Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5ac1c95c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5ac1c95c
编写于
10月 18, 2018
作者:
X
xiaolil1
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Revert "modify for eltwise with some useless log"
This reverts commit
fcbe4898
.
上级
b26e0ec2
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
55 addition
and
113 deletion
+55
-113
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+0
-1
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+49
-94
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+4
-4
paddle/fluid/operators/dequantize_op.cc
paddle/fluid/operators/dequantize_op.cc
+1
-1
paddle/fluid/operators/quantize_op.cc
paddle/fluid/operators/quantize_op.cc
+1
-6
paddle/fluid/platform/mkldnn_helper.h
paddle/fluid/platform/mkldnn_helper.h
+0
-7
未找到文件。
paddle/fluid/framework/operator.cc
浏览文件 @
5ac1c95c
...
...
@@ -821,7 +821,6 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
"DataType of Paddle Op %s must be the same. Get %s(%d) != %s(%d)"
,
Type
(),
last_input_name
,
data_type
,
ipt_name
,
tmp
);
data_type
=
tmp
;
std
::
cout
<<
"data_type = "
<<
data_type
;
last_input_name
=
ipt_name
;
}
}
...
...
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
5ac1c95c
...
...
@@ -54,7 +54,6 @@ class ConvMKLDNNHandler : public platform::MKLDNNHandler {
}
size_t
GetDstMemorySize
()
const
{
std
::
cout
<<
"dst size = "
<<
conv_pd_
->
dst_primitive_desc
().
get_size
()
<<
std
::
endl
;
return
conv_pd_
->
dst_primitive_desc
().
get_size
();
}
...
...
@@ -122,9 +121,9 @@ class ConvMKLDNNHandler : public platform::MKLDNNHandler {
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSrcMemoryFromPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
bool
is_INT8
=
false
)
{
// NOLINT
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
src_pd
=
conv_pd_
->
src_primitive_desc
();
auto
user_pd
=
is_INT8
?
src_pd
:
user_memory_p
->
get_primitive_desc
();
auto
user_pd
=
user_memory_p
->
get_primitive_desc
();
return
this
->
AcquireMemory
(
src_pd
,
user_pd
,
user_memory_p
,
"@src_mem_p"
,
pipeline
);
}
...
...
@@ -275,7 +274,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
std
::
cout
<<
"this is conv kernel op....................."
<<
std
::
endl
;
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
auto
&
dev_ctx
=
...
...
@@ -325,7 +324,7 @@ std::cout<<"this is conv kernel op....................."<<std::endl;
"dilation in convolution is not implemented yet"
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
const
T
*
filter_data
=
filter
->
data
<
T
>
();
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
vector
<
int
>
weights_tz
=
...
...
@@ -345,17 +344,17 @@ std::cout<<"this is conv kernel op....................."<<std::endl;
}
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
std
::
vector
<
float
>
output_shift_scale
;
float
sum_scale
=
1.0
f
;
std
::
vector
<
T
>
output_shift_scale
;
T
sum_scale
=
1.0
f
;
if
(
is_INT8
){
std
::
cout
<<
"this is conv int8 op .............."
<<
std
::
endl
;
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
float
scale_in_data
=
*
(
scale_in
->
data
<
float
>
());
std
::
vector
<
float
>
scale_weights_data
(
count
);
T
scale_in_data
=
*
(
scale_in
->
data
<
T
>
());
T
scale_in_eltwise_data
=
*
(
scale_in_eltwise
->
data
<
T
>
());
std
::
vector
<
T
>
scale_weights_data
(
count
);
for
(
int
i
=
0
;
i
<
count
;
i
++
){
scale_weights_data
[
i
]
=*
(
scale_weights
->
data
<
float
>
()
+
i
);
scale_weights_data
[
i
]
=*
(
scale_weights
->
data
<
T
>
()
+
i
);
}
float
scale_out_data
=
*
(
scale_out
->
data
<
float
>
());
T
scale_out_data
=
*
(
scale_out
->
data
<
T
>
());
output_shift_scale
.
resize
(
count
);
for
(
int
i
=
0
;
i
<
count
;
i
++
){
...
...
@@ -364,10 +363,8 @@ std::cout<<"this is conv int8 op .............."<<std::endl;
else
output_shift_scale
[
i
]
=
scale_out_data
/
(
scale_in_data
*
scale_weights_data
[
i
]);
}
if
(
fuse_residual_conn
){
float
scale_in_eltwise_data
=
*
(
scale_in_eltwise
->
data
<
float
>
());
sum_scale
=
scale_out_data
/
scale_in_eltwise_data
;
}
sum_scale
=
scale_out_data
/
scale_in_eltwise_data
;
}
// Get unique name for storing MKLDNN primitives
...
