conv_mkldnn_op.cc 51.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaolil1 已提交
17
#include "paddle/fluid/framework/data_layout_transform.h"
X
xiaolil1 已提交
18 19
#include <unordered_map>
#include <map>
20

21 22
#include "paddle/fluid/framework/data_layout_transform.h"

23 24 25
namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

34 35 36 37 38 39 40 41 42 43
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

61
  size_t GetDstMemorySize() const {
62 63
    return conv_pd_->dst_primitive_desc().get_size();
  }
Z
Zhang, Guoming 已提交
64 65 66 67 68
  
  mkldnn::memory::format GetDstFormat() const {
    return static_cast<mkldnn::memory::format>(
        conv_pd_->dst_primitive_desc().desc().data.format);
  }
69

70
  size_t GetDiffWeightsMemorySize() const {
71 72 73
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

74
  size_t GetDiffSourceMemorySize() const {
75 76 77
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

78 79
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
80
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
81 82 83 84 85 86 87 88
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
89
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
105
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
106 107 108 109 110 111 112 113
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
114
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
115 116 117 118 119 120
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

Z
Zhang, Guoming 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133
  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }
134

135 136 137 138 139 140
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

141 142 143 144 145 146 147
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
148
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
149
    auto src_pd = conv_pd_->src_primitive_desc();
150
    auto user_pd = user_memory_p->get_primitive_desc();
151 152 153 154 155 156
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
157
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
158 159 160 161
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
162 163 164 165
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
166 167
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
168 169
  }

170 171
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
172
      std::vector<mkldnn::primitive>& pipeline,
X
xiaolil1 已提交
173
      bool is_persistent = false,
X
xiaolil1 已提交
174 175 176
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
177 178 179
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
180 181
                               "@bias_mem_p", pipeline, is_persistent,
                               is_INT8, scale_data, mask);
182 183
  }

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

275 276
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
277 278 279 280 281 282
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
283 284 285 286 287 288 289
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
290 291 292 293
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
294 295
};

X
xiaolil1 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
  struct key_desc{
      struct Hash{
          std::size_t operator()(const key_desc &key) const{
              int input_dim = 0;
              int weights_dim = 0;
              int stride_value = 0;
              int padding_value = 0;
              int dilation_value = 0;
              for(size_t i=0; i<key.input_tz.size(); i++){
                 input_dim += key.input_tz[i];
              }
              for(size_t i=0; i<key.weights_tz.size(); i++){
                  weights_dim += key.weights_tz[i];
              }
              for(size_t i=0; i<key.strides.size(); i++){
                  stride_value += key.strides[i];
              }
              for(size_t i=0; i<key.paddings.size(); i++){
                  padding_value += key.paddings[i];
              }
              for(size_t i=0; i<key.dilations.size(); i++){
                  dilation_value += key.dilations[i];
              }
              std::hash<int> hasher;
              return hasher( (input_dim << 8) +
                       (weights_dim << 8 * 2) +
                       (stride_value << 8 * 3) +
                       (padding_value << 8) +
                       (dilation_value << 8 * 2) +
                       (key.groups << 8 * 3));
          }
      };

      std::vector<int> input_tz;
      std::vector<int> weights_tz;
      std::vector<int> strides;
      std::vector<int> paddings;
      std::vector<int> dilations;
      int groups;
      const std::string suffix;
      key_desc(std::vector<int> input_tz, std::vector<int> weights_tz, std::vector<int> strides, std::vector<int> paddings, std::vector<int> dilations,int groups,const std::string suffix): input_tz(input_tz), weights_tz(weights_tz), strides(strides), paddings(paddings), dilations(dilations), groups(groups), suffix(suffix) {}

      bool operator==(const key_desc o) const{
          for(size_t i=0; i<input_tz.size(); i++){
              if(input_tz[i] != o.input_tz[i])
                  return false;
          }

          for(size_t i=0; i<weights_tz.size(); i++){
              if(weights_tz[i] != o.weights_tz[i])
                  return false;
          }

