conv_mkldnn_op.cc 56.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaolil1 已提交
17
#include "paddle/fluid/framework/data_layout_transform.h"
X
xiaolil1 已提交
18 19
#include <unordered_map>
#include <map>
20

21 22
#include "paddle/fluid/framework/data_layout_transform.h"

23 24 25
namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

34 35 36 37 38 39 40 41 42 43
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

61
  size_t GetDstMemorySize() const {
62 63
    return conv_pd_->dst_primitive_desc().get_size();
  }
Z
Zhang, Guoming 已提交
64 65 66 67 68
  
  mkldnn::memory::format GetDstFormat() const {
    return static_cast<mkldnn::memory::format>(
        conv_pd_->dst_primitive_desc().desc().data.format);
  }
69

70
  size_t GetDiffWeightsMemorySize() const {
71 72 73
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

74
  size_t GetDiffSourceMemorySize() const {
75 76 77
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

78 79
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
80
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
81 82 83 84 85 86 87 88
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
89
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
105
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
106 107 108 109 110 111 112 113
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
114
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
115 116 117 118 119 120
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

Z
Zhang, Guoming 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133
  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }
134

135 136 137 138 139 140
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

141 142 143 144 145 146 147
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
148
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
149
    auto src_pd = conv_pd_->src_primitive_desc();
150
    auto user_pd = user_memory_p->get_primitive_desc();
151 152 153 154 155 156
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
157
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
158 159 160 161
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
162 163 164 165
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
166 167
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
168 169
  }

170 171
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
172
      std::vector<mkldnn::primitive>& pipeline,
X
xiaolil1 已提交
173
      bool is_persistent = false,
X
xiaolil1 已提交
174 175 176
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
177 178 179
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
180 181
                               "@bias_mem_p", pipeline, is_persistent,
                               is_INT8, scale_data, mask);
182 183
  }

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

275 276
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
277 278 279 280 281 282
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
283 284 285 286 287 288 289
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
290 291 292 293
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
294 295
};

X
xiaolil1 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
  struct key_desc{
      struct Hash{
          std::size_t operator()(const key_desc &key) const{
              int input_dim = 0;
              int weights_dim = 0;
              int stride_value = 0;
              int padding_value = 0;
              int dilation_value = 0;
              for(size_t i=0; i<key.input_tz.size(); i++){
                 input_dim += key.input_tz[i];
              }
              for(size_t i=0; i<key.weights_tz.size(); i++){
                  weights_dim += key.weights_tz[i];
              }
              for(size_t i=0; i<key.strides.size(); i++){
                  stride_value += key.strides[i];
              }
              for(size_t i=0; i<key.paddings.size(); i++){
                  padding_value += key.paddings[i];
              }
              for(size_t i=0; i<key.dilations.size(); i++){
                  dilation_value += key.dilations[i];
              }
              std::hash<int> hasher;
              return hasher( (input_dim << 8) +
                       (weights_dim << 8 * 2) +
                       (stride_value << 8 * 3) +
                       (padding_value << 8) +
                       (dilation_value << 8 * 2) +
                       (key.groups << 8 * 3));
          }
      };

      std::vector<int> input_tz;
      std::vector<int> weights_tz;
      std::vector<int> strides;
      std::vector<int> paddings;
      std::vector<int> dilations;
      int groups;
      const std::string suffix;
      key_desc(std::vector<int> input_tz, std::vector<int> weights_tz, std::vector<int> strides, std::vector<int> paddings, std::vector<int> dilations,int groups,const std::string suffix): input_tz(input_tz), weights_tz(weights_tz), strides(strides), paddings(paddings), dilations(dilations), groups(groups), suffix(suffix) {}

      bool operator==(const key_desc o) const{
          for(size_t i=0; i<input_tz.size(); i++){
              if(input_tz[i] != o.input_tz[i])
                  return false;
          }

          for(size_t i=0; i<weights_tz.size(); i++){
              if(weights_tz[i] != o.weights_tz[i])
                  return false;
          }

          for(size_t i=0; i<strides.size(); i++){
              if(strides[i] != o.strides[i])
                  return false;
          }

          for(size_t i=0; i<paddings.size(); i++){
              if(paddings[i] != o.paddings[i])
                  return false;
          }

          for(size_t i=0; i<dilations.size(); i++){
              if(dilations[i] != o.dilations[i])
                  return false;
          }
          if(groups != o.groups) return false;
          if(suffix != o.suffix) return false;

