trainer.py 34.5 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
F
Feng Ni 已提交
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27
from PIL import Image, ImageOps, ImageFile
W
Wenyu 已提交
28

F
Feng Ni 已提交
29
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
30 31

import paddle
F
Feng Ni 已提交
32
import paddle.nn as nn
W
wangguanzhong 已提交
33 34
import paddle.distributed as dist
from paddle.distributed import fleet
35
from paddle import amp
K
Kaipeng Deng 已提交
36
from paddle.static import InputSpec
37
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
38 39 40

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
41
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
42
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
43 44
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
45
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
46
import ppdet.utils.stats as stats
47
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
48

49
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator
G
Guanghua Yu 已提交
50
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
51 52

from ppdet.utils.logger import setup_logger
53
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
54 55 56

__all__ = ['Trainer']

57
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
58

K
Kaipeng Deng 已提交
59 60 61 62 63 64 65

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
66
        self.optimizer = None
67
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
68

G
George Ni 已提交
69
        # build data loader
70 71 72 73 74 75 76 77 78
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
            self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
        else:
            self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

79 80 81 82
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
83 84 85 86 87 88
        if self.mode == 'train':
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
89 90
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
91

F
FlyingQianMM 已提交
92
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
93 94
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
95
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
96

K
Kaipeng Deng 已提交
97
        # build model
98 99 100 101 102
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
103

F
Feng Ni 已提交
104 105 106
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
F
Feng Ni 已提交
107 108
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch
F
Feng Ni 已提交
109

110
        #normalize params for deploy
C
Chang Xu 已提交
111 112 113
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
114 115 116 117 118 119 120
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
121 122
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
123

124 125
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
G
Guanghua Yu 已提交
126 127
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
F
Feng Ni 已提交
128
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
129
            self.ema = ModelEMA(
G
Guanghua Yu 已提交
130 131
                self.model,
                decay=ema_decay,
F
Feng Ni 已提交
132
                ema_decay_type=ema_decay_type,
G
Guanghua Yu 已提交
133
                cycle_epoch=cycle_epoch)
134

K
Kaipeng Deng 已提交
135 136 137
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
138 139 140 141 142 143 144 145 146 147 148
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
149
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
150 151 152 153 154

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
155
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
156

M
minghaoBD 已提交
157 158 159 160
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
M
minghaoBD 已提交
161

W
wangguanzhong 已提交
162 163
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
164

K
Kaipeng Deng 已提交
165 166 167
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
168
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
169 170 171 172 173 174 175 176 177 178 179

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
180
            if self.cfg.get('use_vdl', False):
181
                self._callbacks.append(VisualDLWriter(self))
182 183
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
K
Kaipeng Deng 已提交
184 185 186
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
187 188
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
189
            self._compose_callback = ComposeCallback(self._callbacks)
190
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
191 192
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
193 194 195 196
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
197 198
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
199 200
            self._metrics = []
            return
201
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
202
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
203
            # TODO: bias should be unified
204
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
205 206
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
207
            save_prediction_only = self.cfg.get('save_prediction_only', False)
208 209 210

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
211 212
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
213 214 215 216

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
217
            dataset = self.dataset
218 219 220 221
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
222
                dataset = eval_dataset
223

224
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
225 226 227 228 229 230 231 232 233 234 235
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
236
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
237 238 239 240 241 242 243 244 245
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
246
                        save_prediction_only=save_prediction_only)
247
                ]
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
277 278 279
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
280
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
281
                    class_num=self.cfg.num_classes,
282 283
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
284
            ]
285 286 287 288 289 290 291 292 293
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
294 295 296 297
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
298
            save_prediction_only = self.cfg.get('save_prediction_only', False)
299
            self._metrics = [
300 301 302 303 304 305
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
306
            ]
Z
zhiboniu 已提交
307 308 309 310
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
311
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
312
            self._metrics = [
313 314 315 316 317 318
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
319
            ]
G
George Ni 已提交
320 321
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
322
        else:
323
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
324
                self.cfg.metric))
K
Kaipeng Deng 已提交
325 326 327 328 329 330 331
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
332
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
346
    def load_weights(self, weights):
347 348
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
349
        self.start_epoch = 0
350
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
351 352
        logger.debug("Load weights {} to start training".format(weights))

353 354 355 356 357 358 359
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
360
    def resume_weights(self, weights):
361 362 363 364 365
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
366 367
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
368
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
369

K
Kaipeng Deng 已提交
370
    def train(self, validate=False):
K
Kaipeng Deng 已提交
371
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
372
        Init_mark = False
K
Kaipeng Deng 已提交
373

374
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
W
wangxinxin08 已提交
375 376
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
377 378
            self.model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(
                self.model)
W
wangxinxin08 已提交
379

380
        model = self.model
381
        if self.cfg.get('fleet', False):
382
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
383
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
384
        elif self._nranks > 1:
G
George Ni 已提交
385 386 387 388
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
389

W
Wenyu 已提交
390 391
        # enabel auto mixed precision mode
        if self.cfg.get('amp', False):
392
            scaler = amp.GradScaler(
393 394
                enable=self.cfg.use_gpu or self.cfg.use_npu,
                init_loss_scaling=1024)
K
Kaipeng Deng 已提交
395