          for(size_t i=0; i<strides.size(); i++){
              if(strides[i] != o.strides[i])
                  return false;
          }

          for(size_t i=0; i<paddings.size(); i++){
              if(paddings[i] != o.paddings[i])
                  return false;
          }

          for(size_t i=0; i<dilations.size(); i++){
              if(dilations[i] != o.dilations[i])
                  return false;
          }
          if(groups != o.groups) return false;
          if(suffix != o.suffix) return false;

          return true;
      }
      bool operator!=(const key_desc& o) const { return !(*this == o); }
  };

class handle_key{
  public:
    void SetKeyMap(std::unordered_map<key_desc, std::string, key_desc::Hash> &key_map, key_desc key_dsr, std::string key){
      auto it = key_map.find(key_dsr);
      if (it == key_map.end()) {
        key_map[key_dsr] = key;  // create new blob
      } else {
        (*it).second = key;  // set data to existing blob
      }
      return;
    }

    std::string GetKeyMap(std::unordered_map<key_desc, std::string, key_desc::Hash> &key_map, key_desc key_dsr){
      auto it = key_map.find(key_dsr);
      if (it != key_map.end()) {
        return (*it).second;
      }
      return "";
    }
};

392
template <typename T>
393
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
394 395 396 397
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
K
Krzysztof Binias 已提交
398 399
    const bool is_test = ctx.Attr<bool>("is_test");

400 401
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
402 403 404 405
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
406
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
407 408
    auto* output = ctx.Output<Tensor>("Output");

409 410 411 412
    auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
    auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
    auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
    auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;
X
xiaolil1 已提交
413 414

    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
X
xiaolil1 已提交
415
    bool is_multi_channel = (is_INT8 && scale_weights->memory_size() > 1) ? true : false;
416

417 418 419 420 421 422
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
423 424 425 426 427 428 429 430 431 432 433
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
434 435 436 437

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
438
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
439
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
Z
Zhang, Guoming 已提交
440
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
441 442
    int groups = ctx.Attr<int>("groups");

Z
Zhang, Guoming 已提交
443
    // TODO(tpatejko): add support for dilation
444 445 446 447 448
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
X
xiaolil1 已提交
449
    const float* filter_data = filter->data<float>();
450 451

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
X
xiaolil1 已提交
452
    std::vector<int> weights_tz = 
453
        paddle::framework::vectorize2int(filter->dims());
454 455 456 457 458 459 460 461 462 463 464 465 466
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
467 468
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

X
xiaolil1 已提交
469
    // Get unique name for storing MKLDNN primitives
X
xiaolil1 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
    handle_key keyhandler;
    key_desc key_dsr = {src_tz, weights_tz, strides, paddings, dilations, groups, ctx.op().Output("Output")};
    
    static std::unordered_map<key_desc, std::string, key_desc::Hash> key_map;
    static std::shared_ptr<std::unordered_map<ConvMKLDNNHandler::key_suffix_desc, std::string, ConvMKLDNNHandler::key_suffix_desc::Hash>> key_suffix_map(new std::unordered_map<ConvMKLDNNHandler::key_suffix_desc, std::string, ConvMKLDNNHandler::key_suffix_desc::Hash>({}));
    bool key_reuse = true;
    std::string none_key = "";
    if(keyhandler.GetKeyMap(key_map, key_dsr) == none_key){
        key_reuse = false;
    }
    std::string key; 
    if(!key_reuse){
        key = ConvMKLDNNHandler::GetHash(
                src_tz, weights_tz, strides, paddings, dilations, groups,
                ctx.op().Output("Output"));
        keyhandler.SetKeyMap(key_map, key_dsr, key);
    } else{
        key = keyhandler.GetKeyMap(key_map, key_dsr);
    }
X
xiaolil1 已提交
489
    const std::string key_conv_pd = key + "@conv_pd";
X
xiaolil1 已提交
490
    static std::unordered_map<std::string, std::vector<std::vector<float>>> scale_map;
491
    bool scale_reuse = true;
X
xiaolil1 已提交
492 493 494
    std::vector<float> scale_in_data;
    std::vector<float> scale_out_data;
    std::vector<float> scale_weights_data;
X
xiaolil1 已提交
495
    std::vector<float> scale_in_eltwise_data = {1.0f};
X
xiaolil1 已提交
496
    std::vector<float> output_shift_scale;
X
xiaolil1 已提交
497
    std::vector<float> sum_scale = {1.0f};
X
xiaolil1 已提交
498 499 500
    std::vector<float> scale_bias_data = {1.0f};
    std::vector<std::vector<float>> none_scale = {{0.0f}};
    std::vector<std::vector<float>> scale_datas(7,{1.0f});
501

