trainer.py 33.7 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27 28
from PIL import Image, ImageOps, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
29 30

import paddle
F
Feng Ni 已提交
31
import paddle.nn as nn
W
wangguanzhong 已提交
32 33
import paddle.distributed as dist
from paddle.distributed import fleet
34
from paddle import amp
K
Kaipeng Deng 已提交
35
from paddle.static import InputSpec
36
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
37 38 39

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
40
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
41
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
42 43
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
44
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
45
import ppdet.utils.stats as stats
46
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
47

48
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator
G
Guanghua Yu 已提交
49
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
50 51

from ppdet.utils.logger import setup_logger
52
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
53 54 55

__all__ = ['Trainer']

56
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
57

K
Kaipeng Deng 已提交
58 59 60 61 62 63 64

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
65
        self.optimizer = None
66
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
67

G
George Ni 已提交
68
        # build data loader
69 70 71 72 73 74 75 76 77
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
            self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
        else:
            self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

78 79 80 81
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
82 83 84 85 86 87
        if self.mode == 'train':
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
88 89
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
90

F
FlyingQianMM 已提交
91
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
92 93
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
94
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
95

K
Kaipeng Deng 已提交
96
        # build model
97 98 99 100 101
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
102

F
Feng Ni 已提交
103 104 105 106 107 108
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
                    m.epsilon = 1e-3  # for amp(fp16)
                    m.momentum = 0.97  # 0.03 in pytorch

109
        #normalize params for deploy
C
Chang Xu 已提交
110 111 112
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
113 114 115 116 117 118 119
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
120 121
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
122

123 124
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
G
Guanghua Yu 已提交
125 126
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
F
Feng Ni 已提交
127
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
128
            self.ema = ModelEMA(
G
Guanghua Yu 已提交
129 130
                self.model,
                decay=ema_decay,
F
Feng Ni 已提交
131
                ema_decay_type=ema_decay_type,
G
Guanghua Yu 已提交
132
                cycle_epoch=cycle_epoch)
133

K
Kaipeng Deng 已提交
134 135 136
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
137 138 139 140 141 142 143 144 145 146 147
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
148
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
149 150 151 152 153

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
154
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
155

M
minghaoBD 已提交
156 157 158 159
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
M
minghaoBD 已提交
160

W
wangguanzhong 已提交
161 162
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
163

K
Kaipeng Deng 已提交
164 165 166
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
167
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
168 169 170 171 172 173 174 175 176 177 178

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
179
            if self.cfg.get('use_vdl', False):
180
                self._callbacks.append(VisualDLWriter(self))
181 182
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
K
Kaipeng Deng 已提交
183 184 185
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
186 187
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
188
            self._compose_callback = ComposeCallback(self._callbacks)
189
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
190 191
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
192 193 194 195
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
196 197
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
198 199
            self._metrics = []
            return
200
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
201
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
202
            # TODO: bias should be unified
203
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
204 205
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
206
            save_prediction_only = self.cfg.get('save_prediction_only', False)
207 208 209

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
210 211
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
212 213 214 215

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
216
            dataset = self.dataset
217 218 219 220
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
221
                dataset = eval_dataset
222

223
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
224 225 226 227 228 229 230 231 232 233 234
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
235
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
236 237 238 239 240 241 242 243 244
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
245
                        save_prediction_only=save_prediction_only)
246
                ]
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
276 277 278
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
279
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
280
                    class_num=self.cfg.num_classes,
281 282
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
283
            ]
284 285 286 287 288 289 290 291 292
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
293 294 295 296
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
297
            save_prediction_only = self.cfg.get('save_prediction_only', False)
298
            self._metrics = [
299 300 301 302 303 304
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
305
            ]
Z
zhiboniu 已提交
306 307 308 309
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
310
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
311
            self._metrics = [
312 313 314 315 316 317
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
318
            ]
G
George Ni 已提交
319 320
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
321
        else:
322
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
323
                self.cfg.metric))
K
Kaipeng Deng 已提交
324 325 326 327 328 329 330
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
331
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
345
    def load_weights(self, weights):
346 347
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
348
        self.start_epoch = 0
349
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
350 351
        logger.debug("Load weights {} to start training".format(weights))

352 353 354 355 356 357 358
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
359
    def resume_weights(self, weights):
360 361 362 363 364
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
365 366
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
367
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
368

K
Kaipeng Deng 已提交
369
    def train(self, validate=False):
K
Kaipeng Deng 已提交
370
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
371
        Init_mark = False
K
Kaipeng Deng 已提交
372

373
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
W
wangxinxin08 已提交
374 375
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
376 377
            self.model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(
                self.model)
W
wangxinxin08 已提交
378

379
        model = self.model
380
        if self.cfg.get('fleet', False):
381
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
382
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
383
        elif self._nranks > 1:
G
George Ni 已提交
384 385 386 387
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
388

W
Wenyu 已提交
389 390
        # enabel auto mixed precision mode
        if self.cfg.get('amp', False):
391
            scaler = amp.GradScaler(
392 393
                enable=self.cfg.use_gpu or self.cfg.use_npu,
                init_loss_scaling=1024)
K
Kaipeng Deng 已提交
394