K
Kaipeng Deng 已提交
396 397 398 399 400 401 402 403 404 405 406 407
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
408
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
409 410 411
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
412
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
413

414 415
        self._compose_callback.on_train_begin(self.status)

K
Kaipeng Deng 已提交
416
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
417
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
418 419 420
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
421
            model.train()
K
Kaipeng Deng 已提交
422 423 424 425
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
426
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
427
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
428
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
429

W
Wenyu 已提交
430
                if self.cfg.get('amp', False):
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
448 449
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
450 451
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
452 453 454
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
455
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
456 457 458 459
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
460
                if self.use_ema:
S
shangliang Xu 已提交
461
                    self.ema.update()
F
Feng Ni 已提交
462
                iter_tic = time.time()
K
Kaipeng Deng 已提交
463

M
minghaoBD 已提交
464 465
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
466

S
shangliang Xu 已提交
467 468 469 470 471 472 473 474
            is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
475 476
            self._compose_callback.on_epoch_end(self.status)

S
shangliang Xu 已提交
477
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
478 479 480 481 482 483 484
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
485 486 487
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
488 489 490 491
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
492 493 494 495 496 497
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
498

K
Kaipeng Deng 已提交
499
                with paddle.no_grad():
500
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
501 502
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
503 504
            if is_snapshot and self.use_ema:
                # reset original weight
505
                self.model.set_dict(weight)
S
shangliang Xu 已提交
506
                self.status.pop('weight')
507

508 509
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
510
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
511 512 513
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
514 515
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
516
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
517 518 519
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
F
Feng Ni 已提交
520
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
521 522 523 524 525 526 527 528 529
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
530 531 532 533 534
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
535 536 537 538 539 540 541 542 543
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
544
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
545 546 547
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
548
    def evaluate(self):
549 550
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
551

C
cnn 已提交
552 553 554 555
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
W
Wenyu 已提交
556
                save_results=False):
K
Kaipeng Deng 已提交
557 558 559
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

W
Wenyu 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

K
Kaipeng Deng 已提交
595 596 597
        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
598 599
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
600

K
Kaipeng Deng 已提交
601 602 603
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
604
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
605 606
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
607
        results = []
F
Feng Ni 已提交
608
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
609 610 611
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
612

W
Wenyu 已提交
613 614 615
            for _m in metrics:
                _m.update(data, outs)

K
Kaipeng Deng 已提交
616
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
617 618 619 620
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
621
            for key, value in outs.items():
622 623
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
624
            results.append(outs)
W
Wenyu 已提交
625

626 627
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
628 629
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
630

W
Wenyu 已提交
631 632 633 634
        for _m in metrics:
            _m.accumulate()
            _m.reset()

635
        for outs in results:
K
Kaipeng Deng 已提交
636 637
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
638

K
Kaipeng Deng 已提交
639 640 641 642
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
643
                image = ImageOps.exif_transpose(image)
644
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
645

646
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
647 648 649 650
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
651 652
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
653 654 655 656
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
657
                    int(im_id), catid2name, draw_threshold)
658
                self.status['result_image'] = np.array(image.copy())
659 660
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
661 662 663 664 665
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
W
Wenyu 已提交
666

K
Kaipeng Deng 已提交
667 668 669 670 671 672 673 674 675 676 677 678
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

G
Guanghua Yu 已提交
679
    def _get_infer_cfg_and_input_spec(self, save_dir, prune_input=True):
K
Kaipeng Deng 已提交
680
        image_shape = None
681 682
        im_shape = [None, 2]
        scale_factor = [None, 2]
683 684 685 686 687 688
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
689
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
690
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
691
        if image_shape is None:
G
Guanghua Yu 已提交
692
            image_shape = [None, 3, -1, -1]
693

G
Guanghua Yu 已提交
694 695
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
696 697 698
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
699

700
        if hasattr(self.model, 'deploy'):
701
            self.model.deploy = True
S
shangliang Xu 已提交
702 703 704 705 706

        for layer in self.model.sublayers():
            if hasattr(layer, 'convert_to_deploy'):
                layer.convert_to_deploy()

707 708 709 710 711 712
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
713 714 715
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
716 717 718 719 720 721
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
722

K
Kaipeng Deng 已提交
723 724 725 726 727 728 729
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
730
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
731
            "im_shape": InputSpec(
732
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
733
            "scale_factor": InputSpec(
734
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
735
        }]
G
George Ni 已提交
736 737 738 739 740
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
741 742 743 744 745 746 747 748 749 750 751 752
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
753
        # TODO: Hard code, delete it when support prune input_spec.
754
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
755 756 757 758 759
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]

G
Guanghua Yu 已提交
760 761 762 763 764 765 766 767
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
768

G
Guanghua Yu 已提交
769 770
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
771 772 773

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
774 775 776 777 778
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
779
            self.cfg.slim.save_quantized_model(
780 781
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
782 783
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
784

G
Guanghua Yu 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir, prune_input=False)

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
853 854 855
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images