X
xiaolil1 已提交
502 503

    if (is_INT8 && GetScaleMap(scale_map, key) == none_scale){
504
        scale_reuse = false;
X
xiaolil1 已提交
505 506
    } else{
        scale_datas = GetScaleMap(scale_map, key);
X
xiaolil1 已提交
507
    }
508
    if(is_INT8){
509
        if(!scale_reuse){
X
xiaolil1 已提交
510 511 512
            int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
            scale_in_data = {*(scale_in->data<float>())};
            scale_weights_data.resize(count);
X
xiaolil1 已提交
513
            #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
514 515 516 517
            for(int i=0; i<count; i++){
                scale_weights_data[i] =*(scale_weights->data<float>() + i);
            }
            scale_out_data = {*(scale_out->data<float>())};
518 519
            if(force_fp32_output) 
                scale_out_data[0] = 1.0;
X
xiaolil1 已提交
520
            output_shift_scale.resize(count);
X
xiaolil1 已提交
521
            #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
522 523 524 525 526 527 528 529 530 531 532 533
            for(int i=0; i<count; i++){
                if(scale_weights_data[i] == 0.0)
                    output_shift_scale[i] = scale_out_data[0];
                else 
                    output_shift_scale[i] = scale_out_data[0] / (scale_in_data[0] * scale_weights_data[i]);
            }
            if(fuse_residual_conn){
                scale_in_eltwise_data = {*(scale_in_eltwise->data<float>())};
                sum_scale[0] = scale_out_data[0] / scale_in_eltwise_data[0];
            }

            //scale reuse
X
xiaolil1 已提交
534 535 536 537 538 539
            scale_datas[0] = scale_in_data;
            scale_datas[1] = scale_in_eltwise_data;
            scale_datas[2] = scale_weights_data;
            scale_datas[4] = scale_out_data;
            scale_datas[5] = output_shift_scale;
            scale_datas[6] = sum_scale;
X
xiaolil1 已提交
540
        } else{
X
xiaolil1 已提交
541 542 543
            scale_in_data = scale_datas[0];
            scale_out_data = scale_datas[3];
            scale_weights_data = scale_datas[2];
X
xiaolil1 已提交
544
            if(fuse_residual_conn){
X
xiaolil1 已提交
545
                scale_in_eltwise_data = scale_datas[1];
X
xiaolil1 已提交
546
            }
X
xiaolil1 已提交
547 548
            output_shift_scale = scale_datas[5];
            sum_scale = scale_datas[6]; 
X
xiaolil1 已提交
549
        }
X
xiaolil1 已提交
550

551 552
    }

553 554
    std::shared_ptr<mkldnn::memory::desc> user_src_md;
    std::shared_ptr<mkldnn::memory::desc> user_weights_md;
X
xiaolil1 已提交
555
    std::vector<primitive> pipeline;
556 557 558 559 560
        user_src_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                {src_tz}, paddle::framework::ToMKLDNNDataType(input->type()), input->format())));
        user_weights_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                {weights_tz}, platform::MKLDNNGetDataType<float>(),
                (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw)));
561
        
562 563 564 565
    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
566
    std::string data_format = ctx.Attr<std::string>("data_format");
X
xiaolil1 已提交
567
    auto chosen_memory_format = 
568
        platform::data_format_to_memory_format(data_format);
569

