compressor.py 25.3 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
import numpy as np
import inspect
C
ceci3 已提交
20
import shutil
C
ceci3 已提交
21
from collections import namedtuple, Iterable
22
import platform
C
ceci3 已提交
23 24
import paddle
import paddle.distributed.fleet as fleet
25
if platform.system().lower() == 'linux':
C
ceci3 已提交
26
    from ..quant import quant_post_hpo
C
ceci3 已提交
27 28 29
from ..quant.quanter import convert
from ..common.recover_program import recover_inference_program
from ..common import get_logger
C
ceci3 已提交
30 31
from ..common.patterns import get_patterns
from ..analysis import TableLatencyPredictor
C
ceci3 已提交
32 33
from .create_compressed_program import build_distill_program, build_quant_program, build_prune_program
from .strategy_config import ProgramInfo, merge_config
C
ceci3 已提交
34
from .auto_strategy import prepare_strategy, get_final_quant_config, create_strategy_config
C
ceci3 已提交
35 36 37 38 39 40 41 42 43 44 45

_logger = get_logger(__name__, level=logging.INFO)


class AutoCompression:
    def __init__(self,
                 model_dir,
                 model_filename,
                 params_filename,
                 save_dir,
                 train_dataloader,
C
ceci3 已提交
46 47 48
                 train_config=None,
                 strategy_config=None,
                 target_speedup=None,
49
                 eval_callback=None,
C
ceci3 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
                 eval_dataloader=None,
                 deploy_hardware='gpu'):
        """
        Compress inference model automatically.

        Args:
            model_dir(str): The path of inference model that will be compressed, and
                the model and params that saved by ``paddle.static.io.save_inference_model``
                are under the path.
            model_filename(str, optional):  The name of model file. If parameters
                are saved in separate files, set it as 'None'. Default: 'None'.
            params_filename(str, optional): The name of params file.
                When all parameters are saved in a single file, set it
                as filename. If parameters are saved in separate files,
                set it as 'None'. Default : 'None'.
            save_dir(str): The path to save compressed model.
            train_data_loader(Python Generator, Paddle.io.DataLoader): The
                Generator or Dataloader provides train data, and it could
                return a batch every time.
            train_config(dict, optional): The train config in the compression process, the key can 
                reference `<https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L103>`_ . 
                Only one strategy(quant_post with hyperparameter optimization) can set train_config 
                to None. Default: None. 
            strategy_config(dict, list(dict), optional): The strategy config. You can set single config to get multi-strategy config, such as
                1. set ``Quantization`` and ``Distillation`` to get quant_aware and distillation compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                2. set ``Quantization`` and ``HyperParameterOptimization`` to get quant_post and hyperparameter optimization compress config.
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ .
                    The HyperParameterOptimization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L73`_ .
                3. set ``Prune`` and ``Distillation`` to get prune and distillation compress config.
                    The Prune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                4. set ``UnstructurePrune`` and ``Distillation`` to get unstructureprune and distillation compress config.
                    The UnstructurePrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L91`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                5. set ``Distillation`` to use one teacher modol to distillation student model.
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ .
                6. set ``MultiTeacherDistillation`` to use multi-teacher to distillation student model.
                    The MultiTeacherDistillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L56`_ .

                If set to None, will choose a strategy automatically. Default: None.
            target_speedup(float, optional): target speedup ratio by the way of auto compress. Default: None.
            eval_callback(function, optional): eval function, define by yourself to return the metric of the inference program, can be used to judge the metric of compressed model. The documents of how to write eval function is `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/auto-compression/custom_function.rst`_ . ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
            eval_dataloader(paddle.io.Dataloader, optional):  The
                 Generator or Dataloader provides eval data, and it could
                 return a batch every time. ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
            deploy_hardware(str, optional): The hardware you want to deploy. Default: 'gpu'.
        """
C
ceci3 已提交
99 100 101
        self.model_dir = model_dir
        self.model_filename = model_filename
        self.params_filename = params_filename
C
ceci3 已提交
102 103 104 105 106
        base_path = os.path.basename(os.path.normpath(save_dir))
        parent_path = os.path.abspath(os.path.join(save_dir, os.pardir))
        base_path = base_path + '_temp'
        self.save_dir = os.path.join(parent_path, base_path)
        self.final_dir = save_dir
C
ceci3 已提交
107 108 109
        self.strategy_config = strategy_config
        self.train_config = train_config
        self.train_dataloader = train_dataloader
C
ceci3 已提交
110 111 112 113
        self.target_speedup = target_speedup
        self.eval_function = eval_callback
        self.eval_dataloader = eval_dataloader

