交
24 25
import paddle
import paddle.distributed.fleet as fleet
26
from ..quant.quanter import convert, quant_post
C
ceci3 已提交
27 28
from ..common.recover_program import recover_inference_program
from ..common import get_logger
C
ceci3 已提交
29 30
from ..common.patterns import get_patterns
from ..analysis import TableLatencyPredictor
Z
zhouzj 已提交
31
from .create_compressed_program import build_distill_program, build_quant_program, build_prune_program, remove_unused_var_nodes
C
ceci3 已提交
32
from .strategy_config import ProgramInfo, merge_config
33
from .auto_strategy import prepare_strategy, get_final_quant_config, create_strategy_config, create_train_config
C
ceci3 已提交
34 35 36

_logger = get_logger(__name__, level=logging.INFO)

C
ceci3 已提交
37 38
try:
    if platform.system().lower() == 'linux':
C
ceci3 已提交
39
        from ..quant import quant_post_hpo
C
ceci3 已提交
40 41 42
except Exception as e:
    _logger.warning(e)

C
ceci3 已提交
43 44 45 46 47 48 49 50

class AutoCompression:
    def __init__(self,
                 model_dir,
                 model_filename,
                 params_filename,
                 save_dir,
                 train_dataloader,
C
ceci3 已提交
51 52 53
                 train_config=None,
                 strategy_config=None,
                 target_speedup=None,
54
                 eval_callback=None,
C
ceci3 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
                 eval_dataloader=None,
                 deploy_hardware='gpu'):
        """
        Compress inference model automatically.

        Args:
            model_dir(str): The path of inference model that will be compressed, and
                the model and params that saved by ``paddle.static.io.save_inference_model``
                are under the path.
            model_filename(str, optional):  The name of model file. If parameters
                are saved in separate files, set it as 'None'. Default: 'None'.
            params_filename(str, optional): The name of params file.
                When all parameters are saved in a single file, set it
                as filename. If parameters are saved in separate files,
                set it as 'None'. Default : 'None'.
            save_dir(str): The path to save compressed model.
            train_data_loader(Python Generator, Paddle.io.DataLoader): The
                Generator or Dataloader provides train data, and it could
                return a batch every time.
            train_config(dict, optional): The train config in the compression process, the key can 
                reference `<https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L103>`_ . 
                Only one strategy(quant_post with hyperparameter optimization) can set train_config 
                to None. Default: None. 
            strategy_config(dict, list(dict), optional): The strategy config. You can set single config to get multi-strategy config, such as
                1. set ``Quantization`` and ``Distillation`` to get quant_aware and distillation compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                2. set ``Quantization`` and ``HyperParameterOptimization`` to get quant_post and hyperparameter optimization compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The HyperParameterOptimization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L73`_ .
                3. set ``Prune`` and ``Distillation`` to get prune and distillation compress config.
                    The Prune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                4. set ``UnstructurePrune`` and ``Distillation`` to get unstructureprune and distillation compress config.
                    The UnstructurePrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L91`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                5. set ``Distillation`` to use one teacher modol to distillation student model.
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                6. set ``MultiTeacherDistillation`` to use multi-teacher to distillation student model.
                    The MultiTeacherDistillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L56`_ .

                If set to None, will choose a strategy automatically. Default: None.
            target_speedup(float, optional): target speedup ratio by the way of auto compress. Default: None.
            eval_callback(function, optional): eval function, define by yourself to return the metric of the inference program, can be used to judge the metric of compressed model. The documents of how to write eval function is `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/auto-compression/custom_function.rst`_ . ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
            eval_dataloader(paddle.io.Dataloader, optional):  The
                 Generator or Dataloader provides eval data, and it could
                 return a batch every time. ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
            deploy_hardware(str, optional): The hardware you want to deploy. Default: 'gpu'.
        """
C
ceci3 已提交
104
        self.model_dir = model_dir
C
ceci3 已提交
105 106
        if model_filename == 'None':
            model_filename = None
C
ceci3 已提交
107
        self.model_filename = model_filename
C
ceci3 已提交
108 109
        if params_filename == 'None':
            params_filename = None
C
ceci3 已提交
110
        self.params_filename = params_filename
C
ceci3 已提交
111 112 113 114 115
        base_path = os.path.basename(os.path.normpath(save_dir))
        parent_path = os.path.abspath(os.path.join(save_dir, os.pardir))
        base_path = base_path + '_temp'
        self.save_dir = os.path.join(parent_path, base_path)
        self.final_dir = save_dir
C
ceci3 已提交
116 117 118
        self.strategy_config = strategy_config
        self.train_config = train_config
        self.train_dataloader = train_dataloader
C
ceci3 已提交
119 120
        self.target_speedup = target_speedup
        self.eval_function = eval_callback
C
ceci3 已提交
121
        self.eval_dataloader = eval_dataloader if eval_dataloader is not None else train_dataloader
C
ceci3 已提交
122