X
xiaolil1 已提交
570 571
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    auto bias_tz = paddle::framework::vectorize2int(bias->dims());
572 573 574 575 576

    std::shared_ptr<mkldnn::memory::desc> src_md;
    std::shared_ptr<mkldnn::memory::desc> weights_md;
    std::shared_ptr<mkldnn::memory::desc> dst_md;

X
xiaolil1 已提交
577
    if(is_INT8){
578 579 580
            src_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                src_tz, memory::data_type::u8, chosen_memory_format)));
            weights_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
581
                weights_tz, memory::data_type::s8, chosen_memory_format)));
582 583 584 585 586 587 588
            auto dst_dt = fuse_relu? paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char))) : paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char)));
            if(fuse_residual_conn){
                auto residual = ctx.Input<Tensor>("ResidualData");
                auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
                if(dst_dt != residual_dt)
                    dst_dt = residual_dt;
            }
589
            if(force_fp32_output)
H
Haihao Shen 已提交
590
                dst_dt = paddle::framework::ToMKLDNNDataType(std::type_index(typeid(float)));
591
            dst_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format)));
592

X
xiaolil1 已提交
593 594
        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
595
            std::shared_ptr<mkldnn::memory::desc> bias_md;
X
xiaolil1 已提交
596 597
            bias_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                bias_tz, memory::data_type::s32, memory::format::x)));
598 599
             
            conv_pd = ConvFwdPrimitiveDesc(*src_md, *weights_md, *bias_md, *dst_md,
X
xiaolil1 已提交
600
                                           strides, paddings, mkldnn_engine,
X
xiaolil1 已提交
601
                                           fuse_relu, fuse_residual_conn,
X
xiaolil1 已提交
602
                                           output_shift_scale, sum_scale[0], is_test);
X
xiaolil1 已提交
603
        } else {
X
xiaolil1 已提交
604
            conv_pd =
605
                ConvFwdPrimitiveDesc(*src_md, *weights_md, *dst_md, strides, paddings,
X
xiaolil1 已提交
606
                                     mkldnn_engine, fuse_relu, fuse_residual_conn,
X
xiaolil1 已提交
607
                                     output_shift_scale, sum_scale[0], is_test);
X
xiaolil1 已提交
608 609
        }
    } else{
X
xiaolil1 已提交
610 611 612 613 614 615
        src_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
            src_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format)));
        weights_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
            weights_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format)));
        dst_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
            dst_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format)));
X
xiaolil1 已提交
616
        if (bias) {
617 618 619 620 621 622
            std::shared_ptr<mkldnn::memory::desc> bias_md;
                bias_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                    bias_tz, platform::MKLDNNGetDataType<float>(), memory::format::x)));
            conv_pd = ConvFwdPrimitiveDesc(*src_md, *weights_md, *bias_md, *dst_md,
                                           strides, paddings, mkldnn_engine,
                                           fuse_relu, fuse_residual_conn, is_test);
X
xiaolil1 已提交
623
        } else {
624 625
            conv_pd =
                ConvFwdPrimitiveDesc(*src_md, *weights_md, *dst_md, strides, paddings,
X
xiaolil1 已提交
626
                                         mkldnn_engine, fuse_relu, fuse_residual_conn, is_test);
X
xiaolil1 已提交
627
        }
628
    }
629 630
    // Save conv_pd/src_memory/weights_memory for backward pass
    dev_ctx.SetBlob(key_conv_pd, conv_pd);
631

632
    ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
X
xiaolil1 已提交
633
    handler.key_suffix_map_ = key_suffix_map;
634

635
    auto user_src_memory_p =
636
        handler.AcquireSrcMemory(*user_src_md, to_void_cast<T>(input_data));
637
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
638
        *user_weights_md, to_void_cast<float>(filter_data));
Z
Zhang, Guoming 已提交
639

640 641
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
642
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
Z
Zhang, Guoming 已提交
643
        
