conv_mkldnn_op.cc 42.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaolil1 已提交
17
#include "paddle/fluid/framework/data_layout_transform.h"
X
xiaolil1 已提交
18 19
#include <unordered_map>
#include <map>
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

32 33 34 35 36 37 38 39 40 41
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

59
  size_t GetDstMemorySize() const {
60 61 62
    return conv_pd_->dst_primitive_desc().get_size();
  }

63
  size_t GetDiffWeightsMemorySize() const {
64 65 66
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

67
  size_t GetDiffSourceMemorySize() const {
68 69 70
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

71 72
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
73
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
74 75 76 77 78 79 80 81
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
82
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
98
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
99 100 101 102 103 104 105 106
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
107
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
108 109 110 111 112 113 114 115 116 117 118 119
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

120 121 122 123 124 125 126
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
127
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
128
    auto src_pd = conv_pd_->src_primitive_desc();
129
    auto user_pd = user_memory_p->get_primitive_desc();
130 131 132 133 134 135
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
136
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
137 138 139 140
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
141 142 143 144
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
145 146
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
147 148
  }

149 150
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
151
      std::vector<mkldnn::primitive>& pipeline,
X
xiaolil1 已提交
152
      bool is_persistent = false,
X
xiaolil1 已提交
153 154 155
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
156 157 158
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
159 160
                               "@bias_mem_p", pipeline, is_persistent,
                               is_INT8, scale_data, mask);
161 162
  }

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

254 255
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
256 257 258 259 260 261
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
262 263 264 265 266 267 268
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
269 270 271 272
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
273 274
};

275
template <typename T>
276
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
277 278 279 280
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
K
Krzysztof Binias 已提交
281 282
    const bool is_test = ctx.Attr<bool>("is_test");

283 284
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
285 286 287 288
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
289
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
290 291
    auto* output = ctx.Output<Tensor>("Output");

292 293 294 295
    auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
    auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
    auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
    auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;
X
xiaolil1 已提交
296 297

    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
X
xiaolil1 已提交
298
    bool is_multi_channel = (is_INT8 && scale_weights->memory_size() > 1) ? true : false;
299

300 301 302 303 304 305
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
306 307 308 309 310 311 312 313 314 315 316
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
317 318 319 320

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
321
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
Z
Zhang, Guoming 已提交
322
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
323 324
    int groups = ctx.Attr<int>("groups");

Z
Zhang, Guoming 已提交
325
    // TODO(tpatejko): add support for dilation
326 327 328 329 330
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
X
xiaolil1 已提交
331
    const float* filter_data = filter->data<float>();
332 333 334 335

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
336 337 338 339 340 341 342 343 344 345 346 347 348
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
349 350
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

X
xiaolil1 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    // Get unique name for storing MKLDNN primitives
    const std::string key = ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";
    static std::unordered_map<std::string, std::vector<float>> scale_map;
    //scale_map.insert({key_conv_pd,{1.0f}});
    //scale_map[key_conv_pd]={0.1f};
    bool scale_reuse = false;
    auto scale_in_key = key + "@scale_in";
    auto scale_weights_key = key + "@scale_weights";
    auto scale_out_key = key + "@scale_out";
    auto output_shift_scale_key = key + "@output_shift_scale";
    auto sum_scale_key = key + "@sum_scale";
    auto scale_in_eltwise_key = key + "@scale_in_eltwise";
    std::vector<float> scale_in_data;
    std::vector<float> scale_out_data;
    std::vector<float> scale_weights_data;
    std::vector<float> scale_in_eltwise_data;
X
xiaolil1 已提交
370
    std::vector<float> output_shift_scale;
X
xiaolil1 已提交
371 372
    std::vector<float> sum_scale = {1.0f};
    std::vector<float> none_scale = {0};
373

X
xiaolil1 已提交
374 375 376 377
    if (is_INT8 && GetScaleMap(scale_map, scale_in_key) == none_scale){
        scale_reuse = true;
    }
//std::cout<<"scale_reuse = "<<scale_reuse<<std::endl;
378
    if(is_INT8){
X
xiaolil1 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
        if(scale_reuse){
//std::cout<<"load scale!!!!!!!!"<<std::endl;
            int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
            scale_in_data = {*(scale_in->data<float>())};
            scale_weights_data.resize(count);
            for(int i=0; i<count; i++){
                scale_weights_data[i] =*(scale_weights->data<float>() + i);
            }
            scale_out_data = {*(scale_out->data<float>())};
            output_shift_scale.resize(count);
            for(int i=0; i<count; i++){
                if(scale_weights_data[i] == 0.0)
                    output_shift_scale[i] = scale_out_data[0];
                else 
                    output_shift_scale[i] = scale_out_data[0] / (scale_in_data[0] * scale_weights_data[i]);
            }
            if(fuse_residual_conn){
                scale_in_eltwise_data = {*(scale_in_eltwise->data<float>())};
                sum_scale[0] = scale_out_data[0] / scale_in_eltwise_data[0];
                SetScaleMap(scale_map, scale_in_eltwise_key, scale_in_eltwise_data);
            }

