trainer.py 34.6 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
F
Feng Ni 已提交
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27
from PIL import Image, ImageOps, ImageFile
W
Wenyu 已提交
28

F
Feng Ni 已提交
29
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
30 31

import paddle
F
Feng Ni 已提交
32
import paddle.nn as nn
W
wangguanzhong 已提交
33 34
import paddle.distributed as dist
from paddle.distributed import fleet
35
from paddle import amp
K
Kaipeng Deng 已提交
36
from paddle.static import InputSpec
37
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
38 39 40

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
41
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
42
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
43 44
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
45
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
46
import ppdet.utils.stats as stats
47
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
48

49
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator
G
Guanghua Yu 已提交
50
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
51 52

from ppdet.utils.logger import setup_logger
53
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
54 55 56

__all__ = ['Trainer']

57
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
58

K
Kaipeng Deng 已提交
59 60 61 62 63 64 65

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
66
        self.optimizer = None
67
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
68

G
George Ni 已提交
69
        # build data loader
70
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
71 72
            self.dataset = create('{}MOTDataset'.format(self.mode.capitalize(
            )))()
73
        else:
74
            self.dataset = create('{}Dataset'.format(self.mode.capitalize()))()
75 76 77 78 79

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

80 81 82 83
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
84 85 86 87 88 89
        if self.mode == 'train':
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
90 91
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
92

F
FlyingQianMM 已提交
93
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
94 95
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
96
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
97

K
Kaipeng Deng 已提交
98
        # build model
99 100 101 102 103
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
104

F
Feng Ni 已提交
105 106 107
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
F
Feng Ni 已提交
108 109
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch
F
Feng Ni 已提交
110

111
        #normalize params for deploy
C
Chang Xu 已提交
112 113 114
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
115 116 117 118 119 120 121
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
122 123
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
124

125 126
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
G
Guanghua Yu 已提交
127 128
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
F
Feng Ni 已提交
129
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
130
            self.ema = ModelEMA(
G
Guanghua Yu 已提交
131 132
                self.model,
                decay=ema_decay,
F
Feng Ni 已提交
133
                ema_decay_type=ema_decay_type,
G
Guanghua Yu 已提交
134
                cycle_epoch=cycle_epoch)
135

K
Kaipeng Deng 已提交
136 137 138
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
139 140 141 142 143 144 145 146 147 148 149
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
150
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
151 152 153 154 155

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
156
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
157

M
minghaoBD 已提交
158 159 160 161
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
M
minghaoBD 已提交
162

W
wangguanzhong 已提交
163 164
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
165

K
Kaipeng Deng 已提交
166 167 168
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
169
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
170 171 172 173 174 175 176 177 178 179 180

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
181
            if self.cfg.get('use_vdl', False):
182
                self._callbacks.append(VisualDLWriter(self))
183 184
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
K
Kaipeng Deng 已提交
185 186 187
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
188 189
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
190
            self._compose_callback = ComposeCallback(self._callbacks)
191
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
192 193
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
194 195 196 197
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
198 199
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
200 201
            self._metrics = []
            return
202
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
203
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
204
            # TODO: bias should be unified
205
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
206 207
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
208
            save_prediction_only = self.cfg.get('save_prediction_only', False)
209 210 211

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
212 213
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
214 215 216 217

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
218
            dataset = self.dataset
219 220 221 222
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
223
                dataset = eval_dataset
224

225
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
226 227 228 229 230 231 232 233 234 235 236
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
237
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
238 239 240 241 242 243 244 245 246
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
247
                        save_prediction_only=save_prediction_only)
248
                ]
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
278 279 280
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
281
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
282
                    class_num=self.cfg.num_classes,
283 284
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
285
            ]
286 287 288 289 290 291 292 293 294
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
295 296 297 298
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
299
            save_prediction_only = self.cfg.get('save_prediction_only', False)
300
            self._metrics = [
301 302 303 304 305 306
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
307
            ]
Z
zhiboniu 已提交
308 309 310 311
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
312
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
313
            self._metrics = [
314 315 316 317 318 319
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
320
            ]
G
George Ni 已提交
321 322
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
323
        else:
324
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
325
                self.cfg.metric))
K
Kaipeng Deng 已提交
326 327 328 329 330 331 332
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
333
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
347
    def load_weights(self, weights):
348 349
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
350
        self.start_epoch = 0
351
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
352 353
        logger.debug("Load weights {} to start training".format(weights))

354 355 356 357 358 359 360
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
361
    def resume_weights(self, weights):
362 363 364 365 366
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
367 368
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
369
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
370

K
Kaipeng Deng 已提交
371
    def train(self, validate=False):
K
Kaipeng Deng 已提交
372
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
373
        Init_mark = False
K
Kaipeng Deng 已提交
374

375
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
W
wangxinxin08 已提交
376 377
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
378 379
            self.model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(
                self.model)
W
wangxinxin08 已提交
380

381
        model = self.model
382
        if self.cfg.get('fleet', False):
383
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
384
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
385
        elif self._nranks > 1:
G
George Ni 已提交
386 387 388 389
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
390