X
xiaolil1 已提交
644
    std::shared_ptr<mkldnn::memory> weights_memory_p;
X
xiaolil1 已提交
645
    if(is_INT8){
646
        int mask_reorder = is_multi_channel? ((g!= 1) ? (1<<1)+(1<<0) : 1<<0) : 0;
X
xiaolil1 已提交
647
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
X
xiaolil1 已提交
648
            user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);
X
xiaolil1 已提交
649 650 651 652 653 654
    } else{
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
            user_weights_memory_p, pipeline, is_test);
    }

    std::shared_ptr<mkldnn::memory> dst_memory_p;
655
    bool need_s8_to_u8 = false;
656 657 658 659 660 661 662
    if(fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
              "Output and elementwise parameter need to have the "
              "same dimension sizes");
        auto residual_dt = paddle::framework::ToMKLDNNDataType(residual_param->type());
        if(residual_param->format() != handler.GetDstFormat()) {
663
            std::shared_ptr<mkldnn::memory::desc> user_residual_md;
X
xiaolil1 已提交
664 665 666 667 668 669
            auto residual_data_tz =
                paddle::framework::vectorize2int(residual_param->dims());
            auto residual_data_type =
                paddle::framework::ToMKLDNNDataType(residual_param->type());
            user_residual_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                residual_data_tz, residual_data_type, residual_param->format())));
670
            if(is_INT8){
671 672 673 674
                PADDLE_ENFORCE(
                      force_fp32_output == false,
                      "Conv and sum does not support force_fp32_output");

675
                if(residual_dt == mkldnn::memory::data_type::u8){
676 677 678 679 680 681 682 683 684 685
                    auto residual_param_data = residual_param->data<uint8_t>();
                    auto user_residual_memory_p = handler.AcquireResidualDataMemory(
                        *user_residual_md, to_void_cast<uint8_t>(residual_param_data));
                    PADDLE_ENFORCE(
                          residual_param_data != nullptr,
                          "Provide data if you want MKLDNN conv+elementwise_add fusion");
                        uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
                        dst_memory_p =
                            handler.AcquireDstMemoryFromResidualDataMemory(
                                user_residual_memory_p, to_void_cast<uint8_t>(output_data), pipeline);
686
                } else{
687 688 689 690 691 692 693 694 695 696
                    auto residual_param_data = residual_param->data<int8_t>();
                    auto user_residual_memory_p = handler.AcquireResidualDataMemory(
                        *user_residual_md, to_void_cast<int8_t>(residual_param_data));
                    PADDLE_ENFORCE(
                          residual_param_data != nullptr,
                          "Provide data if you want MKLDNN conv+elementwise_add fusion");
                        int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
                        dst_memory_p =
                            handler.AcquireDstMemoryFromResidualDataMemory(
                                user_residual_memory_p, to_void_cast<int8_t>(output_data), pipeline);
697 698 699 700 701 702
                    if(fuse_relu)
                      need_s8_to_u8 = true;
                }
            } else{
                auto residual_param_data = residual_param->data<T>();
                auto user_residual_memory_p = handler.AcquireResidualDataMemory(
703
                    *user_residual_md, to_void_cast<T>(residual_param_data));
704 705 706 707 708 709 710 711
                PADDLE_ENFORCE(
                      residual_param_data != nullptr,
                      "Provide data if you want MKLDNN conv+elementwise_add fusion");
                 auto output_data =
                     output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
                 dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
                      user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
            }
X
xiaolil1 已提交
712
        } else {
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
             output->ShareDataWith(*residual_param);
             if(is_INT8){
                 if(residual_dt == mkldnn::memory::data_type::u8){
                     uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
                     dst_memory_p =
                         handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
                 } else{
                     int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
                     dst_memory_p =
                         handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
                     if(fuse_relu)
                       need_s8_to_u8 = true;
                 }
             } else{
                  auto output_data = output->mutable_data<T>(ctx.GetPlace());
                  dst_memory_p =
                      handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));               
             }
        }
    } else {
733
        if(is_INT8 && !force_fp32_output){
X
xiaolil1 已提交
734 735 736 737 738 739 740 741 742
          if(fuse_relu){
              uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
          } else{
              int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
          }
743 744 745 746 747
        } else{
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
X
xiaolil1 已提交
748
        }
X
xiaolil1 已提交
749
    }
750 751