C
ceci3 已提交
123
        paddle.enable_static()
C
ceci3 已提交
124 125 126

        if deploy_hardware in TableLatencyPredictor.hardware_list:
            self.deploy_hardware = deploy_hardware
C
ceci3 已提交
127
        else:
C
ceci3 已提交
128
            self.deploy_hardware = None
C
ceci3 已提交
129

C
ceci3 已提交
130 131 132
        self._exe, self._places = self._prepare_envs()
        self.model_type = self._get_model_type(self._exe, model_dir,
                                               model_filename, params_filename)
C
ceci3 已提交
133

C
ceci3 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        if self.train_config is not None and self.train_config.use_fleet:
            fleet.init(is_collective=True)

        if self.strategy_config is None:
            strategy_config = prepare_strategy(
                self.model_dir, self.model_filename, self.params_filename,
                self.target_speedup, self.deploy_hardware, self.model_type)
            self.strategy_config = strategy_config
        elif isinstance(self.strategy_config, dict):
            self.strategy_config = [self.strategy_config]
        elif isinstance(self.strategy_config, str):
            strategy_config = create_strategy_config(self.strategy_config,
                                                     self.model_type)

        self._strategy, self._config = self._prepare_strategy(
            self.strategy_config)

151 152 153 154 155
        # If train_config is None, set default train_config
        if self.train_config is None:
            self.train_config = create_train_config(self.strategy_config,
                                                    self.model_type)

C
ceci3 已提交
156 157
    def _prepare_envs(self):
        devices = paddle.device.get_device().split(':')[0]
C
ceci3 已提交
158 159 160 161
        places = paddle.device._convert_to_place(devices)
        exe = paddle.static.Executor(places)
        return exe, places

C
ceci3 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    def _get_model_type(self, exe, model_dir, model_filename, params_filename):
        [inference_program, _, _]= paddle.fluid.io.load_inference_model( \
            dirname=model_dir, \
            model_filename=model_filename, params_filename=params_filename,
            executor=exe)
        _, _, model_type = get_patterns(inference_program)
        return model_type

    def _prepare_strategy(self, strategy_config):
        if not isinstance(strategy_config, list):
            strategy_config = list(list(strategy_config))

        strategy = []
        config = []
        for strategy_c in strategy_config:
            quant_config = strategy_c.get("Quantization", None)
            hpo_config = strategy_c.get("HyperParameterOptimization", None)
            prune_config = strategy_c.get("Prune", None)
            unstructure_prune_config = strategy_c.get("UnstructurePrune", None)
            single_teacher_distill_config = strategy_c.get("Distillation", None)
            if single_teacher_distill_config is not None and single_teacher_distill_config.teacher_model_dir is None:
                single_teacher_distill_config = single_teacher_distill_config._replace(
                    teacher_model_dir=self.model_dir,
                    teacher_model_filename=self.model_filename,
                    teacher_params_filename=self.params_filename)

            multi_teacher_distill_config = strategy_c.get(
                "MultiTeacherDistillation", None)

            assert (single_teacher_distill_config is None) or (multi_teacher_distill_config is None), \
                "Distillation and MultiTeacherDistillation cannot be set at the same time."
            self._distill_config = single_teacher_distill_config if \
                   single_teacher_distill_config is not None else \
                   multi_teacher_distill_config

            ### case1: quant_config & hpo_config ==> PTQ & HPO
            if quant_config is not None and hpo_config is not None:
                strategy.append('ptq_hpo')
                config.append(merge_config(quant_config, hpo_config))

