conv_mkldnn_op.cc 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

template <typename T>
22
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
23 24 25 26 27
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

28 29
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    // Get an unique name from "argument" name of "Output" variable
    // This name will be used as key when saving info into device context
    const std::string key = ctx.op().Output("Output");
    const std::string key_conv_pd = key + "@conv_pd";

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");

    // TODO(pzelazko-intel) add support for group convolution and dilation
    PADDLE_ENFORCE(groups == 1, "group convolution is not implemented yet");
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

    // TODO(pzelazko-intel): support more formats
67 68 69 70 71 72 73 74
    auto src_md = platform::MKLDNNMemDesc(
        src_tz, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);
    auto weights_md =
        platform::MKLDNNMemDesc(weights_tz, mkldnn::memory::data_type::f32,
                                mkldnn::memory::format::oihw);
    auto dst_md = platform::MKLDNNMemDesc(
        dst_tz, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);

75 76 77 78 79 80
    auto src_memory =
        mkldnn::memory({src_md, mkldnn_engine},
                       reinterpret_cast<void*>(const_cast<T*>(input_data)));
    auto weights_memory =
        mkldnn::memory({weights_md, mkldnn_engine},
                       reinterpret_cast<void*>(const_cast<T*>(filter_data)));
81 82 83 84 85 86 87 88
    auto dst_memory = mkldnn::memory({dst_md, mkldnn_engine}, output_data);

    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd =
        ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                             mkldnn_engine);

    // save conv_pd into global device context to be referred in backward path
    dev_ctx.SetBlob(key_conv_pd, conv_pd);
89 90

    // create convolution op primitive
91 92 93 94 95 96 97
    auto conv_prim = mkldnn::convolution_forward(*conv_pd, src_memory,
                                                 weights_memory, dst_memory);

    // push primitive to stream and wait until it's executed
    std::vector<mkldnn::primitive> pipeline{conv_prim};
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
  }
98

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
 private:
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const mkldnn::memory::desc& src,
                       const mkldnn::memory::desc& weights,
                       const mkldnn::memory::desc& dst,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
                       const mkldnn::engine& engine) const {
    mkldnn::memory::dims stride_dims = {strides[0], strides[1]};
    mkldnn::memory::dims padding_dims = {paddings[0], paddings[1]};

    auto conv_desc = mkldnn::convolution_forward::desc(
        mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
        dst, stride_dims, padding_dims, padding_dims,
        mkldnn::padding_kind::zero);

    auto p_conv_pd =
        new mkldnn::convolution_forward::primitive_desc(conv_desc, engine);

    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
120 121 122 123
  }
};

template <typename T>
124
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
125 126 127 128 129
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

130 131
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (!input_grad && !filter_grad) return;

    // Get an unique name from "argument" name of "Output" variable
    // This name will be used as key when saving info into device context
    const std::string key = ctx.op().Input("Output");
    const std::string key_conv_pd = key + "@conv_pd";

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    if (input_grad) {
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
    }
    if (filter_grad) {
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
    }

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

    // TODO(pzelazko-intel): support more formats
171 172 173 174 175 176 177 178 179 180 181 182
    auto src_md = platform::MKLDNNMemDesc(
        src_tz, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);
    auto diff_src_md = platform::MKLDNNMemDesc(
        src_tz, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);
    auto weights_md =
        platform::MKLDNNMemDesc(weights_tz, mkldnn::memory::data_type::f32,
                                mkldnn::memory::format::oihw);
    auto diff_weights_md =
        platform::MKLDNNMemDesc(weights_tz, mkldnn::memory::data_type::f32,
                                mkldnn::memory::format::oihw);
    auto diff_dst_md = platform::MKLDNNMemDesc(
        dst_tz, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);
183 184

    // create memory
185 186 187
    auto diff_dst_memory = mkldnn::memory(
        {diff_weights_md, mkldnn_engine},
        reinterpret_cast<void*>(const_cast<T*>(output_grad_data)));
188
    // Retrieve conv_pd from device context
189 190 191
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
192 193 194 195 196 197
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