K
Kaipeng Deng 已提交
395 396 397 398 399 400 401 402 403 404 405 406
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
407
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
408 409 410
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
411
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
412

413 414
        self._compose_callback.on_train_begin(self.status)

K
Kaipeng Deng 已提交
415
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
416
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
417 418 419
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
420
            model.train()
K
Kaipeng Deng 已提交
421 422 423 424
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
425
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
426
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
427
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
428

W
Wenyu 已提交
429
                if self.cfg.get('amp', False):
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
447 448
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
449 450
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
451 452 453
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
454
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
455 456 457 458
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
459
                if self.use_ema:
S
shangliang Xu 已提交
460
                    self.ema.update()
F
Feng Ni 已提交
461
                iter_tic = time.time()
K
Kaipeng Deng 已提交
462

M
minghaoBD 已提交
463 464
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
465

S
shangliang Xu 已提交
466 467 468 469 470 471 472 473
            is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
474 475
            self._compose_callback.on_epoch_end(self.status)

S
shangliang Xu 已提交
476
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
477 478 479 480 481 482 483
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
484 485 486
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
487 488 489 490
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
491 492 493 494 495 496
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
497

K
Kaipeng Deng 已提交
498
                with paddle.no_grad():
499
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
500 501
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
502 503
            if is_snapshot and self.use_ema:
                # reset original weight
504
                self.model.set_dict(weight)
S
shangliang Xu 已提交
505
                self.status.pop('weight')
506

507 508
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
509
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
510 511 512
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
513 514
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
515
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
516 517 518
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
519
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
520 521 522 523 524 525 526 527 528
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
529 530 531 532 533
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
534 535 536 537 538 539 540 541 542
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
543
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
544 545 546
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
547
    def evaluate(self):
548 549
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
550

C
cnn 已提交
551 552 553 554 555
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
                save_txt=False):
K
Kaipeng Deng 已提交
556 557 558 559 560 561
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
562 563
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
564

K
Kaipeng Deng 已提交
565 566 567
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
568
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
569 570
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
571
        results = []
572
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
573 574 575
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
576

K
Kaipeng Deng 已提交
577
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
578 579 580 581
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
582
            for key, value in outs.items():
583 584
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
585 586 587
            results.append(outs)
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
588 589
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
590

591
        for outs in results:
K
Kaipeng Deng 已提交
592 593
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
594

K
Kaipeng Deng 已提交
595 596 597 598
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
599
                image = ImageOps.exif_transpose(image)
600
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
601

602
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
603 604 605 606
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
607 608
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
609 610 611 612
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
613
                    int(im_id), catid2name, draw_threshold)
614
                self.status['result_image'] = np.array(image.copy())
615 616
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
617 618 619 620 621
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
C
cnn 已提交
622 623
                if save_txt:
                    save_path = os.path.splitext(save_name)[0] + '.txt'
624 625 626 627 628 629 630
                    results = {}
                    results["im_id"] = im_id
                    if bbox_res:
                        results["bbox_res"] = bbox_res
                    if keypoint_res:
                        results["keypoint_res"] = keypoint_res
                    save_result(save_path, results, catid2name, draw_threshold)
K
Kaipeng Deng 已提交
631 632 633 634 635 636 637 638 639 640 641 642
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

G
Guanghua Yu 已提交
643
    def _get_infer_cfg_and_input_spec(self, save_dir, prune_input=True):
K
Kaipeng Deng 已提交
644
        image_shape = None
645 646
        im_shape = [None, 2]
        scale_factor = [None, 2]
647 648 649 650 651 652
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
653
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
654
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
655
        if image_shape is None:
G
Guanghua Yu 已提交
656
            image_shape = [None, 3, -1, -1]
657

G
Guanghua Yu 已提交
658 659
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
660 661 662
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
663

664
        if hasattr(self.model, 'deploy'):
665
            self.model.deploy = True
S
shangliang Xu 已提交
666 667 668 669 670

        for layer in self.model.sublayers():
            if hasattr(layer, 'convert_to_deploy'):
                layer.convert_to_deploy()

671 672 673 674 675 676
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
677 678 679
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
680 681 682 683 684 685
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
686

K
Kaipeng Deng 已提交
687 688 689 690 691 692 693
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
694
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
695
            "im_shape": InputSpec(
696
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
697
            "scale_factor": InputSpec(
698
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
699
        }]
G
George Ni 已提交
700 701 702 703 704
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
705 706 707 708 709 710 711 712 713 714 715 716
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
717
        # TODO: Hard code, delete it when support prune input_spec.
718
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
719 720 721 722 723
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]

G
Guanghua Yu 已提交
724 725 726 727 728 729 730 731
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
732

G
Guanghua Yu 已提交
733 734
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
735 736 737

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
738 739 740 741 742
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
743
            self.cfg.slim.save_quantized_model(
744 745
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
746 747
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
748

G
Guanghua Yu 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir, prune_input=False)

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
817 818 819
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images