...
@@ -381,7 +378,7 @@ std::cout<<"this is conv int8 op .............."<<std::endl;
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
{
src_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
float
>
(),
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
(
g
==
1
)
?
filter
->
format
()
:
mkldnn
::
memory
::
format
::
goihw
);
/* create memory descriptor for convolution without specified format
...
...
@@ -402,28 +399,12 @@ std::cout<<"this is conv int8 op .............."<<std::endl;
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
if
(
is_INT8
){
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
memory
::
data_type
::
u8
,
chosen_memory_format
);
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
memory
::
data_type
::
s8
,
(
g
==
1
)
?
chosen_memory_format
:
mkldnn
::
memory
::
format
::
goihw
);
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
fuse_relu
?
memory
::
data_type
::
u8
:
memory
::
data_type
::
s8
,
chosen_memory_format
);
}
// create a conv primitive descriptor and save it for usage in backward
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
;
if
(
bias
)
{
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
platform
::
MKLDNNGetDataType
<
float
>
(),
memory
::
format
::
x
);
if
(
is_INT8
){
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
memory
::
data_type
::
s32
,
memory
::
format
::
x
);
}
bias_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
memory
::
format
::
x
);
if
(
is_INT8
){
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
...
...
@@ -455,85 +436,62 @@ std::cout<<"this is conv int8 op .............."<<std::endl;
auto
user_src_memory_p
=
handler
.
AcquireSrcMemory
(
user_src_md
,
to_void_cast
<
T
>
(
input_data
));
auto
user_weights_memory_p
=
handler
.
AcquireWeightsMemory
(
user_weights_md
,
to_void_cast
<
float
>
(
filter_data
));
user_weights_md
,
to_void_cast
<
T
>
(
filter_data
));
T
*
output_data
=
nullptr
;
if
(
fuse_residual_conn
)
{
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual_param_data
=
residual_param
->
data
<
T
>
();
PADDLE_ENFORCE
(
residual_param_data
!=
nullptr
,
"Provide data if you want MKLDNN conv+elementwise_add fusion"
);
PADDLE_ENFORCE_EQ
(
output
->
dims
(),
residual_param
->
dims
(),
"Output and elementwise parameter need to have the "
"same dimension sizes"
);
output
->
ShareDataWith
(
*
residual_param
);
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
else
{
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
}
// create reorder primitive if the input format is not the preferred one
auto
src_memory_p
=
handler
.
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
,
is_INT8
);
handler
.
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
);
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryFromPrimitive
(
user_weights_memory_p
,
pipeline
,
is_test
);
if
(
is_INT8
){
int
mask_reorder
=
is_multi_channel
?
0
:
((
g
!=
1
)
?
(
1
<<
1
)
+
(
1
<<
0
)
:
1
<<
0
);
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
std
::
vector
<
float
>
scale_weights_data
(
count
);
std
::
vector
<
T
>
scale_weights_data
(
count
);
for
(
int
i
=
0
;
i
<
count
;
i
++
){
scale_weights_data
[
i
]
=
*
(
scale_weights
->
data
<
T
>
()
+
i
);
}
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryFromPrimitive
(
user_weights_memory_p
,
pipeline
,
is_test
,
is_INT8
,
scale_weights_data
,
mask_reorder
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
;
if
(
is_INT8
){
int8_t
*
output_data
=
nullptr
;
if
(
fuse_residual_conn
)
{
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
PADDLE_ENFORCE_EQ
(
output
->
dims
(),
residual_param
->
dims
(),
"Output and elementwise parameter need to have the "
"same dimension sizes"
);
output
->
ShareDataWith
(
*
residual_param
);
output_data
=
output
->
mutable_data
<
int8_t
>
(
ctx
.
GetPlace
());
}
else
{
std
::
cout
<<
"conv log 1 ....................."
<<
std
::
endl
;
output_data
=
output
->
mutable_data
<
int8_t
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
std
::
cout
<<
"conv log 2 //////////////////////"
<<
std
::
endl
;
}
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
int8_t
>
(
output_data
));
std
::
cout
<<
"input fmt = "
<<
input
->
format
()
<<
" output fmt = "
<<
output
->
format
()
<<
" dst fmt = "
<<
dst_memory_p
->
get_primitive_desc
().
desc
().
data
.
format
<<
std
::
endl
;
}
else
{
T
*
output_data
=
nullptr
;
if
(
fuse_residual_conn
)
{
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual_param_data
=
residual_param
->
data
<
T
>
();
PADDLE_ENFORCE
(
residual_param_data
!=
nullptr
,
"Provide data if you want MKLDNN conv+elementwise_add fusion"
);
PADDLE_ENFORCE_EQ
(
output
->
dims
(),
residual_param
->
dims
(),
"Output and elementwise parameter need to have the "
"same dimension sizes"
);
output
->
ShareDataWith
(
*
residual_param
);
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
else
{
std
::
cout
<<
"conv log 1 ....................."