    // create convolution op primitive
752 753
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    if (bias) {
X
xiaolil1 已提交
754
      const float* bias_data = bias->data<float>();
755
      std::shared_ptr<mkldnn::memory::desc> user_bias_md;
X
xiaolil1 已提交
756 757
      user_bias_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
          {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x)));
758
      auto user_bias_memory_p =
759
          handler.AcquireBiasMemory(*user_bias_md, to_void_cast<float>(bias_data));
X
xiaolil1 已提交
760
      std::shared_ptr<mkldnn::memory>  bias_memory_p;
X
xiaolil1 已提交
761
      if(is_INT8){
762
          int mask_reorder = is_multi_channel? 1<<0 : 1;
763
          if(!scale_reuse){
X
xiaolil1 已提交
764 765
              int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
              scale_bias_data.resize(count);
X
xiaolil1 已提交
766
              #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
767
              for(int i=0; i<count; i++){
768 769 770 771
                  if (scale_weights_data[i] == 0.0)
                      scale_bias_data[i] = 1.0;
                  else
                      scale_bias_data[i] = scale_in_data[0] * scale_weights_data[i];
X
xiaolil1 已提交
772
              }
X
xiaolil1 已提交
773
              scale_datas[3] = scale_bias_data;
X
xiaolil1 已提交
774
          } else{
X
xiaolil1 已提交
775
              scale_bias_data = scale_datas[3];
X
xiaolil1 已提交
776
          }
X
xiaolil1 已提交
777
          bias_memory_p =
X
xiaolil1 已提交
778
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test, is_INT8, scale_bias_data, mask_reorder);
X
xiaolil1 已提交
779 780 781 782
      } else{
          bias_memory_p =
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      } 
783 784 785 786 787 788
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
789

X
xiaolil1 已提交
790
    SetScaleMap(scale_map, key, scale_datas);
X
xiaolil1 已提交
791

792
    // push primitive to stream and wait until it's executed
793
    pipeline.push_back(*conv_p);
794 795
    stream(stream::kind::eager).submit(pipeline).wait();

H
Haihao Shen 已提交
796
    if(need_s8_to_u8 && !force_fp32_output){
797 798 799
        output->mutable_data<uint8_t>(ctx.GetPlace());
    }

800
    output->set_layout(DataLayout::kMKLDNN);
801
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
802
  }
803

804
 private:
X
xiaolil1 已提交
805

X
xiaolil1 已提交
806 807
    void SetScaleMap(std::unordered_map<std::string, std::vector<std::vector<float>>> &scale_map,
                       const std::string& name, std::vector<std::vector<float>> scale_datas) const {
X
xiaolil1 已提交
808 809
      auto it = scale_map.find(name);
      if (it == scale_map.end()) {
X
xiaolil1 已提交
810
        scale_map[name] = scale_datas;  // create new blob
X
xiaolil1 已提交
811
      } else {
X
xiaolil1 已提交
812
        (*it).second = scale_datas;  // set data to existing blob
X
xiaolil1 已提交
813 814 815 816
      }
      return;
    }

X
xiaolil1 已提交
817
    std::vector<std::vector<float>> GetScaleMap(std::unordered_map<std::string, std::vector<std::vector<float>>> scale_map,
X
xiaolil1 已提交
818 819 820 821 822
         const std::string& name) const {
      auto it = scale_map.find(name);
      if (it != scale_map.end()) {
        return (*it).second;
      }
X
xiaolil1 已提交
823
      return {{0.0f}};
824 825
    }

Z
Zhang, Guoming 已提交
826
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
X
xiaolil1 已提交
827
                          const std::vector<float> output_shift_scale, float sum_scale) const {
828 829
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
830
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
831 832 833 834
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
835
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
836
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
837
      if (fuse_residual_conn) {
838 839 840 841 842
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
843
        constexpr float placeholder = 1.0f; //beta
844 845 846 847 848
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
849
    }
850