            ### case2: quant_config & distill config ==> QAT & Distill
            elif quant_config is not None and self._distill_config is not None:
                strategy.append('qat_dis')
                config.append(merge_config(quant_config, self._distill_config))

            ### case3: prune_config & distill config
            elif prune_config is not None and self._distill_config is not None:
                strategy.append('prune_dis')
                config.append(merge_config(prune_config, self._distill_config))

            ### case4: unstructure_config & distill config
            elif unstructure_prune_config is not None and self._distill_config is not None:
                strategy.append('unstructure_prune_dis')
                config.append(
                    merge_config(unstructure_prune_config,
                                 self._distill_config))

            ### case4: distill_config
            elif self._distill_config is not None:
                if single_teacher_distill_config is not None:
                    strategy.append('single_teacher_dis')
                    config.append(single_teacher_distill_config)
                else:
                    strategy.append('multi_teacher_dis')
                    config.append(multi_teacher_distill_config)
C
ceci3 已提交
227

C
ceci3 已提交
228 229 230 231 232
            ### case N: todo
            else:
                raise NotImplementedError(
                    "Not Implemented {} be set at the same time now".format(
                        strategy_c.keys()))
C
ceci3 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

        return strategy, config

    def _prepare_fleet_strategy(train_config):
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()

        strategy = fleet.DistributedStrategy()
        strategy.build_strategy = build_strategy
        if train_config.recompute_config is not None:
            strategy.recompute = True
            strategy.recompute_configs = { ** train_config.recompute_config}
        if train_config.sharding_config is not None:
            strategy.sharding = True
            strategy.sharding_configs = { ** train_config.sharding_config}
        if train_config.amp_config is not None:
            strategy.amp = True
            strategy.amp_configs = { ** train_config.amp_config}
        return strategy

C
ceci3 已提交
253 254
    def _prepare_program(self, program, feed_target_names, fetch_targets,
                         patterns, default_distill_node_pair, strategy, config):
C
ceci3 已提交
255 256 257 258 259
        train_program = recover_inference_program(program)
        startup_program = paddle.static.Program()
        train_program_info = ProgramInfo(startup_program, train_program,
                                         feed_target_names, fetch_targets)

C
ceci3 已提交
260
        config_dict = dict(config._asdict())
261 262 263
        if "prune_strategy" in config_dict and config_dict[
                "prune_strategy"] == "gmp" and config_dict[
                    'gmp_config'] is None:
Z
zhouzj 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276
            _logger.info(
                "Calculating the iterations per epoch……(It will take some time)")
            # NOTE:XXX: This way of calculating the iters needs to be improved.
            iters_per_epoch = len(list(self.train_dataloader()))
            total_iters = self.train_config.epochs * iters_per_epoch
            config_dict['gmp_config'] = {
                'stable_iterations': 0,
                'pruning_iterations': 0.45 * total_iters,
                'tunning_iterations': 0.45 * total_iters,
                'resume_iteration': -1,
                'pruning_steps': 100,
                'initial_ratio': 0.15,
            }
C
ceci3 已提交
277 278
        ### add prune program
        self._pruner = None
C
ceci3 已提交
279
        if 'prune' in strategy:
C
ceci3 已提交
280 281
            self._pruner, train_program_info = build_prune_program(
                self._exe, self._places, config_dict, train_program_info,
C
ceci3 已提交
282
                strategy, patterns, self.eval_dataloader)
C
ceci3 已提交
283 284 285 286 287 288 289

        if self.train_config.use_fleet:
            dist_strategy = _prepare_fleet_strategy(self.train_config)
        else:
            dist_strategy = None

        ### add distill program
C
ceci3 已提交
290
        if 'dis' in strategy:
C
ceci3 已提交
291 292 293 294 295 296 297
            train_program_info, test_program_info = build_distill_program(
                self._exe,
                self._places,
                config_dict,
                self.train_config._asdict(),
                train_program_info,
                pruner=self._pruner,
C
ceci3 已提交
298 299
                dist_strategy=dist_strategy,
                default_distill_node_pair=default_distill_node_pair)
C
ceci3 已提交
300 301 302