          return true;
      }
      bool operator!=(const key_desc& o) const { return !(*this == o); }
  };

class handle_key{
  public:
    void SetKeyMap(std::unordered_map<key_desc, std::string, key_desc::Hash> &key_map, key_desc key_dsr, std::string key){
      auto it = key_map.find(key_dsr);
      if (it == key_map.end()) {
        key_map[key_dsr] = key;  // create new blob
      } else {
        (*it).second = key;  // set data to existing blob
      }
      return;
    }

    std::string GetKeyMap(std::unordered_map<key_desc, std::string, key_desc::Hash> &key_map, key_desc key_dsr){
      auto it = key_map.find(key_dsr);
      if (it != key_map.end()) {
        return (*it).second;
      }
      return "";
    }
};

392
template <typename T>
393
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
394 395 396 397
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
K
Krzysztof Binias 已提交
398 399
    const bool is_test = ctx.Attr<bool>("is_test");

400 401
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
402 403 404 405
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
406
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
407 408
    auto* output = ctx.Output<Tensor>("Output");

409 410 411 412
    auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
    auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
    auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
    auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;
X
xiaolil1 已提交
413 414

    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
X
xiaolil1 已提交
415
    bool is_multi_channel = (is_INT8 && scale_weights->memory_size() > 1) ? true : false;
416

417 418 419 420 421 422
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
423 424 425 426 427 428 429 430 431 432 433
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
434 435 436 437

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
438
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
439
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
Z
Zhang, Guoming 已提交
440
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
441 442
    int groups = ctx.Attr<int>("groups");

Z
Zhang, Guoming 已提交
443
    // TODO(tpatejko): add support for dilation
444 445 446 447 448
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
X
xiaolil1 已提交
449
    const float* filter_data = filter->data<float>();
450 451

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
X
xiaolil1 已提交
452
    std::vector<int> weights_tz = 
453
        paddle::framework::vectorize2int(filter->dims());
454 455 456 457 458 459 460 461 462 463 464 465 466
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
467 468
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

X
xiaolil1 已提交
469
    // Get unique name for storing MKLDNN primitives
X
xiaolil1 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
    handle_key keyhandler;
    key_desc key_dsr = {src_tz, weights_tz, strides, paddings, dilations, groups, ctx.op().Output("Output")};
    
    static std::unordered_map<key_desc, std::string, key_desc::Hash> key_map;
    static std::shared_ptr<std::unordered_map<ConvMKLDNNHandler::key_suffix_desc, std::string, ConvMKLDNNHandler::key_suffix_desc::Hash>> key_suffix_map(new std::unordered_map<ConvMKLDNNHandler::key_suffix_desc, std::string, ConvMKLDNNHandler::key_suffix_desc::Hash>({}));
    bool key_reuse = true;
    std::string none_key = "";
    if(keyhandler.GetKeyMap(key_map, key_dsr) == none_key){
        key_reuse = false;
    }
    std::string key; 
    if(!key_reuse){
        key = ConvMKLDNNHandler::GetHash(
                src_tz, weights_tz, strides, paddings, dilations, groups,
                ctx.op().Output("Output"));
        keyhandler.SetKeyMap(key_map, key_dsr, key);
    } else{
        key = keyhandler.GetKeyMap(key_map, key_dsr);
    }
X
xiaolil1 已提交
489
    const std::string key_conv_pd = key + "@conv_pd";
X
xiaolil1 已提交
490
    static std::unordered_map<std::string, std::vector<std::vector<float>>> scale_map;
491
    bool scale_reuse = true;
X
xiaolil1 已提交
492 493 494
    std::vector<float> scale_in_data;
    std::vector<float> scale_out_data;
    std::vector<float> scale_weights_data;
X
xiaolil1 已提交
495
    std::vector<float> scale_in_eltwise_data = {1.0f};
X
xiaolil1 已提交
496
    std::vector<float> output_shift_scale;
X
xiaolil1 已提交
497
    std::vector<float> sum_scale = {1.0f};
X
xiaolil1 已提交
498 499 500
    std::vector<float> scale_bias_data = {1.0f};
    std::vector<std::vector<float>> none_scale = {{0.0f}};
    std::vector<std::vector<float>> scale_datas(7,{1.0f});
501