<<
std
::
endl
;
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
std
::
cout
<<
"conv log 2 //////////////////////"
<<
std
::
endl
;
}
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
}
auto
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
// create convolution op primitive
std
::
shared_ptr
<
mkldnn
::
convolution_forward
>
conv_p
;
if
(
bias
)
{
const
float
*
bias_data
=
bias
->
data
<
float
>
();
const
T
*
bias_data
=
bias
->
data
<
T
>
();
auto
user_bias_md
=
platform
::
MKLDNNMemDesc
(
{
bias_tz
},
platform
::
MKLDNNGetDataType
<
float
>
(),
memory
::
format
::
x
);
{
bias_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
memory
::
format
::
x
);
auto
user_bias_memory_p
=
handler
.
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
float
>
(
bias_data
));
handler
.
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
T
>
(
bias_data
));
auto
bias_memory_p
=
handler
.
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
pipeline
);
if
(
is_INT8
){
int
mask_reorder
=
is_multi_channel
?
0
:
1
<<
0
;
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
std
::
vector
<
float
>
scale_bias_data
(
count
);
std
::
vector
<
T
>
scale_bias_data
(
count
);
for
(
int
i
=
0
;
i
<
count
;
i
++
){
scale_bias_data
[
i
]
=
(
*
scale_in
->
data
<
float
>
())
*
(
*
(
scale_weights
->
data
<
float
>
()
+
i
));
scale_bias_data
[
i
]
=
(
*
scale_in
->
data
<
T
>
())
*
(
*
(
scale_weights
->
data
<
T
>
()
+
i
));
}
auto
bias_memory_p
=
handler
.
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
pipeline
,
is_INT8
,
scale_bias_data
,
mask_reorder
);
...
...
@@ -545,19 +503,17 @@ std::cout<<"input fmt = "<<input->format()<<" output fmt = "<<output->format()<
dst_memory_p
);
}
// push primitive to stream and wait until it's executed
pipeline
.
push_back
(
*
conv_p
);
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory_p
));
std
::
cout
<<
"input fmt = "
<<
input
->
format
()
<<
" output fmt = "
<<
output
->
format
()
<<
" dst fmt = "
<<
dst_memory_p
->
get_primitive_desc
().
desc
().
data
.
format
<<
std
::
endl
;
}
private:
mkldnn
::
primitive_attr
CreatePostOps
(
bool
fuse_relu
,
bool
fuse_residual_conn
,
const
std
::
vector
<
float
>
output_shift_scale
,
float
sum_scale
)
const
{
const
std
::
vector
<
T
>
output_shift_scale
,
T
sum_scale
)
const
{
mkldnn
::
primitive_attr
conv_attr
;
mkldnn
::
post_ops
post_operations
;
// Fusion with Elementwise layer relies on adding a sum post-operation with
...
...
@@ -612,7 +568,7 @@ std::cout<<"input fmt = "<<input->format()<<" output fmt = "<<output->format()<
const
std
::
vector
<
int
>&
paddings
,
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
,
const
bool
fuse_residual_conn
,
const
std
::
vector
<
float
>
output_shift_scale
,
const
float
sum_scale
)
const
{
const
std
::
vector
<
T
>
output_shift_scale
,
const
T
sum_scale
)
const
{
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
...
...
@@ -661,7 +617,7 @@ std::cout<<"input fmt = "<<input->format()<<" output fmt = "<<output->format()<
const
std
::
vector
<
int
>&
paddings
,
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
,
const
bool
fuse_residual_conn
,
const
std
::
vector
<
float
>
output_shift_scale
,
const
float
sum_scale
)
const
{
const
std
::
vector
<
T
>
output_shift_scale
,
const
T
sum_scale
)
const
{
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
...
...
@@ -885,8 +841,7 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_KERNEL
(
conv2d
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
ConvMKLDNNOpKernel
<
float
>
,
ops
::
ConvMKLDNNOpKernel
<
int8_t
>
);
ops
::
ConvMKLDNNOpKernel
<
float
>
);
REGISTER_OP_KERNEL
(
conv2d_grad
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
ConvMKLDNNGradOpKernel
<
float
>
);
paddle/fluid/operators/conv_op.cc
浏览文件 @
5ac1c95c
...