    // create backward conv primitive for weights
    if (filter_grad) {
      // create primitive descriptor
198 199 200 201
      mkldnn::convolution_backward_weights::primitive_desc conv_bwd_weights_pd =
          ConvBwdWeightsPrimitiveDesc(src_md, diff_weights_md, diff_dst_md,
                                      strides, paddings, *conv_pd,
                                      mkldnn_engine);
202 203

      // create memory
204 205 206
      auto diff_weights_memory =
          mkldnn::memory({diff_weights_md, mkldnn_engine},
                         reinterpret_cast<void*>(filter_grad_data));
207 208 209
      auto src_memory =
          mkldnn::memory({src_md, mkldnn_engine},
                         reinterpret_cast<void*>(const_cast<T*>(input_data)));
210 211

      // create backward conv primitive for weights
212 213 214
      auto conv_bwd_weights_prim = mkldnn::convolution_backward_weights(
          conv_bwd_weights_pd, src_memory, diff_dst_memory,
          diff_weights_memory);
215 216

      // push primitive and execute it
217 218
      std::vector<mkldnn::primitive> pipeline{conv_bwd_weights_prim};
      mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
219 220 221 222
    }

    if (input_grad) {
      // create primitive descriptor
223 224 225
      mkldnn::convolution_backward_data::primitive_desc conv_bwd_data_pd =
          ConvBwdDataPrimitiveDesc(diff_src_md, weights_md, diff_dst_md,
                                   strides, paddings, *conv_pd, mkldnn_engine);
226 227

      // create memory
228 229 230 231 232 233
      auto diff_src_memory = mkldnn::memory(
          {diff_src_md, mkldnn_engine},
          reinterpret_cast<void*>(const_cast<T*>(input_grad_data)));
      auto weights_memory =
          mkldnn::memory({weights_md, mkldnn_engine},
                         reinterpret_cast<void*>(const_cast<T*>(filter_data)));
234 235

      // create backward conv primitive for data
236 237
      auto conv_bwd_data_prim = mkldnn::convolution_backward_data(
          conv_bwd_data_pd, diff_dst_memory, weights_memory, diff_src_memory);
238

239 240 241
      // push primitive to stream and wait until it's executed
      std::vector<mkldnn::primitive> pipeline{conv_bwd_data_prim};
      mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
242 243
    }
  }  // Compute()
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

 private:
  mkldnn::convolution_backward_weights::primitive_desc
  ConvBwdWeightsPrimitiveDesc(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& diff_weights,
      const mkldnn::memory::desc& diff_dst, const std::vector<int>& strides,
      const std::vector<int>& paddings,
      const mkldnn::convolution_forward::primitive_desc& conv_pd,
      const mkldnn::engine& engine) const {
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src, diff_weights, diff_dst, strides,
        paddings, paddings, mkldnn::padding_kind::zero);
    return mkldnn::convolution_backward_weights::primitive_desc(
        conv_bwd_weights_desc, engine, conv_pd);
  }

  mkldnn::convolution_backward_data::primitive_desc ConvBwdDataPrimitiveDesc(
      const mkldnn::memory::desc& diff_src, const mkldnn::memory::desc& weights,
      const mkldnn::memory::desc& diff_dst, const std::vector<int>& strides,
      const std::vector<int>& paddings,
      const mkldnn::convolution_forward::primitive_desc& conv_pd,
      const mkldnn::engine& engine) const {
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src, weights, diff_dst, strides,
        paddings, paddings, mkldnn::padding_kind::zero);
    return mkldnn::convolution_backward_data::primitive_desc(conv_bwd_data_desc,
                                                             engine, conv_pd);
  }
272 273 274 275 276 277 278 279
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
280
                   ops::ConvMKLDNNOpKernel<float>);
281 282

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
283
                   ops::ConvMKLDNNGradOpKernel<float>);