X
xiaolil1 已提交
502 503 504
//scale_in_data 0, scale_in_eltwise_data 1, scale_weights_data 2, scale_bias_data 3, scale_out_data 4, output_shift_scale 5, sum_scale 6

    if (is_INT8 && GetScaleMap(scale_map, key) == none_scale){
505
        scale_reuse = false;
X
xiaolil1 已提交
506 507
    } else{
        scale_datas = GetScaleMap(scale_map, key);
X
xiaolil1 已提交
508 509
    }
//std::cout<<"scale_reuse = "<<scale_reuse<<std::endl;
510
    if(is_INT8){
511
        if(!scale_reuse){
X
xiaolil1 已提交
512 513 514 515
//std::cout<<"load scale!!!!!!!!"<<std::endl;
            int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
            scale_in_data = {*(scale_in->data<float>())};
            scale_weights_data.resize(count);
X
xiaolil1 已提交
516
            #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
517 518 519 520
            for(int i=0; i<count; i++){
                scale_weights_data[i] =*(scale_weights->data<float>() + i);
            }
            scale_out_data = {*(scale_out->data<float>())};
521 522
            if(force_fp32_output) 
                scale_out_data[0] = 1.0;
X
xiaolil1 已提交
523
            output_shift_scale.resize(count);
X
xiaolil1 已提交
524
            #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
525 526 527 528 529 530 531 532 533
            for(int i=0; i<count; i++){
                if(scale_weights_data[i] == 0.0)
                    output_shift_scale[i] = scale_out_data[0];
                else 
                    output_shift_scale[i] = scale_out_data[0] / (scale_in_data[0] * scale_weights_data[i]);
            }
            if(fuse_residual_conn){
                scale_in_eltwise_data = {*(scale_in_eltwise->data<float>())};
                sum_scale[0] = scale_out_data[0] / scale_in_eltwise_data[0];
X
xiaolil1 已提交
534
                //SetScaleMap(scale_map, scale_in_eltwise_key, scale_in_eltwise_data);
X
xiaolil1 已提交
535 536 537
            }

            //scale reuse
X
xiaolil1 已提交
538 539 540 541 542 543 544 545 546 547 548
            scale_datas[0] = scale_in_data;
            scale_datas[1] = scale_in_eltwise_data;
            scale_datas[2] = scale_weights_data;
            scale_datas[4] = scale_out_data;
            scale_datas[5] = output_shift_scale;
            scale_datas[6] = sum_scale;
            //SetScaleMap(scale_map, key, scale_datas);
            //SetScaleMap(scale_map, scale_weights_key, scale_weights_data);
            //SetScaleMap(scale_map, scale_out_key, scale_out_data);
            //SetScaleMap(scale_map, output_shift_scale_key, output_shift_scale);
            //SetScaleMap(scale_map, sum_scale_key, sum_scale);
X
xiaolil1 已提交
549
        } else{
X
xiaolil1 已提交
550 551 552
            scale_in_data = scale_datas[0];
            scale_out_data = scale_datas[3];
            scale_weights_data = scale_datas[2];
X
xiaolil1 已提交
553
            if(fuse_residual_conn){
X
xiaolil1 已提交
554
                scale_in_eltwise_data = scale_datas[1];
X
xiaolil1 已提交
555
            }
X
xiaolil1 已提交
556 557
            output_shift_scale = scale_datas[5];
            sum_scale = scale_datas[6]; 
X
xiaolil1 已提交
558
            //printf("pause!!!");
X
xiaolil1 已提交
559
        }
X
xiaolil1 已提交
560

561 562
    }

X
xiaolil1 已提交
563
    static std::unordered_map<std::string, std::vector<std::shared_ptr<mkldnn::memory::desc>>> md_map;
564
    bool md_reuse = true;
X
xiaolil1 已提交
565 566 567 568
    std::vector<std::shared_ptr<mkldnn::memory::desc>> mds(8, nullptr);
    std::vector<std::shared_ptr<mkldnn::memory::desc>> none_mds = {};
    //auto user_src_md_key = key + "@user_src_md";
    if (GetMdMap(md_map, key) == none_mds){
569
        md_reuse = false;   //we suppose all mds are reused if the first md is in the map.
X
xiaolil1 已提交
570 571
    } else{
        mds = GetMdMap(md_map, key);
572
    }
X
xiaolil1 已提交
573
    //auto user_weights_md_key = key + "@user_weights_md";
574 575
    std::shared_ptr<mkldnn::memory::desc> user_src_md;
    std::shared_ptr<mkldnn::memory::desc> user_weights_md;
X
xiaolil1 已提交
576
    std::vector<primitive> pipeline;
577 578 579 580 581 582 583 584
//std::cout<<"md_reuse = "<<md_reuse<<std::endl;
    if(!md_reuse){
//std::cout<<"create md.......... "<<std::endl;
        user_src_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                {src_tz}, paddle::framework::ToMKLDNNDataType(input->type()), input->format())));
        user_weights_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                {weights_tz}, platform::MKLDNNGetDataType<float>(),
                (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw)));
X
xiaolil1 已提交
585 586 587 588 589