...
@@ -94,10 +94,10 @@ framework::OpKernelType ConvOp::GetExpectedKernelType(
auto
input_data_type
=
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
type
());
//
auto filter_data_type =
//
framework::ToDataType(ctx.Input<Tensor>("Filter")->type());
//
PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
//
"input and filter data type should be consistent");
auto
filter_data_type
=
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Filter"
)
->
type
());
PADDLE_ENFORCE_EQ
(
input_data_type
,
filter_data_type
,
"input and filter data type should be consistent"
);
if
(
input_data_type
==
framework
::
proto
::
VarType
::
FP16
)
{
PADDLE_ENFORCE_EQ
(
library
,
framework
::
LibraryType
::
kCUDNN
,
...
...
paddle/fluid/operators/dequantize_op.cc
浏览文件 @
5ac1c95c
...
...
@@ -40,7 +40,7 @@ class DeQuantOpKernel : public framework::OpKernel<T> {
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
std
::
cout
<<
"this is dequant op ***********"
<<
std
::
endl
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
MKLDNNDeviceContext
>();
const
auto
&
engine
=
dev_ctx
.
GetEngine
();
...
...
paddle/fluid/operators/quantize_op.cc
浏览文件 @
5ac1c95c
...
...
@@ -37,7 +37,7 @@ class QuantOpKernel : public framework::OpKernel<T> {
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
std
::
cout
<<
"this is quantize op!!!!!!!!!!!!!!"
<<
std
::
endl
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
MKLDNNDeviceContext
>();
const
auto
&
engine
=
dev_ctx
.
GetEngine
();
...
...
@@ -68,12 +68,7 @@ std::cout<<"this is quantize op!!!!!!!!!!!!!!"<<std::endl;
auto
reorder_pd
=
std
::
shared_ptr
<
reorder
::
primitive_desc
>
(
new
reorder
::
primitive_desc
(
dst_pd
,
src_pd
,
attri
));
auto
reorder_p
=
std
::
shared_ptr
<
reorder
>
(
new
reorder
(
*
reorder_pd
,
*
src_memory_p
,
dst_memory
));
pipeline
.
push_back
(
*
reorder_p
);
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
GetMKLDNNFormat
(
dst_memory
));
}
};
...
...
paddle/fluid/platform/mkldnn_helper.h
浏览文件 @
5ac1c95c
...
...
@@ -153,11 +153,8 @@ class MKLDNNHandler {
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
PADDLE_ENFORCE
((
mem_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find mem primitive in device context"
);
//mem_p = nullptr;
if
(
mem_p
==
nullptr
)
{
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mdp
,
ptr
);
std
::
cout
<<
"mem_p == null"
<<
std
::
endl
;
//std::cout<<"mdp fmt = "<<mdp.desc().data.format<<" mem_p fmt = "<<mem_p->get_primitive_desc().desc().data.format<<std::endl;
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
}
else
{
mem_p
->
set_data_handle
(
ptr
);
...
...
@@ -165,7 +162,6 @@ std::cout<<"mem_p == null"<<std::endl;
// should be reused or none of them. So we check consistency
is_reusing_
=
true
;
}
std
::
cout
<<
"mdp fmt = "
<<
mdp
.
desc
().
data
.
format
<<
" mem_p fmt = "
<<
mem_p
->
get_primitive_desc
().
desc
().
data
.
format
<<
std
::
endl
;
return
mem_p
;
}
...
...
@@ -178,9 +174,7 @@ std::cout<<"mdp fmt = "<<mdp.desc().data.format<<" mem_p fmt = "<<mem_p->get_p
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
PADDLE_ENFORCE
((
mem_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find mem primitive in device context"
);
//mem_p = nullptr;
if
(
mem_p
==
nullptr
)
{
std
::
cout
<<
"mem_p == null"
<<
std
::
endl
;
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mkldnn
::
memory
::
primitive_desc
{
md
,
engine_
},
ptr
);
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
...
...
@@ -190,7 +184,6 @@ std::cout<<"mem_p == null"<<std::endl;
// should be reused or none of them. So we check consistency
is_reusing_
=
true
;
}
std
::
cout
<<
"md fmt = "
<<
md
.
data
.
format
<<
" mem_p fmt = "
<<
mem_p
->
get_primitive_desc
().
desc
().
data
.
format
<<
std
::
endl
;
return
mem_p
;
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录