            //scale reuse
            SetScaleMap(scale_map, scale_in_key, scale_in_data);
            SetScaleMap(scale_map, scale_weights_key, scale_weights_data);
            SetScaleMap(scale_map, scale_out_key, scale_out_data);
            SetScaleMap(scale_map, output_shift_scale_key, output_shift_scale);
            SetScaleMap(scale_map, sum_scale_key, sum_scale);
        } else{
            scale_in_data = GetScaleMap(scale_map, scale_in_key);
            scale_out_data = GetScaleMap(scale_map, scale_out_key);
            scale_weights_data = GetScaleMap(scale_map, scale_weights_key);
            if(fuse_residual_conn){
                scale_in_eltwise_data = GetScaleMap(scale_map, scale_in_eltwise_key);
            }
            output_shift_scale = GetScaleMap(scale_map, output_shift_scale_key);
            sum_scale = GetScaleMap(scale_map, sum_scale_key); 
            //printf("pause!!!");
X
xiaolil1 已提交
417
        }
X
xiaolil1 已提交
418

419 420
    }

421

X
xiaolil1 已提交
422
    std::vector<primitive> pipeline;
423
    auto user_src_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
424
            {src_tz}, paddle::framework::ToMKLDNNDataType(input->type()), input->format());
425
    auto user_weights_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
426 427
            {weights_tz}, platform::MKLDNNGetDataType<float>(),
            (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw);
428 429 430 431 432

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
433
    std::string data_format = ctx.Attr<std::string>("data_format");
X
xiaolil1 已提交
434
    auto chosen_memory_format = 
435
        platform::data_format_to_memory_format(data_format);
436

437
    auto src_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
438
        src_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format);
439
    auto weights_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
440
        weights_tz, platform::MKLDNNGetDataType<float>(),
441
        (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw);
442
    auto dst_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
443 444 445 446 447 448 449 450 451
        dst_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format);
    std::vector<int> bias_tz;

    if(is_INT8){
        src_md = platform::MKLDNNMemDesc(
            src_tz, memory::data_type::u8, chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
            weights_tz, memory::data_type::s8,
            (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw);
452 453 454 455 456 457 458
        auto dst_dt = fuse_relu? paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char))) : paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char)));
        if(fuse_residual_conn){
            auto residual = ctx.Input<Tensor>("ResidualData");
            auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
            if(dst_dt != residual_dt) 
                dst_dt = residual_dt;
        }
X
xiaolil1 已提交
459
        dst_md = platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format);
X
xiaolil1 已提交
460
    }
461

462
    // create a conv primitive descriptor and save it for usage in backward
463 464
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    if (bias) {
X
xiaolil1 已提交
465 466 467 468 469 470 471 472 473 474 475
        bias_tz = paddle::framework::vectorize2int(bias->dims());
        auto bias_md = platform::MKLDNNMemDesc(
            bias_tz, platform::MKLDNNGetDataType<float>(), memory::format::x);
        if(is_INT8){
            bias_md = platform::MKLDNNMemDesc(
                bias_tz, memory::data_type::s32, memory::format::x);
        }
        if(is_INT8){
            conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                           strides, paddings, mkldnn_engine,
                                           fuse_relu, fuse_residual_conn, 
X
xiaolil1 已提交
476
                                           output_shift_scale, sum_scale[0]);
X
xiaolil1 已提交
477 478 479 480 481
        } else{
            conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                           strides, paddings, mkldnn_engine,
                                           fuse_relu, fuse_residual_conn);
        }
482
    } else {
X
xiaolil1 已提交
483 484 485 486
        if(is_INT8){
            conv_pd =
                ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                     mkldnn_engine, fuse_relu, fuse_residual_conn,
X
xiaolil1 已提交
487
                                     output_shift_scale, sum_scale[0]);
X
xiaolil1 已提交
488 489 490 491 492
        } else{
            conv_pd =
                ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                     mkldnn_engine, fuse_relu, fuse_residual_conn);
        }
493
    }
494 495
    // Save conv_pd/src_memory/weights_memory for backward pass
    dev_ctx.SetBlob(key_conv_pd, conv_pd);
496