        mds[0] = user_src_md;
        mds[1] = user_weights_md;        
        //SetMdMap(md_map, user_src_md_key, user_src_md);
        //SetMdMap(md_map, user_weights_md_key, user_weights_md);
590
    } else{
X
xiaolil1 已提交
591 592 593 594
        user_src_md = mds[0];
        user_weights_md = mds[1];
        //user_src_md = GetMdMap(md_map, user_src_md_key);
        //user_weights_md = GetMdMap(md_map, user_weights_md_key);
595
    }
596 597 598 599 600

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
601
    std::string data_format = ctx.Attr<std::string>("data_format");
X
xiaolil1 已提交
602
    auto chosen_memory_format = 
603
        platform::data_format_to_memory_format(data_format);
604

X
xiaolil1 已提交
605 606
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    auto bias_tz = paddle::framework::vectorize2int(bias->dims());
607

X
xiaolil1 已提交
608 609 610 611
    //auto src_md_key = key + "@src_md";
    //auto weights_md_key = key + "@weights_md_key";
    //auto dst_md_key = key + "@dst_md_key";
    //auto bias_md_key = key + "@bias_md_key";
612 613 614 615
    std::shared_ptr<mkldnn::memory::desc> src_md;
    std::shared_ptr<mkldnn::memory::desc> weights_md;
    std::shared_ptr<mkldnn::memory::desc> dst_md;

X
xiaolil1 已提交
616
    if(is_INT8){
617 618 619 620
        if(!md_reuse){
            src_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                src_tz, memory::data_type::u8, chosen_memory_format)));
            weights_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
621
                weights_tz, memory::data_type::s8, chosen_memory_format)));
622 623 624 625 626 627 628
            auto dst_dt = fuse_relu? paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char))) : paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char)));
            if(fuse_residual_conn){
                auto residual = ctx.Input<Tensor>("ResidualData");
                auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
                if(dst_dt != residual_dt)
                    dst_dt = residual_dt;
            }
629
            if(force_fp32_output)
H
Haihao Shen 已提交
630
                dst_dt = paddle::framework::ToMKLDNNDataType(std::type_index(typeid(float)));
631
            dst_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format)));
X
xiaolil1 已提交
632 633 634 635 636 637
            mds[2] = src_md;
            mds[3] = weights_md;
            mds[4] = dst_md;
            //SetMdMap(md_map, src_md_key, src_md);
            //SetMdMap(md_map, weights_md_key, weights_md);
            //SetMdMap(md_map, dst_md_key, dst_md);
638
        } else{
X
xiaolil1 已提交
639 640 641 642 643 644
            src_md = mds[2];
            weights_md = mds[3];
            dst_md = mds[4];
            //src_md = GetMdMap(md_map, src_md_key);
            //weights_md = GetMdMap(md_map, weights_md_key);
            //dst_md = GetMdMap(md_map, dst_md_key);
645
        }
646

X
xiaolil1 已提交
647 648
        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
649 650 651 652
            std::shared_ptr<mkldnn::memory::desc> bias_md;
            if(!md_reuse){
                bias_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                    bias_tz, memory::data_type::s32, memory::format::x)));
X
xiaolil1 已提交
653 654
                mds[5] = bias_md;
                //SetMdMap(md_map, bias_md_key, bias_md);
655
            } else{
X
xiaolil1 已提交
656 657
                bias_md = mds[5];
                //bias_md = GetMdMap(md_map, bias_md_key);
658 659 660
            }
             
