conv_mkldnn_op.cc 40.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaolil1 已提交
17
#include "paddle/fluid/framework/data_layout_transform.h"
18 19 20 21

namespace paddle {
namespace operators {

22 23 24 25 26 27 28 29
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

30 31 32 33 34 35 36 37 38 39
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

57
  size_t GetDstMemorySize() const {
58 59 60
    return conv_pd_->dst_primitive_desc().get_size();
  }

61
  size_t GetDiffWeightsMemorySize() const {
62 63 64
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

65
  size_t GetDiffSourceMemorySize() const {
66 67 68
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

69 70
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
71
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
72 73 74 75 76 77 78 79
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
80
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
96
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
97 98 99 100 101 102 103 104
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
105
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
106 107 108 109 110 111 112 113 114 115 116 117
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

118 119 120 121 122 123 124
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
125
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
126
    auto src_pd = conv_pd_->src_primitive_desc();
127
    auto user_pd = user_memory_p->get_primitive_desc();
128 129 130 131 132 133
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
134
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
135 136 137 138
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
139 140 141 142
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
143 144
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
145 146
  }

147 148
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
149
      std::vector<mkldnn::primitive>& pipeline,
X
xiaolil1 已提交
150
      bool is_persistent = false,
X
xiaolil1 已提交
151 152 153
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
154 155 156
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
157 158
                               "@bias_mem_p", pipeline, is_persistent,
                               is_INT8, scale_data, mask);
159 160
  }

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

252 253
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
254 255 256 257 258 259
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
260 261 262 263 264 265 266
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
267 268 269 270
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
271 272
};

273
template <typename T>
274
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
275 276 277 278
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
K
Krzysztof Binias 已提交
279 280
    const bool is_test = ctx.Attr<bool>("is_test");

281 282
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
283 284 285 286
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
287
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
288 289
    auto* output = ctx.Output<Tensor>("Output");

290 291 292 293
    auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
    auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
    auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
    auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;
X
xiaolil1 已提交
294 295

    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
X
xiaolil1 已提交
296
    bool is_multi_channel = (is_INT8 && scale_weights->memory_size() > 1) ? true : false;
297

298 299 300 301 302 303
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
304 305 306 307 308 309 310 311 312 313 314
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
315 316 317 318

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
319
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
Z
Zhang, Guoming 已提交
320
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
321 322
    int groups = ctx.Attr<int>("groups");

Z
Zhang, Guoming 已提交
323
    // TODO(tpatejko): add support for dilation
324 325 326 327 328
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
X
xiaolil1 已提交
329
    const float* filter_data = filter->data<float>();
330 331 332 333

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
334 335 336 337 338 339 340 341 342 343 344 345 346
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
347 348
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

X
xiaolil1 已提交
349 350
    std::vector<float> output_shift_scale;
    float sum_scale = 1.0f;
351

352
    if(is_INT8){
X
xiaolil1 已提交
353
        int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
X
xiaolil1 已提交
354
        float scale_in_data = *(scale_in->data<float>());
355

X
xiaolil1 已提交
356
        std::vector<float> scale_weights_data(count);
357
        for(int i=0; i<count; i++){
X
xiaolil1 已提交
358
            scale_weights_data[i] =*(scale_weights->data<float>() + i);
359
        }
X
xiaolil1 已提交
360
        float scale_out_data = *(scale_out->data<float>());
361 362 363 364 365 366 367
        output_shift_scale.resize(count);
        for(int i=0; i<count; i++){
            if(scale_weights_data[i] == 0.0)
                output_shift_scale[i] = scale_out_data;
            else 
                output_shift_scale[i] = scale_out_data / (scale_in_data * scale_weights_data[i]);
        }
X
xiaolil1 已提交
368 369 370 371
        if(fuse_residual_conn){
            float scale_in_eltwise_data = *(scale_in_eltwise->data<float>());
            sum_scale = scale_out_data / scale_in_eltwise_data;
        }
372 373
    }

374 375 376 377 378 379
    // Get unique name for storing MKLDNN primitives
    const std::string key = ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";