        self._quant_config = None
        ### add quant_aware program, quant always is last step
C
ceci3 已提交
303
        if 'qat' in strategy:
C
ceci3 已提交
304 305 306
            train_program_info, test_program_info, self._quant_config = build_quant_program(
                self._exe, self._places, config_dict, train_program_info,
                test_program_info)
Z
zhouzj 已提交
307 308
        if self.train_config.sparse_model:
            from ..prune.unstructured_pruner import UnstructuredPruner
Z
zhouzj 已提交
309
            # NOTE: The initialization parameter of this pruner doesn't work, it is only used to call the 'set_static_masks' function
Z
zhouzj 已提交
310 311 312 313 314 315
            self._pruner = UnstructuredPruner(
                train_program_info.program,
                mode='ratio',
                ratio=0.75,
                prune_params_type='conv1x1_only',
                place=self._places)
Z
zhouzj 已提交
316
            self._pruner.set_static_masks()  # Fixed model sparsity
C
ceci3 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

        self._exe.run(train_program_info.startup_program)

        if (not self.train_config.use_fleet
            ) and self.train_config.amp_config is not None:
            if hasattr(self.train_config.amp_config, 'use_pure_fp16'
                       ) and self.train_config.amp_config.use_pure_fp16:
                train_program_info.optimizer.amp_init(
                    self._places, scope=paddle.static.global_scope())

        if 'prune_algo' in config_dict and config_dict['prune_algo'] == 'asp':
            ### prune weight in scope
            self._pruner.prune_model(train_program_info.program)

        if not self.train_config.use_fleet:
            train_program_info = self._compiled_program(train_program_info,
C
ceci3 已提交
333
                                                        strategy)
C
ceci3 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
            test_program_info = self._compiled_program(test_program_info,
                                                       self._strategy)
        return train_program_info, test_program_info

    def _compiled_program(self, program_info, strategy):
        compiled_prog = paddle.static.CompiledProgram(program_info.program)
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()
        if 'qat' in strategy:
            build_strategy.memory_optimize = False
            build_strategy.enable_inplace = False
            build_strategy.fuse_all_reduce_ops = False
            build_strategy.sync_batch_norm = False

        compiled_prog = compiled_prog.with_data_parallel(
            loss_name=program_info.fetch_targets[0].name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)
        program_info.program = compiled_prog
        return program_info

    def compress(self):
C
ceci3 已提交
356 357 358 359 360 361 362 363 364
        for strategy_idx, (
                strategy,
                config) in enumerate(zip(self._strategy, self._config)):
            self.single_strategy_compress(strategy, config, strategy_idx)

        if strategy == 'ptq_hpo' and config.max_quant_count == 1 and platform.system(
        ).lower() == 'linux':
            ptq_loss = quant_post_hpo.g_min_emd_loss

C
ceci3 已提交
365 366 367 368 369 370
            final_quant_config = get_final_quant_config(ptq_loss)
            if final_quant_config is not None:
                quant_strategy, quant_config = self._prepare_strategy(
                    final_quant_config)
                self.single_strategy_compress(quant_strategy[0],
                                              quant_config[0], strategy_idx)
371
        tmp_model_path = os.path.join(
C
ceci3 已提交
372 373
            self.save_dir, 'strategy_{}'.format(str(strategy_idx + 1)))
        final_model_path = os.path.join(self.final_dir)
374 375
        if not os.path.exists(final_model_path):
            os.makedirs(final_model_path)
C
ceci3 已提交
376 377 378 379 380 381 382 383 384 385
        tmp_model_file = os.path.join(tmp_model_path, self.model_filename)
        tmp_params_file = os.path.join(tmp_model_path, self.params_filename)
        final_model_file = os.path.join(final_model_path, self.model_filename)
        final_params_file = os.path.join(final_model_path, self.params_filename)
        if paddle.distributed.get_rank() == 0:
            shutil.move(tmp_model_file, final_model_file)
            shutil.move(tmp_params_file, final_params_file)
            _logger.info(
                "==> Finished the ACT process and the final model is saved in:{}".
                format(final_model_path))
C
ceci3 已提交
386 387 388
        os._exit(0)