            conv_pd = ConvFwdPrimitiveDesc(*src_md, *weights_md, *bias_md, *dst_md,
X
xiaolil1 已提交
661
                                           strides, paddings, mkldnn_engine,
X
xiaolil1 已提交
662
                                           fuse_relu, fuse_residual_conn,
X
xiaolil1 已提交
663
                                           output_shift_scale, sum_scale[0], is_test);
X
xiaolil1 已提交
664
        } else {
X
xiaolil1 已提交
665
            conv_pd =
666
                ConvFwdPrimitiveDesc(*src_md, *weights_md, *dst_md, strides, paddings,
X
xiaolil1 已提交
667
                                     mkldnn_engine, fuse_relu, fuse_residual_conn,
X
xiaolil1 已提交
668
                                     output_shift_scale, sum_scale[0], is_test);
X
xiaolil1 已提交
669 670
        }
    } else{
671 672 673 674
        if(!md_reuse){
            src_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                src_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format)));
            weights_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
675
                weights_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format)));
676 677
            dst_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                dst_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format)));
X
xiaolil1 已提交
678 679 680 681 682 683
            mds[2] = src_md;
            mds[3] = weights_md;
            mds[4] = dst_md;
            //SetMdMap(md_map, src_md_key, src_md);
            //SetMdMap(md_map, weights_md_key, weights_md);
            //SetMdMap(md_map, dst_md_key, dst_md);
684
        } else{
X
xiaolil1 已提交
685 686 687 688 689 690
            src_md = mds[2];
            weights_md = mds[3];
            dst_md = mds[4];
            //src_md = GetMdMap(md_map, src_md_key);
            //weights_md = GetMdMap(md_map, weights_md_key);
            //dst_md = GetMdMap(md_map, dst_md_key);
691
        }
X
xiaolil1 已提交
692 693
        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
694 695 696 697
            std::shared_ptr<mkldnn::memory::desc> bias_md;
            if(!md_reuse){
                bias_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                    bias_tz, platform::MKLDNNGetDataType<float>(), memory::format::x)));
X
xiaolil1 已提交
698 699
                mds[5] = bias_md;
                //SetMdMap(md_map, bias_md_key, bias_md);
700
            } else{
X
xiaolil1 已提交
701 702
                bias_md = mds[5];
                //bias_md = GetMdMap(md_map, bias_md_key);
703 704 705 706
            }
            conv_pd = ConvFwdPrimitiveDesc(*src_md, *weights_md, *bias_md, *dst_md,
                                           strides, paddings, mkldnn_engine,
                                           fuse_relu, fuse_residual_conn, is_test);
X
xiaolil1 已提交
707
        } else {
708 709
            conv_pd =
                ConvFwdPrimitiveDesc(*src_md, *weights_md, *dst_md, strides, paddings,
X
xiaolil1 已提交
710
                                         mkldnn_engine, fuse_relu, fuse_residual_conn, is_test);
X
xiaolil1 已提交
711
        }
712
    }
713 714
    // Save conv_pd/src_memory/weights_memory for backward pass
    dev_ctx.SetBlob(key_conv_pd, conv_pd);
715

716
    ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
X
xiaolil1 已提交
717
    handler.key_suffix_map_ = key_suffix_map;
718

719 720
    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
721
        handler.AcquireSrcMemory(*user_src_md, to_void_cast<T>(input_data));
722
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
723
        *user_weights_md, to_void_cast<float>(filter_data));
Z
Zhang, Guoming 已提交
724

725 726
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
727
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
Z
Zhang, Guoming 已提交
728
        
X
xiaolil1 已提交
729
    std::shared_ptr<mkldnn::memory> weights_memory_p;
X
xiaolil1 已提交
730
    if(is_INT8){
731
        int mask_reorder = is_multi_channel? ((g!= 1) ? (1<<1)+(1<<0) : 1<<0) : 0;
X
xiaolil1 已提交
732
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
X
xiaolil1 已提交
733
            user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);
X
xiaolil1 已提交
734 735 736 737 738 739
    } else{
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
            user_weights_memory_p, pipeline, is_test);
    }