C
ceci3 已提交
114
        paddle.enable_static()
C
ceci3 已提交
115 116 117

        if deploy_hardware in TableLatencyPredictor.hardware_list:
            self.deploy_hardware = deploy_hardware
C
ceci3 已提交
118
        else:
C
ceci3 已提交
119
            self.deploy_hardware = None
C
ceci3 已提交
120

C
ceci3 已提交
121 122 123
        self._exe, self._places = self._prepare_envs()
        self.model_type = self._get_model_type(self._exe, model_dir,
                                               model_filename, params_filename)
C
ceci3 已提交
124

C
ceci3 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        if self.train_config is not None and self.train_config.use_fleet:
            fleet.init(is_collective=True)

        if self.strategy_config is None:
            strategy_config = prepare_strategy(
                self.model_dir, self.model_filename, self.params_filename,
                self.target_speedup, self.deploy_hardware, self.model_type)
            self.strategy_config = strategy_config
        elif isinstance(self.strategy_config, dict):
            self.strategy_config = [self.strategy_config]
        elif isinstance(self.strategy_config, str):
            strategy_config = create_strategy_config(self.strategy_config,
                                                     self.model_type)

        self._strategy, self._config = self._prepare_strategy(
            self.strategy_config)

    def _prepare_envs(self):
        devices = paddle.device.get_device().split(':')[0]
C
ceci3 已提交
144 145 146 147
        places = paddle.device._convert_to_place(devices)
        exe = paddle.static.Executor(places)
        return exe, places

C
ceci3 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    def _get_model_type(self, exe, model_dir, model_filename, params_filename):
        [inference_program, _, _]= paddle.fluid.io.load_inference_model( \
            dirname=model_dir, \
            model_filename=model_filename, params_filename=params_filename,
            executor=exe)
        _, _, model_type = get_patterns(inference_program)
        return model_type

    def _prepare_strategy(self, strategy_config):
        if not isinstance(strategy_config, list):
            strategy_config = list(list(strategy_config))

        strategy = []
        config = []
        for strategy_c in strategy_config:
            quant_config = strategy_c.get("Quantization", None)
            hpo_config = strategy_c.get("HyperParameterOptimization", None)
            prune_config = strategy_c.get("Prune", None)
            unstructure_prune_config = strategy_c.get("UnstructurePrune", None)
            single_teacher_distill_config = strategy_c.get("Distillation", None)
            if single_teacher_distill_config is not None and single_teacher_distill_config.teacher_model_dir is None:
                single_teacher_distill_config = single_teacher_distill_config._replace(
                    teacher_model_dir=self.model_dir,
                    teacher_model_filename=self.model_filename,
                    teacher_params_filename=self.params_filename)

            multi_teacher_distill_config = strategy_c.get(
                "MultiTeacherDistillation", None)

            assert (single_teacher_distill_config is None) or (multi_teacher_distill_config is None), \
                "Distillation and MultiTeacherDistillation cannot be set at the same time."
            self._distill_config = single_teacher_distill_config if \
                   single_teacher_distill_config is not None else \
                   multi_teacher_distill_config

            ### case1: quant_config & hpo_config ==> PTQ & HPO
            if quant_config is not None and hpo_config is not None:
                strategy.append('ptq_hpo')
                config.append(merge_config(quant_config, hpo_config))

            ### case2: quant_config & distill config ==> QAT & Distill
            elif quant_config is not None and self._distill_config is not None:
                strategy.append('qat_dis')
                config.append(merge_config(quant_config, self._distill_config))

            ### case3: prune_config & distill config
            elif prune_config is not None and self._distill_config is not None:
                strategy.append('prune_dis')
                config.append(merge_config(prune_config, self._distill_config))

            ### case4: unstructure_config & distill config
            elif unstructure_prune_config is not None and self._distill_config is not None:
                strategy.append('unstructure_prune_dis')
                config.append(
                    merge_config(unstructure_prune_config,
                                 self._distill_config))

