trainer.py 33.0 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27 28
from PIL import Image, ImageOps, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
29 30

import paddle
W
wangguanzhong 已提交
31 32
import paddle.distributed as dist
from paddle.distributed import fleet
33
from paddle import amp
K
Kaipeng Deng 已提交
34
from paddle.static import InputSpec
35
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
36 37 38

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
39
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
40
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
41 42
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
43
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
44
import ppdet.utils.stats as stats
45
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
46

47
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator
G
Guanghua Yu 已提交
48
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
49 50

from ppdet.utils.logger import setup_logger
51
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
52 53 54

__all__ = ['Trainer']

55
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
56

K
Kaipeng Deng 已提交
57 58 59 60 61 62 63

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
64
        self.optimizer = None
65
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
66

G
George Ni 已提交
67
        # build data loader
68 69 70 71 72 73 74 75 76
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
            self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
        else:
            self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

77 78 79 80
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
81 82 83 84 85 86
        if self.mode == 'train':
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
87 88
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
89

F
FlyingQianMM 已提交
90
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
91 92
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
93
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
94

K
Kaipeng Deng 已提交
95
        # build model
96 97 98 99 100
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
101

102
        #normalize params for deploy
C
Chang Xu 已提交
103 104 105 106 107
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
108

109 110
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
G
Guanghua Yu 已提交
111 112
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
113
            self.ema = ModelEMA(
G
Guanghua Yu 已提交
114 115 116 117
                self.model,
                decay=ema_decay,
                use_thres_step=True,
                cycle_epoch=cycle_epoch)
118

K
Kaipeng Deng 已提交
119 120 121
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
122 123 124 125 126 127 128 129 130 131 132
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
133
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
134 135 136 137 138

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
139
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
140

M
minghaoBD 已提交
141 142 143 144
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
M
minghaoBD 已提交
145

W
wangguanzhong 已提交
146 147
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
148

K
Kaipeng Deng 已提交
149 150 151
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
152
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
153 154 155 156 157 158 159 160 161 162 163

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
164
            if self.cfg.get('use_vdl', False):
165
                self._callbacks.append(VisualDLWriter(self))
166 167
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
K
Kaipeng Deng 已提交
168 169 170
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
171 172
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
173
            self._compose_callback = ComposeCallback(self._callbacks)
174
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
175 176
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
177 178 179 180
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
181 182
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
183 184
            self._metrics = []
            return
185
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
186
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
187
            # TODO: bias should be unified
188
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
189 190
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
191
            save_prediction_only = self.cfg.get('save_prediction_only', False)
192 193 194

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
195 196
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
197 198 199 200

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
201
            dataset = self.dataset
202 203 204 205
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
206
                dataset = eval_dataset
207

208
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
209 210 211 212 213 214 215 216 217 218 219
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
220
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
221 222 223 224 225 226 227 228 229
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
230
                        save_prediction_only=save_prediction_only)
231
                ]
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
261 262 263
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
264
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
265
                    class_num=self.cfg.num_classes,
266 267
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
268
            ]
269 270 271 272 273 274 275 276 277
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
278 279 280 281
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
282
            save_prediction_only = self.cfg.get('save_prediction_only', False)
283
            self._metrics = [
284 285 286 287 288 289
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
290
            ]
Z
zhiboniu 已提交
291 292 293 294
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
295
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
296
            self._metrics = [
297 298 299 300 301 302
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
303
            ]
G
George Ni 已提交
304 305
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
306
        else:
307
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
308
                self.cfg.metric))
K
Kaipeng Deng 已提交
309 310 311 312 313 314 315
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
316
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
330
    def load_weights(self, weights):
331 332
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
333
        self.start_epoch = 0
334
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
335 336
        logger.debug("Load weights {} to start training".format(weights))

337 338 339 340 341 342 343
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
344
    def resume_weights(self, weights):
345 346 347 348 349
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
350 351
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
352
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
353

K
Kaipeng Deng 已提交
354
    def train(self, validate=False):
K
Kaipeng Deng 已提交
355
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
356
        Init_mark = False
K
Kaipeng Deng 已提交
357

358
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
W
wangxinxin08 已提交
359 360
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
361 362
            self.model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(
                self.model)
W
wangxinxin08 已提交
363

364
        model = self.model
365
        if self.cfg.get('fleet', False):
366
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
367
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
368
        elif self._nranks > 1:
G
George Ni 已提交
369 370 371 372
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
373

W
Wenyu 已提交
374 375
        # enabel auto mixed precision mode
        if self.cfg.get('amp', False):
376
            scaler = amp.GradScaler(
377 378
                enable=self.cfg.use_gpu or self.cfg.use_npu,
                init_loss_scaling=1024)
K
Kaipeng Deng 已提交
379

K
Kaipeng Deng 已提交
380 381 382 383 384 385 386 387 388 389 390 391
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
392
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
393 394 395
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
396
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
397