    std::shared_ptr<mkldnn::memory> dst_memory_p;
740
    bool need_s8_to_u8 = false;
X
xiaolil1 已提交
741
    //auto user_residual_md_key = key + "@user_residual_md";
742 743 744 745 746 747 748
    if(fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
              "Output and elementwise parameter need to have the "
              "same dimension sizes");
        auto residual_dt = paddle::framework::ToMKLDNNDataType(residual_param->type());
        if(residual_param->format() != handler.GetDstFormat()) {
749 750 751 752 753 754 755 756
            std::shared_ptr<mkldnn::memory::desc> user_residual_md;
            if(!md_reuse){
                auto residual_data_tz =
                    paddle::framework::vectorize2int(residual_param->dims());
                auto residual_data_type =
                    paddle::framework::ToMKLDNNDataType(residual_param->type());
                user_residual_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                    residual_data_tz, residual_data_type, residual_param->format())));
X
xiaolil1 已提交
757 758
                mds[6] = user_residual_md;
                //SetMdMap(md_map, user_residual_md_key, user_residual_md);
759
            } else{
X
xiaolil1 已提交
760 761
                user_residual_md = mds[6];
                //user_residual_md = GetMdMap(md_map, user_residual_md_key);
762
            }
763
            if(is_INT8){
764 765 766 767
                PADDLE_ENFORCE(
                      force_fp32_output == false,
                      "Conv and sum does not support force_fp32_output");

768
                if(residual_dt == mkldnn::memory::data_type::u8){
769 770 771 772 773 774 775 776 777 778
                    auto residual_param_data = residual_param->data<uint8_t>();
                    auto user_residual_memory_p = handler.AcquireResidualDataMemory(
                        *user_residual_md, to_void_cast<uint8_t>(residual_param_data));
                    PADDLE_ENFORCE(
                          residual_param_data != nullptr,
                          "Provide data if you want MKLDNN conv+elementwise_add fusion");
                        uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
                        dst_memory_p =
                            handler.AcquireDstMemoryFromResidualDataMemory(
                                user_residual_memory_p, to_void_cast<uint8_t>(output_data), pipeline);
779
                } else{
780 781 782 783 784 785 786 787 788 789
                    auto residual_param_data = residual_param->data<int8_t>();
                    auto user_residual_memory_p = handler.AcquireResidualDataMemory(
                        *user_residual_md, to_void_cast<int8_t>(residual_param_data));
                    PADDLE_ENFORCE(
                          residual_param_data != nullptr,
                          "Provide data if you want MKLDNN conv+elementwise_add fusion");
                        int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
                        dst_memory_p =
                            handler.AcquireDstMemoryFromResidualDataMemory(
                                user_residual_memory_p, to_void_cast<int8_t>(output_data), pipeline);
790 791 792 793 794 795
                    if(fuse_relu)
                      need_s8_to_u8 = true;
                }
            } else{
                auto residual_param_data = residual_param->data<T>();
                auto user_residual_memory_p = handler.AcquireResidualDataMemory(
796
                    *user_residual_md, to_void_cast<T>(residual_param_data));
797 798 799 800 801 802 803 804
                PADDLE_ENFORCE(
                      residual_param_data != nullptr,
                      "Provide data if you want MKLDNN conv+elementwise_add fusion");
                 auto output_data =
                     output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
                 dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
                      user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
            }
X
xiaolil1 已提交
805
        } else {
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
             output->ShareDataWith(*residual_param);
             if(is_INT8){
                 if(residual_dt == mkldnn::memory::data_type::u8){
                     uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
                     dst_memory_p =
                         handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
                 } else{
                     int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
                     dst_memory_p =
                         handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
                     if(fuse_relu)
                       need_s8_to_u8 = true;
                 }
             } else{
                  auto output_data = output->mutable_data<T>(ctx.GetPlace());
                  dst_memory_p =
                      handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));               
             }
        }
    } else {
826
        if(is_INT8 && !force_fp32_output){
X
xiaolil1 已提交
827 828 829 830 831 832 833 834 835
          if(fuse_relu){
              uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
          } else{
              int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
          }
836 837 838 839 840
        } else{
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
X
xiaolil1 已提交
841
        }
X
xiaolil1 已提交
842
    }
843 844