            ### case4: distill_config
            elif self._distill_config is not None:
                if single_teacher_distill_config is not None:
                    strategy.append('single_teacher_dis')
                    config.append(single_teacher_distill_config)
                else:
                    strategy.append('multi_teacher_dis')
                    config.append(multi_teacher_distill_config)
C
ceci3 已提交
213

C
ceci3 已提交
214 215 216 217 218
            ### case N: todo
            else:
                raise NotImplementedError(
                    "Not Implemented {} be set at the same time now".format(
                        strategy_c.keys()))
C
ceci3 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

        return strategy, config

    def _prepare_fleet_strategy(train_config):
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()

        strategy = fleet.DistributedStrategy()
        strategy.build_strategy = build_strategy
        if train_config.recompute_config is not None:
            strategy.recompute = True
            strategy.recompute_configs = { ** train_config.recompute_config}
        if train_config.sharding_config is not None:
            strategy.sharding = True
            strategy.sharding_configs = { ** train_config.sharding_config}
        if train_config.amp_config is not None:
            strategy.amp = True
            strategy.amp_configs = { ** train_config.amp_config}
        return strategy

C
ceci3 已提交
239 240
    def _prepare_program(self, program, feed_target_names, fetch_targets,
                         patterns, default_distill_node_pair, strategy, config):
C
ceci3 已提交
241 242 243 244 245
        train_program = recover_inference_program(program)
        startup_program = paddle.static.Program()
        train_program_info = ProgramInfo(startup_program, train_program,
                                         feed_target_names, fetch_targets)

C
ceci3 已提交
246
        config_dict = dict(config._asdict())
C
ceci3 已提交
247 248
        ### add prune program
        self._pruner = None
C
ceci3 已提交
249
        if 'prune' in strategy:
C
ceci3 已提交
250 251
            self._pruner, train_program_info = build_prune_program(
                self._exe, self._places, config_dict, train_program_info,
C
ceci3 已提交
252
                strategy, patterns, self.eval_dataloader)
C
ceci3 已提交
253 254 255 256 257 258 259

        if self.train_config.use_fleet:
            dist_strategy = _prepare_fleet_strategy(self.train_config)
        else:
            dist_strategy = None

        ### add distill program
C
ceci3 已提交
260
        if 'dis' in strategy:
C
ceci3 已提交
261 262 263 264 265 266 267
            train_program_info, test_program_info = build_distill_program(
                self._exe,
                self._places,
                config_dict,
                self.train_config._asdict(),
                train_program_info,
                pruner=self._pruner,
C
ceci3 已提交
268 269
                dist_strategy=dist_strategy,
                default_distill_node_pair=default_distill_node_pair)
C
ceci3 已提交
270 271 272

        self._quant_config = None
        ### add quant_aware program, quant always is last step
C
ceci3 已提交
273
        if 'qat' in strategy:
C
ceci3 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
            train_program_info, test_program_info, self._quant_config = build_quant_program(
                self._exe, self._places, config_dict, train_program_info,
                test_program_info)

        self._exe.run(train_program_info.startup_program)

        if (not self.train_config.use_fleet
            ) and self.train_config.amp_config is not None:
            if hasattr(self.train_config.amp_config, 'use_pure_fp16'
                       ) and self.train_config.amp_config.use_pure_fp16:
                train_program_info.optimizer.amp_init(
                    self._places, scope=paddle.static.global_scope())

        if 'prune_algo' in config_dict and config_dict['prune_algo'] == 'asp':
            ### prune weight in scope
            self._pruner.prune_model(train_program_info.program)

        if not self.train_config.use_fleet:
            train_program_info = self._compiled_program(train_program_info,
C
ceci3 已提交
293
                                                        strategy)
C
ceci3 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
            test_program_info = self._compiled_program(test_program_info,
                                                       self._strategy)
        return train_program_info, test_program_info

    def _compiled_program(self, program_info, strategy):
        compiled_prog = paddle.static.CompiledProgram(program_info.program)
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()
        if 'qat' in strategy:
            build_strategy.memory_optimize = False
            build_strategy.enable_inplace = False
            build_strategy.fuse_all_reduce_ops = False
            build_strategy.sync_batch_norm = False