    def single_strategy_compress(self, strategy, config, strategy_idx):
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
        # start compress, including train/eval model
        # TODO: add the emd loss of evaluation model.
        if strategy == 'quant_post':
            quant_post(
                self._exe,
                model_dir=self.model_dir,
                quantize_model_path=os.path.join(
                    self.save_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
                data_loader=self.train_dataloader,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
                batch_size=1,
                batch_nums=config.batch_num,
                algo=config.ptq_algo,
                round_type='round',
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
                quantizable_op_type=config.quantize_op_types,
                is_full_quantize=config.is_full_quantize,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                activation_quantize_type='range_abs_max',
                weight_quantize_type=config.weight_quantize_type,
                onnx_format=False)

        elif strategy == 'ptq_hpo':
417 418 419 420
            if platform.system().lower() != 'linux':
                raise NotImplementedError(
                    "post-quant-hpo is not support in system other than linux")

C
ceci3 已提交
421
            quant_post_hpo.quant_post_hpo(
C
ceci3 已提交
422 423 424
                self._exe,
                self._places,
                model_dir=self.model_dir,
C
ceci3 已提交
425 426
                quantize_model_path=os.path.join(
                    self.save_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
C
ceci3 已提交
427 428 429 430 431 432 433
                train_dataloader=self.train_dataloader,
                eval_dataloader=self.eval_dataloader,
                eval_function=self.eval_function,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
C
ceci3 已提交
434 435 436 437 438 439 440 441
                quantizable_op_type=config.quantize_op_types,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                weight_quantize_type=config.weight_quantize_type,
                is_full_quantize=config.is_full_quantize,
                algo=config.ptq_algo,
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
C
ceci3 已提交
442
                batch_size=[1],
C
ceci3 已提交
443 444
                batch_num=config.batch_num,
                runcount_limit=config.max_quant_count)
C
ceci3 已提交
445 446

        else:
C
ceci3 已提交
447 448 449 450 451 452 453
            assert 'dis' in strategy, "Only support optimizer compressed model by distillation loss."

            if strategy_idx == 0:
                model_dir = self.model_dir
            else:
                model_dir = os.path.join(
                    self.save_dir, 'strategy_{}'.format(str(strategy_idx)))
C
ceci3 已提交
454 455

            [inference_program, feed_target_names, fetch_targets]= paddle.fluid.io.load_inference_model( \
C
ceci3 已提交
456
                dirname=model_dir, \
C
ceci3 已提交
457 458 459 460
                model_filename=self.model_filename, params_filename=self.params_filename,
                executor=self._exe)

            ### used to check whether the dataloader is right
C
ceci3 已提交
461
            self.metric_before_compressed = None
C
ceci3 已提交
462
            if self.eval_function is not None and self.train_config.origin_metric is not None:
C
ceci3 已提交
463
                _logger.info("start to test metric before compress")
C
ceci3 已提交
464 465 466 467 468 469 470 471 472 473 474
                metric = self.eval_function(self._exe, inference_program,
                                            feed_target_names, fetch_targets)
                _logger.info("metric of compressed model is: {}".format(metric))
                buf = 0.05
                if metric < (float(self.train_config.origin_metric) - buf) or \
                        metric > (float(self.train_config.origin_metric) + buf):
                    raise RuntimeError("target metric of pretrained model is {}, \
                          but now is {}, Please check the format of evaluation dataset \
                          or check the origin_metric in train_config"
                                                                     .format(\
                          self.train_config.origin_metric, metric))
C
ceci3 已提交
475 476 477 478
                self.metric_before_compressed = metric

            patterns, default_distill_node_pair, _ = get_patterns(
                inference_program)
C
ceci3 已提交
479 480

            train_program_info, test_program_info = self._prepare_program(
C
ceci3 已提交
481 482
                inference_program, feed_target_names, fetch_targets, patterns,
                default_distill_node_pair, strategy, config)
Z
zhouzj 已提交
483 484 485
            if 'unstructure' in self._strategy:
                test_program_info.program._program = remove_unused_var_nodes(
                    test_program_info.program._program)
C
ceci3 已提交
486
            test_program_info = self._start_train(train_program_info,
C
ceci3 已提交
487 488
                                                  test_program_info, strategy)
            self._save_model(test_program_info, strategy, strategy_idx)
C
ceci3 已提交
489