    // create convolution op primitive
845
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
X
xiaolil1 已提交
846
    //auto scale_bias_key = key + "@scale_bias";
X
xiaolil1 已提交
847
    //auto user_bias_md_key = key + "@user_bias_md";
848
    if (bias) {
X
xiaolil1 已提交
849
      const float* bias_data = bias->data<float>();
850 851 852 853
      std::shared_ptr<mkldnn::memory::desc> user_bias_md;
      if(!md_reuse){
          user_bias_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
              {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x)));
X
xiaolil1 已提交
854 855
          mds[7] = user_bias_md;
          //SetMdMap(md_map, user_bias_md_key, user_bias_md);
856
      } else{
X
xiaolil1 已提交
857 858
          user_bias_md = mds[7];
          //user_bias_md = GetMdMap(md_map, user_bias_md_key);
859
      }
860
      auto user_bias_memory_p =
861
          handler.AcquireBiasMemory(*user_bias_md, to_void_cast<float>(bias_data));
X
xiaolil1 已提交
862
      std::shared_ptr<mkldnn::memory>  bias_memory_p;
X
xiaolil1 已提交
863
      if(is_INT8){
864
          int mask_reorder = is_multi_channel? 1<<0 : 1;
865
          if(!scale_reuse){
X
xiaolil1 已提交
866 867
              int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
              scale_bias_data.resize(count);
X
xiaolil1 已提交
868
              #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
869
              for(int i=0; i<count; i++){
870 871 872 873
                  if (scale_weights_data[i] == 0.0)
                      scale_bias_data[i] = 1.0;
                  else
                      scale_bias_data[i] = scale_in_data[0] * scale_weights_data[i];
X
xiaolil1 已提交
874
              }
X
xiaolil1 已提交
875 876
              scale_datas[3] = scale_bias_data;
              //SetScaleMap(scale_map, scale_bias_key, scale_bias_data);
X
xiaolil1 已提交
877
          } else{
X
xiaolil1 已提交
878
              scale_bias_data = scale_datas[3];
X
xiaolil1 已提交
879
          }
X
xiaolil1 已提交
880
          bias_memory_p =
X
xiaolil1 已提交
881
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test, is_INT8, scale_bias_data, mask_reorder);
X
xiaolil1 已提交
882 883 884 885
      } else{
          bias_memory_p =
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      } 
886 887 888 889 890 891
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
892

X
xiaolil1 已提交
893
    SetScaleMap(scale_map, key, scale_datas);
X
xiaolil1 已提交
894
    SetMdMap(md_map, key, mds);
X
xiaolil1 已提交
895

896
    // push primitive to stream and wait until it's executed
897
    pipeline.push_back(*conv_p);
898 899
    stream(stream::kind::eager).submit(pipeline).wait();

H
Haihao Shen 已提交
900
    if(need_s8_to_u8 && !force_fp32_output){
901 902 903
        output->mutable_data<uint8_t>(ctx.GetPlace());
    }

904
    output->set_layout(DataLayout::kMKLDNN);
905
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
906
  }
907

908
 private:
X
xiaolil1 已提交
909

X
xiaolil1 已提交
910 911
    void SetScaleMap(std::unordered_map<std::string, std::vector<std::vector<float>>> &scale_map,
                       const std::string& name, std::vector<std::vector<float>> scale_datas) const {
X
xiaolil1 已提交
912 913
      auto it = scale_map.find(name);
      if (it == scale_map.end()) {
X
xiaolil1 已提交
914
        scale_map[name] = scale_datas;  // create new blob
X
xiaolil1 已提交
915
      } else {
X
xiaolil1 已提交
916
        (*it).second = scale_datas;  // set data to existing blob
X
xiaolil1 已提交
917 918 919 920
      }
      return;
    }

X
xiaolil1 已提交
921
    std::vector<std::vector<float>> GetScaleMap(std::unordered_map<std::string, std::vector<std::vector<float>>> scale_map,
X
xiaolil1 已提交
922 923 924 925 926
         const std::string& name) const {
      auto it = scale_map.find(name);
      if (it != scale_map.end()) {
        return (*it).second;
      }
X
xiaolil1 已提交
927
      return {{0.0f}};
928 929
    }

X
xiaolil1 已提交
930 931
    void SetMdMap(std::unordered_map<std::string, std::vector<std::shared_ptr<mkldnn::memory::desc>>> &md_map,
                       const std::string& name, std::vector<std::shared_ptr<mkldnn::memory::desc>> mds) const {
932 933
      auto it = md_map.find(name);
      if (it == md_map.end()) {
X
xiaolil1 已提交
934
        md_map[name] = mds;  // create new blob
935
      } else {
X
xiaolil1 已提交
936
        (*it).second = mds;  // set data to existing blob
937 938 939 940
      }
      return;
    }

X
xiaolil1 已提交
941
    std::vector<std::shared_ptr<mkldnn::memory::desc>> GetMdMap(std::unordered_map<std::string, std::vector<std::shared_ptr<mkldnn::memory::desc>>> md_map,
942 943 944 945 946
         const std::string& name) const {
      auto it = md_map.find(name);
      if (it != md_map.end()) {
        return (*it).second;
      }
X
xiaolil1 已提交
947
      return {};
X
xiaolil1 已提交
948 949
    }