X
xiaolil1 已提交
851
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
852 853 854 855

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
856
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
857 858
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
859
      conv_attr.set_output_scales(0, {1.0f});
X
xiaolil1 已提交
860
      if (fuse_residual_conn) {
861 862 863 864 865 866 867 868 869 870 871 872 873
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
874
    }
M
Michal Gallus 已提交
875

Z
Zhang, Guoming 已提交
876
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
877 878 879 880
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
881
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
882
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
883 884 885
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
886 887
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

888
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
889
          propagation, mkldnn::convolution_direct, src, weights,
890 891 892 893
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
894
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
895 896 897 898 899 900

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
901
    }
M
Michal Gallus 已提交
902

903
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
904 905 906 907
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
X
xiaolil1 已提交
908
                         const bool fuse_residual_conn, bool is_test) const{
909 910
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
X
xiaolil1 已提交
911 912 913
 
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;
 
914
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
915
          propagation, mkldnn::convolution_direct, src, weights,
916 917 918
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
919
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
920 921 922 923 924 925 926
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
927 928

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
929 930 931 932 933
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
934
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
935
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
936 937 938
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
939 940
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

941
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
942
          propagation, mkldnn::convolution_direct, src, weights,
943 944 945 946
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
947
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
948 949 950 951 952 953 954 955 956 957 958 959 960 961

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
X
xiaolil1 已提交
962
                         const bool fuse_residual_conn, bool is_test) const{
963 964 965
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
966 967
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

968
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
969
          propagation, mkldnn::convolution_direct, src, weights,
970 971 972
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
973
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
974 975 976 977 978 979 980 981

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

982 983 984
};

template <typename T>
985
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
986 987 988 989 990
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

991 992
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
993 994 995 996 997 998 999 1000 1001 1002
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

1016 1017 1018 1019
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
1020 1021
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

1034
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
1035
    // as well as attributes of primitive to be created
1036 1037 1038 1039 1040 1041
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
1042
    std::vector<primitive> pipeline;
1043

1044 1045 1046 1047 1048 1049 1050
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
1051 1052 1053 1054 1055

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
1056 1057 1058 1059
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

1060
    auto src_md = platform::MKLDNNMemDesc(
1061
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1062
    auto diff_src_md = platform::MKLDNNMemDesc(
1063
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1064
    auto weights_md = platform::MKLDNNMemDesc(
1065
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1066
    auto diff_weights_md = platform::MKLDNNMemDesc(
1067
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1068
    auto diff_dst_md = platform::MKLDNNMemDesc(
1069
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1070

1071
    // Retrieve conv_pd from device context
1072 1073 1074
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
1075 1076 1077
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
1104 1105
    // create backward conv primitive for weights
    if (filter_grad) {
1106 1107
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1108

1109 1110 1111 1112
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1113
      const size_t size = handler.GetDiffWeightsMemorySize();
1114 1115
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);

1116 1117 1118 1119 1120 1121 1122 1123 1124
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
1125 1126

      filter_grad->set_layout(DataLayout::kMKLDNN);
1127
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
1128 1129 1130
    }

    if (input_grad) {
1131 1132 1133 1134 1135 1136 1137
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1138
      const size_t size = handler.GetDiffSourceMemorySize();
1139 1140
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);

1141 1142 1143 1144 1145 1146 1147
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
1148 1149

      input_grad->set_layout(DataLayout::kMKLDNN);
1150
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1151
    }
1152
    stream(stream::kind::eager).submit(pipeline).wait();
1153 1154 1155 1156 1157 1158 1159 1160 1161
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
1162 1163
                   ops::ConvMKLDNNOpKernel<float>,
                   ops::ConvMKLDNNOpKernel<uint8_t>);
1164 1165

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
1166
                   ops::ConvMKLDNNGradOpKernel<float>);