C
ceci3 已提交
490
    def _start_train(self, train_program_info, test_program_info, strategy):
C
ceci3 已提交
491 492 493 494 495 496
        best_metric = -1.0
        for epoch_id in range(self.train_config.epochs):
            for batch_id, data in enumerate(self.train_dataloader()):
                np_probs_float, = self._exe.run(train_program_info.program, \
                    feed=data, \
                    fetch_list=train_program_info.fetch_targets)
497 498
                if not isinstance(train_program_info.learning_rate, float):
                    train_program_info.learning_rate.step()
C
ceci3 已提交
499
                if 'unstructure' in strategy:
C
ceci3 已提交
500 501 502 503 504 505 506 507 508 509
                    self._pruner.step()

                if self.train_config.logging_iter is None:
                    logging_iter = 10
                else:
                    logging_iter = self.train_config.logging_iter
                if batch_id % int(logging_iter) == 0:
                    _logger.info("epoch: {}, batch: {}, loss: {}".format(
                        epoch_id, batch_id, np_probs_float))

510 511
                if batch_id % int(
                        self.train_config.eval_iter) == 0 and batch_id != 0:
C
ceci3 已提交
512 513 514
                    if self.eval_function is not None:

                        # GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation. 
C
ceci3 已提交
515
                        if 'unstructure' in strategy:
C
ceci3 已提交
516 517 518 519 520 521 522 523
                            self._pruner.update_params()

                        metric = self.eval_function(
                            self._exe, test_program_info.program,
                            test_program_info.feed_target_names,
                            test_program_info.fetch_targets)

                        _logger.info(
C
ceci3 已提交
524 525
                            "epoch: {}, batch: {} metric of compressed model is: {}, best metric of compressed model is {}".
                            format(epoch_id, batch_id, metric, best_metric))
C
ceci3 已提交
526 527 528 529 530
                        if metric > best_metric:
                            paddle.static.save(
                                program=test_program_info.program._program,
                                model_path=os.path.join(self.save_dir,
                                                        'best_model'))
C
ceci3 已提交
531 532 533 534 535 536
                            best_metric = metric
                            if self.metric_before_compressed is not None and float(
                                    abs(best_metric -
                                        self.metric_before_compressed)
                            ) / self.metric_before_compressed <= 0.005:
                                break
C
ceci3 已提交
537 538
                        if self.train_config.target_metric is not None:
                            if metric > float(self.train_config.target_metric):
C
ceci3 已提交
539
                                break
C
ceci3 已提交
540 541

                    else:
542 543 544
                        _logger.warning(
                            "Not set eval function, so unable to test accuracy performance."
                        )
C
ceci3 已提交
545

Z
zhouzj 已提交
546 547 548
        if 'unstructure' in self._strategy or self.train_config.sparse_model:
            self._pruner.update_params()

C
ceci3 已提交
549 550
        return test_program_info

C
ceci3 已提交
551
    def _save_model(self, test_program_info, strategy, strategy_idx):
C
ceci3 已提交
552 553 554
        test_program = test_program_info.program._program if isinstance(
            test_program_info.program,
            paddle.static.CompiledProgram) else test_program_info.program
C
ceci3 已提交
555

556 557 558 559 560 561
        if os.path.exists(os.path.join(self.save_dir, 'best_model.pdparams')):
            paddle.static.load(test_program,
                               os.path.join(self.save_dir, 'best_model'))
            os.remove(os.path.join(self.save_dir, 'best_model.pdmodel'))
            os.remove(os.path.join(self.save_dir, 'best_model.pdopt'))
            os.remove(os.path.join(self.save_dir, 'best_model.pdparams'))
C
ceci3 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576

        if 'qat' in strategy:
            float_program, int8_program = convert(test_program_info.program._program, self._places, self._quant_config, \
                                          scope=paddle.static.global_scope(), \
                                          save_int8=True)
            test_program_info.program = float_program

        model_dir = os.path.join(self.save_dir,
                                 'strategy_{}'.format(str(strategy_idx + 1)))
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
        paddle.fluid.io.save_inference_model(
            dirname=str(model_dir),
            feeded_var_names=test_program_info.feed_target_names,
            target_vars=test_program_info.fetch_targets,
C
ceci3 已提交
577
            executor=self._exe,
578
            main_program=test_program,
C
ceci3 已提交
579 580
            model_filename=self.model_filename,
            params_filename=self.params_filename)