Z
Zhang, Guoming 已提交
950
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
X
xiaolil1 已提交
951
                          const std::vector<float> output_shift_scale, float sum_scale) const {
952 953
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
954
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
955 956 957 958
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
959
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
960
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
961
      if (fuse_residual_conn) {
962 963 964 965 966
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
967
        constexpr float placeholder = 1.0f; //beta
968 969 970 971 972
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
973
    }
974

X
xiaolil1 已提交
975
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
976 977 978 979

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
980
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
981 982
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
983
      conv_attr.set_output_scales(0, {1.0f});
X
xiaolil1 已提交
984
      if (fuse_residual_conn) {
985 986 987 988 989 990 991 992 993 994 995 996 997
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
998
    }
M
Michal Gallus 已提交
999

Z
Zhang, Guoming 已提交
1000
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
1001 1002 1003 1004
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
1005
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
1006
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
1007 1008 1009
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
1010 1011
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

1012
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
1013
          propagation, mkldnn::convolution_direct, src, weights,
1014 1015 1016 1017
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
1018
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
1019 1020 1021 1022 1023 1024

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
1025
    }
M
Michal Gallus 已提交
1026

1027
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
1028 1029 1030 1031
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
X
xiaolil1 已提交
1032
                         const bool fuse_residual_conn, bool is_test) const{
1033 1034
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
X
xiaolil1 已提交
1035 1036 1037
 
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;
 
1038
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
1039
          propagation, mkldnn::convolution_direct, src, weights,
1040 1041 1042
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
1043
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
1044 1045 1046 1047 1048 1049 1050
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
1051 1052

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
1053 1054 1055 1056 1057
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
1058
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
1059
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
1060 1061 1062
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
1063 1064
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

1065
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
1066
          propagation, mkldnn::convolution_direct, src, weights,
1067 1068 1069 1070
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
1071
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
X
xiaolil1 已提交
1086
                         const bool fuse_residual_conn, bool is_test) const{
1087 1088 1089
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
1090 1091
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

1092
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
1093
          propagation, mkldnn::convolution_direct, src, weights,
1094 1095 1096
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
1097
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
1098 1099 1100 1101 1102 1103 1104 1105

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

1106 1107 1108
};

template <typename T>
1109
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
1110 1111 1112 1113 1114
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

1115 1116
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

1140 1141 1142 1143
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
1144 1145
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

1158
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
1159
    // as well as attributes of primitive to be created
1160 1161 1162 1163 1164 1165
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
1166
    std::vector<primitive> pipeline;
1167

1168 1169 1170 1171 1172 1173 1174
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
1175 1176 1177 1178 1179

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
1180 1181 1182 1183
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

1184
    auto src_md = platform::MKLDNNMemDesc(
1185
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1186
    auto diff_src_md = platform::MKLDNNMemDesc(
1187
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1188
    auto weights_md = platform::MKLDNNMemDesc(
1189
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1190
    auto diff_weights_md = platform::MKLDNNMemDesc(
1191
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1192
    auto diff_dst_md = platform::MKLDNNMemDesc(
1193
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1194

1195
    // Retrieve conv_pd from device context
1196 1197 1198
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
1199 1200 1201
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
1228 1229
    // create backward conv primitive for weights
    if (filter_grad) {
1230 1231
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1232

1233 1234 1235 1236
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1237
      const size_t size = handler.GetDiffWeightsMemorySize();
1238 1239
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);

1240 1241 1242 1243 1244 1245 1246 1247 1248
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
1249 1250

      filter_grad->set_layout(DataLayout::kMKLDNN);
1251
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
1252 1253 1254
    }

    if (input_grad) {
1255 1256 1257 1258 1259 1260 1261
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1262
      const size_t size = handler.GetDiffSourceMemorySize();
1263 1264
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);

1265 1266 1267 1268 1269 1270 1271
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
1272 1273

      input_grad->set_layout(DataLayout::kMKLDNN);
1274
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1275
    }
1276
    stream(stream::kind::eager).submit(pipeline).wait();
1277 1278 1279 1280 1281 1282 1283 1284 1285
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
1286 1287
                   ops::ConvMKLDNNOpKernel<float>,
                   ops::ConvMKLDNNOpKernel<uint8_t>);
1288 1289

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
1290
                   ops::ConvMKLDNNGradOpKernel<float>);