398 399
        self._compose_callback.on_train_begin(self.status)

K
Kaipeng Deng 已提交
400
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
401
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
402 403 404
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
405
            model.train()
K
Kaipeng Deng 已提交
406 407 408 409
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
410
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
411
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
412
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
413

W
Wenyu 已提交
414
                if self.cfg.get('amp', False):
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
432 433
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
434 435
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
436 437 438
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
439
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
440 441 442 443
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
444
                if self.use_ema:
S
shangliang Xu 已提交
445
                    self.ema.update()
F
Feng Ni 已提交
446
                iter_tic = time.time()
K
Kaipeng Deng 已提交
447

M
minghaoBD 已提交
448 449
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
450

S
shangliang Xu 已提交
451 452 453 454 455 456 457 458
            is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
459 460
            self._compose_callback.on_epoch_end(self.status)

S
shangliang Xu 已提交
461
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
462 463 464 465 466 467 468
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
469 470 471
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
472 473 474 475
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
476 477 478 479 480 481
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
482

K
Kaipeng Deng 已提交
483
                with paddle.no_grad():
484
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
485 486
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
487 488
            if is_snapshot and self.use_ema:
                # reset original weight
489
                self.model.set_dict(weight)
S
shangliang Xu 已提交
490
                self.status.pop('weight')
491

492 493
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
494
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
495 496 497
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
498 499
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
500
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
501 502 503
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
504
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
505 506 507 508 509 510 511 512 513
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
514 515 516 517 518
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
519 520 521 522 523 524 525 526 527
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
528
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
529 530 531
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
532
    def evaluate(self):
533 534
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
535

C
cnn 已提交
536 537 538 539 540
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
                save_txt=False):
K
Kaipeng Deng 已提交
541 542 543 544 545 546
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
547 548
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
549

K
Kaipeng Deng 已提交
550 551 552
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
553
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
554 555
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
556
        results = []
557
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
558 559 560
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
561

K
Kaipeng Deng 已提交
562
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
563 564 565 566
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
567
            for key, value in outs.items():
568 569
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
570 571 572
            results.append(outs)
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
573 574
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
575

576
        for outs in results:
K
Kaipeng Deng 已提交
577 578
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
579

K
Kaipeng Deng 已提交
580 581 582 583
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
584
                image = ImageOps.exif_transpose(image)
585
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
586

587
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
588 589 590 591
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
592 593
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
594 595 596 597
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
598
                    int(im_id), catid2name, draw_threshold)
599
                self.status['result_image'] = np.array(image.copy())
600 601
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
602 603 604 605 606
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
C
cnn 已提交
607 608
                if save_txt:
                    save_path = os.path.splitext(save_name)[0] + '.txt'
609 610 611 612 613 614 615
                    results = {}
                    results["im_id"] = im_id
                    if bbox_res:
                        results["bbox_res"] = bbox_res
                    if keypoint_res:
                        results["keypoint_res"] = keypoint_res
                    save_result(save_path, results, catid2name, draw_threshold)
K
Kaipeng Deng 已提交
616 617 618 619 620 621 622 623 624 625 626 627
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

G
Guanghua Yu 已提交
628
    def _get_infer_cfg_and_input_spec(self, save_dir, prune_input=True):
K
Kaipeng Deng 已提交
629
        image_shape = None
630 631
        im_shape = [None, 2]
        scale_factor = [None, 2]
632 633 634 635 636 637
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
638
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
639
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
640
        if image_shape is None:
G
Guanghua Yu 已提交
641
            image_shape = [None, 3, -1, -1]
642

G
Guanghua Yu 已提交
643 644
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
645 646 647
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
648

649
        if hasattr(self.model, 'deploy'):
650
            self.model.deploy = True
S
shangliang Xu 已提交
651 652 653 654 655

        for layer in self.model.sublayers():
            if hasattr(layer, 'convert_to_deploy'):
                layer.convert_to_deploy()

656 657 658 659 660 661
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
662 663 664
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
665 666 667 668 669 670
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
671

K
Kaipeng Deng 已提交
672 673 674 675 676 677 678
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
679
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
680
            "im_shape": InputSpec(
681
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
682
            "scale_factor": InputSpec(
683
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
684
        }]
G
George Ni 已提交
685 686 687 688 689
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
690 691 692 693 694 695 696 697 698 699 700 701
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
702
        # TODO: Hard code, delete it when support prune input_spec.
703
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
704 705 706 707 708
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]

G
Guanghua Yu 已提交
709 710 711 712 713 714 715 716
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
717

G
Guanghua Yu 已提交
718 719
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
720 721 722

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
723 724 725 726 727
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
728
            self.cfg.slim.save_quantized_model(
729 730
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
731 732
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
733

G
Guanghua Yu 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir, prune_input=False)

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
802 803 804
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images