497
    ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
498

499 500 501 502
    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
X
xiaolil1 已提交
503
        user_weights_md, to_void_cast<float>(filter_data));
Z
Zhang, Guoming 已提交
504

505 506
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
507
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
X
xiaolil1 已提交
508
    std::shared_ptr<mkldnn::memory> weights_memory_p;
X
xiaolil1 已提交
509
    if(is_INT8){
510
        int mask_reorder = is_multi_channel? ((g!= 1) ? (1<<1)+(1<<0) : 1<<0) : 0;
X
xiaolil1 已提交
511
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
X
xiaolil1 已提交
512
            user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);
X
xiaolil1 已提交
513 514 515 516 517 518
    } else{
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
            user_weights_memory_p, pipeline, is_test);
    }

    std::shared_ptr<mkldnn::memory> dst_memory_p;
519
    bool need_s8_to_u8 = false;
X
xiaolil1 已提交
520 521 522 523 524 525 526
    if(is_INT8){
        if (fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                            "Output and elementwise parameter need to have the "
                            "same dimension sizes");
          output->ShareDataWith(*residual_param);
527 528 529
          auto residual_dt = paddle::framework::ToMKLDNNDataType(residual_param->type());
          if(residual_dt == mkldnn::memory::data_type::u8){

X
xiaolil1 已提交
530 531 532 533 534 535 536
              uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
          } else{
              int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
537 538
              if(fuse_relu)
                need_s8_to_u8 = true;
X
xiaolil1 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
          }
        } else {
          if(fuse_relu){
              uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
          } else{
              int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
          }
        }
    } else{
        T* output_data = nullptr;
        if (fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
          auto residual_param_data = residual_param->data<T>();

          PADDLE_ENFORCE(
              residual_param_data != nullptr,
              "Provide data if you want MKLDNN conv+elementwise_add fusion");
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                            "Output and elementwise parameter need to have the "
                            "same dimension sizes");

          output->ShareDataWith(*residual_param);
          output_data = output->mutable_data<T>(ctx.GetPlace());
        } else {
          output_data =
              output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
        }
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
X
xiaolil1 已提交
572
    }
573 574

    // create convolution op primitive
575
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
X
xiaolil1 已提交
576 577
    std::vector<float> scale_bias_data;
    auto scale_bias_key = key + "@scale_bias";
578
    if (bias) {
X
xiaolil1 已提交
579
      const float* bias_data = bias->data<float>();
580
      auto user_bias_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
581
          {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x);
582
      auto user_bias_memory_p =
X
xiaolil1 已提交
583
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<float>(bias_data));
X
xiaolil1 已提交
584
      std::shared_ptr<mkldnn::memory>  bias_memory_p;
X
xiaolil1 已提交
585
      if(is_INT8){
586
          int mask_reorder = is_multi_channel? 1<<0 : 1;
X
xiaolil1 已提交
587 588 589 590 591 592 593 594 595
          if(scale_reuse){
              int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
              scale_bias_data.resize(count);
              for(int i=0; i<count; i++){
                  scale_bias_data[i] = scale_in_data[0] * scale_weights_data[i];
              }
              SetScaleMap(scale_map, scale_bias_key, scale_bias_data);
          } else{
              scale_bias_data = GetScaleMap(scale_map, scale_bias_key);
X
xiaolil1 已提交
596
          }
X
xiaolil1 已提交
597
          bias_memory_p =
X
xiaolil1 已提交
598
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test, is_INT8, scale_bias_data, mask_reorder);
X
xiaolil1 已提交
599 600 601 602
      } else{
          bias_memory_p =
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      } 
603 604 605 606 607 608
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
609

X
xiaolil1 已提交
610

611
    // push primitive to stream and wait until it's executed
612
    pipeline.push_back(*conv_p);
613 614
    stream(stream::kind::eager).submit(pipeline).wait();

615
    if(need_s8_to_u8){
616 617 618
        output->mutable_data<uint8_t>(ctx.GetPlace());
    }

619
    output->set_layout(DataLayout::kMKLDNN);
620
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
621
  }
622