        compiled_prog = compiled_prog.with_data_parallel(
            loss_name=program_info.fetch_targets[0].name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)
        program_info.program = compiled_prog
        return program_info

    def compress(self):
C
ceci3 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
        for strategy_idx, (
                strategy,
                config) in enumerate(zip(self._strategy, self._config)):
            self.single_strategy_compress(strategy, config, strategy_idx)

        if strategy == 'ptq_hpo' and config.max_quant_count == 1 and platform.system(
        ).lower() == 'linux':
            ptq_loss = quant_post_hpo.g_min_emd_loss

            final_quant_config = get_final_quant_config(ptq_loss)
            quant_strategy, quant_config = self._prepare_strategy(
                final_quant_config)
            self.single_strategy_compress(quant_strategy[0], quant_config[0],
                                          strategy_idx)
        old_model_path = os.path.join(
            self.save_dir, 'strategy_{}'.format(str(strategy_idx + 1)))
        final_model_path = os.path.join(self.final_dir)
        shutil.move(old_model_path, final_model_path)
        os._exit(0)

    def single_strategy_compress(self, strategy, config, strategy_idx):
C
ceci3 已提交
337
        ### start compress, including train/eval model
C
ceci3 已提交
338
        if strategy == 'ptq_hpo':
339 340 341 342
            if platform.system().lower() != 'linux':
                raise NotImplementedError(
                    "post-quant-hpo is not support in system other than linux")

C
ceci3 已提交
343
            quant_post_hpo.quant_post_hpo(
C
ceci3 已提交
344 345 346
                self._exe,
                self._places,
                model_dir=self.model_dir,
C
ceci3 已提交
347 348
                quantize_model_path=os.path.join(
                    self.save_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
C
ceci3 已提交
349 350 351 352 353 354 355
                train_dataloader=self.train_dataloader,
                eval_dataloader=self.eval_dataloader,
                eval_function=self.eval_function,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
C
ceci3 已提交
356 357 358 359 360 361 362 363
                quantizable_op_type=config.quantize_op_types,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                weight_quantize_type=config.weight_quantize_type,
                is_full_quantize=config.is_full_quantize,
                algo=config.ptq_algo,
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
C
ceci3 已提交
364
                batch_size=[1],
C
ceci3 已提交
365 366
                batch_num=config.batch_num,
                runcount_limit=config.max_quant_count)
C
ceci3 已提交
367 368

        else:
C
ceci3 已提交
369 370 371 372 373 374 375
            assert 'dis' in strategy, "Only support optimizer compressed model by distillation loss."

            if strategy_idx == 0:
                model_dir = self.model_dir
            else:
                model_dir = os.path.join(
                    self.save_dir, 'strategy_{}'.format(str(strategy_idx)))
C
ceci3 已提交
376 377

            [inference_program, feed_target_names, fetch_targets]= paddle.fluid.io.load_inference_model( \
C
ceci3 已提交
378
                dirname=model_dir, \
C
ceci3 已提交
379 380 381 382
                model_filename=self.model_filename, params_filename=self.params_filename,
                executor=self._exe)

            ### used to check whether the dataloader is right
C
ceci3 已提交
383
            self.metric_before_compressed = None
C
ceci3 已提交
384
            if self.eval_function is not None and self.train_config.origin_metric is not None:
C
ceci3 已提交
385
                _logger.info("start to test metric before compress")
C
ceci3 已提交
386 387 388 389 390 391 392 393 394 395 396
                metric = self.eval_function(self._exe, inference_program,
                                            feed_target_names, fetch_targets)
                _logger.info("metric of compressed model is: {}".format(metric))
                buf = 0.05
                if metric < (float(self.train_config.origin_metric) - buf) or \
                        metric > (float(self.train_config.origin_metric) + buf):
                    raise RuntimeError("target metric of pretrained model is {}, \
                          but now is {}, Please check the format of evaluation dataset \
                          or check the origin_metric in train_config"
                                                                     .format(\
                          self.train_config.origin_metric, metric))
C
ceci3 已提交
397 398 399 400
                self.metric_before_compressed = metric

            patterns, default_distill_node_pair, _ = get_patterns(
                inference_program)
C
ceci3 已提交
401 402

            train_program_info, test_program_info = self._prepare_program(
C
ceci3 已提交
403 404
                inference_program, feed_target_names, fetch_targets, patterns,
                default_distill_node_pair, strategy, config)
C
ceci3 已提交
405 406

            test_program_info = self._start_train(train_program_info,
C
ceci3 已提交
407 408
                                                  test_program_info, strategy)
            self._save_model(test_program_info, strategy, strategy_idx)
C
ceci3 已提交
409