W
Wenyu 已提交
391 392
        # enabel auto mixed precision mode
        if self.cfg.get('amp', False):
393
            scaler = amp.GradScaler(
394 395
                enable=self.cfg.use_gpu or self.cfg.use_npu,
                init_loss_scaling=1024)
K
Kaipeng Deng 已提交
396

K
Kaipeng Deng 已提交
397 398 399 400 401 402 403 404 405 406 407 408
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
409
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
410 411 412
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
413
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
414

415 416
        self._compose_callback.on_train_begin(self.status)

K
Kaipeng Deng 已提交
417
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
418
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
419 420 421
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
422
            model.train()
K
Kaipeng Deng 已提交
423 424 425 426
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
427
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
428
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
429
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
430

W
Wenyu 已提交
431
                if self.cfg.get('amp', False):
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
449 450
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
451 452
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
453 454 455
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
456
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
457 458 459 460
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
461
                if self.use_ema:
S
shangliang Xu 已提交
462
                    self.ema.update()
F
Feng Ni 已提交
463
                iter_tic = time.time()
K
Kaipeng Deng 已提交
464

M
minghaoBD 已提交
465 466
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
467

S
shangliang Xu 已提交
468 469 470 471 472 473 474 475
            is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
476 477
            self._compose_callback.on_epoch_end(self.status)

S
shangliang Xu 已提交
478
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
479 480 481 482 483 484 485
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
486 487 488
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
489 490 491 492
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
493 494 495 496 497 498
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
499

K
Kaipeng Deng 已提交
500
                with paddle.no_grad():
501
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
502 503
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
504 505
            if is_snapshot and self.use_ema:
                # reset original weight
506
                self.model.set_dict(weight)
S
shangliang Xu 已提交
507
                self.status.pop('weight')
508

509 510
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
511
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
512 513 514
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
515 516
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
517
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
518 519 520
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
F
Feng Ni 已提交
521
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
522 523 524 525 526 527 528 529 530
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
531 532 533 534 535
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
536 537 538 539 540 541 542 543 544
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
545
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
546 547 548
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
549
    def evaluate(self):
550 551
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
552

C
cnn 已提交
553 554 555 556
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
W
Wenyu 已提交
557
                save_results=False):
K
Kaipeng Deng 已提交
558 559 560
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

W
Wenyu 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

K
Kaipeng Deng 已提交
596 597 598
        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
599 600
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
601

K
Kaipeng Deng 已提交
602 603 604
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
605
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
606 607
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
608
        results = []
F
Feng Ni 已提交
609
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
610 611 612
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
613

W
Wenyu 已提交
614 615 616
            for _m in metrics:
                _m.update(data, outs)

K
Kaipeng Deng 已提交
617
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
618 619 620 621
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
622
            for key, value in outs.items():
623 624
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
625
            results.append(outs)
W
Wenyu 已提交
626

627 628
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
629 630
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
631

W
Wenyu 已提交
632 633 634 635
        for _m in metrics:
            _m.accumulate()
            _m.reset()

636
        for outs in results:
K
Kaipeng Deng 已提交
637 638
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
639

K
Kaipeng Deng 已提交
640 641 642 643
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
644
                image = ImageOps.exif_transpose(image)
645
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
646

647
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
648 649 650 651
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
652 653
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
654 655 656 657
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
658
                    int(im_id), catid2name, draw_threshold)
659
                self.status['result_image'] = np.array(image.copy())
660 661
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
662 663 664 665 666
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
W
Wenyu 已提交
667

K
Kaipeng Deng 已提交
668 669 670 671 672 673 674 675 676 677 678 679
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

G
Guanghua Yu 已提交
680
    def _get_infer_cfg_and_input_spec(self, save_dir, prune_input=True):
K
Kaipeng Deng 已提交
681
        image_shape = None
682 683
        im_shape = [None, 2]
        scale_factor = [None, 2]
684 685 686 687 688 689
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
690
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
691
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
692
        if image_shape is None:
G
Guanghua Yu 已提交
693
            image_shape = [None, 3, -1, -1]
694

G
Guanghua Yu 已提交
695 696
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
697 698 699
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
700

701
        if hasattr(self.model, 'deploy'):
702
            self.model.deploy = True
S
shangliang Xu 已提交
703 704 705 706 707

        for layer in self.model.sublayers():
            if hasattr(layer, 'convert_to_deploy'):
                layer.convert_to_deploy()

708 709 710 711 712 713
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
714 715 716
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
717 718 719 720 721 722
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
723

K
Kaipeng Deng 已提交
724 725 726 727 728 729 730
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
731
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
732
            "im_shape": InputSpec(
733
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
734
            "scale_factor": InputSpec(
735
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
736
        }]
G
George Ni 已提交
737 738 739 740 741
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
742 743 744 745 746 747 748 749 750 751 752 753
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
754
        # TODO: Hard code, delete it when support prune input_spec.
755
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
756 757 758 759 760
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]

G
Guanghua Yu 已提交
761 762 763 764 765 766 767 768
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
769

G
Guanghua Yu 已提交
770 771
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
772 773 774

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
775 776 777 778 779
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
780
            self.cfg.slim.save_quantized_model(
781 782
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
783 784
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
785

G
Guanghua Yu 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir, prune_input=False)

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
854 855 856
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images