623
 private:
X
xiaolil1 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644

    void SetScaleMap(std::unordered_map<std::string, std::vector<float>> &scale_map,
                       const std::string& name, std::vector<float> scale_data) const {
      auto it = scale_map.find(name);
      if (it == scale_map.end()) {
        scale_map[name] = scale_data;  // create new blob
      } else {
        (*it).second = scale_data;  // set data to existing blob
      }
      return;
    }

    std::vector<float> GetScaleMap(std::unordered_map<std::string, std::vector<float>> &scale_map,
         const std::string& name) const {
      auto it = scale_map.find(name);
      if (it != scale_map.end()) {
        return (*it).second;
      }
      return {0};
    }

Z
Zhang, Guoming 已提交
645
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
X
xiaolil1 已提交
646
                          const std::vector<float> output_shift_scale, float sum_scale) const {
647 648
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
649
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
650 651 652 653
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
654
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
655
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
656
      if (fuse_residual_conn) {
657 658 659 660 661
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
662
        constexpr float placeholder = 1.0f; //beta
663 664 665 666 667
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
668
    }
669

X
xiaolil1 已提交
670
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
671 672 673 674

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
675
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
676 677 678
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.

X
xiaolil1 已提交
679
      if (fuse_residual_conn) {
680 681 682 683 684 685 686 687 688 689 690 691 692
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
693
    }
M
Michal Gallus 已提交
694

Z
Zhang, Guoming 已提交
695
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
696 697 698 699
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
700
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
701
                         const std::vector<float> output_shift_scale, const float sum_scale) const {
702 703 704 705
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
706
          mkldnn::prop_kind::forward_scoring, mkldnn::convolution_direct, src, weights,
707 708 709 710
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
711
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
712 713 714 715 716 717

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
718
    }
M
Michal Gallus 已提交
719

720
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
721 722 723 724
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
725
                         const bool fuse_residual_conn) const{
726 727 728 729 730 731 732 733
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
  
      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
734
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
735 736 737 738 739 740 741
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
742 743

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
744 745 746 747 748
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
749
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
750
                         const std::vector<float> output_shift_scale, const float sum_scale) const {
751 752 753 754
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
755
          mkldnn::prop_kind::forward_scoring, mkldnn::convolution_direct, src, weights,
756 757 758 759
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
760
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
761 762 763 764 765 766 767 768 769 770 771 772 773 774

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
775
                         const bool fuse_residual_conn) const{
776 777 778 779 780 781 782 783
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
784
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
785 786 787 788 789 790 791 792

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

793 794 795
};

template <typename T>
796
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
797 798 799 800 801
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

802 803
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
804 805 806 807 808 809 810 811 812 813
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

814 815 816 817 818 819 820 821 822 823 824 825 826
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

827 828 829 830
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
831 832
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
833 834 835 836 837 838 839 840 841 842 843 844

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

845
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
846
    // as well as attributes of primitive to be created
847 848 849 850 851 852
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
853
    std::vector<primitive> pipeline;
854

855 856 857 858 859 860 861
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
862 863 864 865 866

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
867 868 869 870
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

871
    auto src_md = platform::MKLDNNMemDesc(
872
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
873
    auto diff_src_md = platform::MKLDNNMemDesc(
874
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
875
    auto weights_md = platform::MKLDNNMemDesc(
876
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
877
    auto diff_weights_md = platform::MKLDNNMemDesc(
878
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
879
    auto diff_dst_md = platform::MKLDNNMemDesc(
880
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
881

882
    // Retrieve conv_pd from device context
883 884 885
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
886 887 888
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

916 917
    // create backward conv primitive for weights
    if (filter_grad) {
918 919
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
920

921 922 923 924
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

925
      const size_t size = handler.GetDiffWeightsMemorySize();
926 927
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);

928 929 930 931 932 933 934 935 936
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
937 938

      filter_grad->set_layout(DataLayout::kMKLDNN);
939
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
940 941 942
    }

    if (input_grad) {
943 944 945 946 947 948 949
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

950
      const size_t size = handler.GetDiffSourceMemorySize();
951 952
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);

953 954 955 956 957 958 959
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
960 961

      input_grad->set_layout(DataLayout::kMKLDNN);
962
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
963
    }
964
    stream(stream::kind::eager).submit(pipeline).wait();
965 966 967 968 969 970 971 972 973
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
974 975
                   ops::ConvMKLDNNOpKernel<float>,
                   ops::ConvMKLDNNOpKernel<uint8_t>);
976 977

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
978
                   ops::ConvMKLDNNGradOpKernel<float>);