C
ceci3 已提交
410
    def _start_train(self, train_program_info, test_program_info, strategy):
C
ceci3 已提交
411 412 413 414 415 416 417
        best_metric = -1.0
        for epoch_id in range(self.train_config.epochs):
            for batch_id, data in enumerate(self.train_dataloader()):
                np_probs_float, = self._exe.run(train_program_info.program, \
                    feed=data, \
                    fetch_list=train_program_info.fetch_targets)

C
ceci3 已提交
418
                if 'unstructure' in strategy:
C
ceci3 已提交
419 420 421 422 423 424 425 426 427 428
                    self._pruner.step()

                if self.train_config.logging_iter is None:
                    logging_iter = 10
                else:
                    logging_iter = self.train_config.logging_iter
                if batch_id % int(logging_iter) == 0:
                    _logger.info("epoch: {}, batch: {}, loss: {}".format(
                        epoch_id, batch_id, np_probs_float))

429 430
                if batch_id % int(
                        self.train_config.eval_iter) == 0 and batch_id != 0:
C
ceci3 已提交
431 432 433
                    if self.eval_function is not None:

                        # GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation. 
C
ceci3 已提交
434
                        if 'unstructure' in strategy:
C
ceci3 已提交
435 436 437 438 439 440 441 442
                            self._pruner.update_params()

                        metric = self.eval_function(
                            self._exe, test_program_info.program,
                            test_program_info.feed_target_names,
                            test_program_info.fetch_targets)

                        _logger.info(
C
ceci3 已提交
443 444
                            "epoch: {}, batch: {} metric of compressed model is: {}, best metric of compressed model is {}".
                            format(epoch_id, batch_id, metric, best_metric))
C
ceci3 已提交
445 446 447 448 449
                        if metric > best_metric:
                            paddle.static.save(
                                program=test_program_info.program._program,
                                model_path=os.path.join(self.save_dir,
                                                        'best_model'))
C
ceci3 已提交
450 451 452 453 454 455
                            best_metric = metric
                            if self.metric_before_compressed is not None and float(
                                    abs(best_metric -
                                        self.metric_before_compressed)
                            ) / self.metric_before_compressed <= 0.005:
                                break
C
ceci3 已提交
456 457
                        if self.train_config.target_metric is not None:
                            if metric > float(self.train_config.target_metric):
C
ceci3 已提交
458
                                break
C
ceci3 已提交
459 460

                    else:
461 462 463
                        _logger.warning(
                            "Not set eval function, so unable to test accuracy performance."
                        )
C
ceci3 已提交
464 465 466

        return test_program_info

C
ceci3 已提交
467
    def _save_model(self, test_program_info, strategy, strategy_idx):
C
ceci3 已提交
468 469 470
        test_program = test_program_info.program._program if isinstance(
            test_program_info.program,
            paddle.static.CompiledProgram) else test_program_info.program
C
ceci3 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

        paddle.static.load(test_program,
                           os.path.join(self.save_dir, 'best_model'))
        os.remove(os.path.join(self.save_dir, 'best_model.pdmodel'))
        os.remove(os.path.join(self.save_dir, 'best_model.pdopt'))
        os.remove(os.path.join(self.save_dir, 'best_model.pdparams'))

        if 'qat' in strategy:
            float_program, int8_program = convert(test_program_info.program._program, self._places, self._quant_config, \
                                          scope=paddle.static.global_scope(), \
                                          save_int8=True)
            test_program_info.program = float_program

        model_dir = os.path.join(self.save_dir,
                                 'strategy_{}'.format(str(strategy_idx + 1)))
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
        paddle.fluid.io.save_inference_model(
            dirname=str(model_dir),
            feeded_var_names=test_program_info.feed_target_names,
            target_vars=test_program_info.fetch_targets,
C
ceci3 已提交
492
            executor=self._exe,
493 494 495
            main_program=test_program,
            model_filename='model.pdmodel',
            params_filename='model.pdiparams')