X
xiaolil1 已提交
380
    std::vector<primitive> pipeline;
381
    auto user_src_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
382
            {src_tz}, paddle::framework::ToMKLDNNDataType(input->type()), input->format());
383
    auto user_weights_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
384 385
            {weights_tz}, platform::MKLDNNGetDataType<float>(),
            (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw);
386 387 388 389 390

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
391
    std::string data_format = ctx.Attr<std::string>("data_format");
X
xiaolil1 已提交
392
    auto chosen_memory_format = 
393
        platform::data_format_to_memory_format(data_format);
394

395
    auto src_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
396
        src_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format);
397
    auto weights_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
398
        weights_tz, platform::MKLDNNGetDataType<float>(),
399
        (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw);
400
    auto dst_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
401 402 403 404 405 406 407 408 409
        dst_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format);
    std::vector<int> bias_tz;

    if(is_INT8){
        src_md = platform::MKLDNNMemDesc(
            src_tz, memory::data_type::u8, chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
            weights_tz, memory::data_type::s8,
            (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw);
410 411 412 413 414 415 416
        auto dst_dt = fuse_relu? paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char))) : paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char)));
        if(fuse_residual_conn){
            auto residual = ctx.Input<Tensor>("ResidualData");
            auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
            if(dst_dt != residual_dt) 
                dst_dt = residual_dt;
        }
X
xiaolil1 已提交
417
        dst_md = platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format);
X
xiaolil1 已提交
418
    }
419

420
    // create a conv primitive descriptor and save it for usage in backward
421 422
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    if (bias) {
X
xiaolil1 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
        bias_tz = paddle::framework::vectorize2int(bias->dims());
        auto bias_md = platform::MKLDNNMemDesc(
            bias_tz, platform::MKLDNNGetDataType<float>(), memory::format::x);
        if(is_INT8){
            bias_md = platform::MKLDNNMemDesc(
                bias_tz, memory::data_type::s32, memory::format::x);
        }
        if(is_INT8){
            conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                           strides, paddings, mkldnn_engine,
                                           fuse_relu, fuse_residual_conn, 
                                           output_shift_scale, sum_scale);
        } else{
            conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                           strides, paddings, mkldnn_engine,
                                           fuse_relu, fuse_residual_conn);
        }
440
    } else {
X
xiaolil1 已提交
441 442 443 444 445 446 447 448 449 450
        if(is_INT8){
            conv_pd =
                ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                     mkldnn_engine, fuse_relu, fuse_residual_conn,
                                     output_shift_scale, sum_scale);
        } else{
            conv_pd =
                ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                     mkldnn_engine, fuse_relu, fuse_residual_conn);
        }
451
    }
452 453
    // Save conv_pd/src_memory/weights_memory for backward pass
    dev_ctx.SetBlob(key_conv_pd, conv_pd);
454

455
    ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
456

457 458 459 460
    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
X
xiaolil1 已提交
461
        user_weights_md, to_void_cast<float>(filter_data));
Z
Zhang, Guoming 已提交
462

463 464
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
465
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
X
xiaolil1 已提交
466
    std::shared_ptr<mkldnn::memory> weights_memory_p;
X
xiaolil1 已提交
467
    if(is_INT8){
468
        int mask_reorder = is_multi_channel? ((g!= 1) ? (1<<1)+(1<<0) : 1<<0) : 0;
X
xiaolil1 已提交
469
        int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
X
xiaolil1 已提交
470
        std::vector<float> scale_weights_data(count);
X
xiaolil1 已提交
471
        for(int i=0; i<count; i++){
X
xiaolil1 已提交
472
            scale_weights_data[i] = *(scale_weights->data<float>() + i);
X
xiaolil1 已提交
473
        }
X
xiaolil1 已提交
474
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
X
xiaolil1 已提交
475
            user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);
X
xiaolil1 已提交
476 477 478 479 480 481
    } else{
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
            user_weights_memory_p, pipeline, is_test);
    }

    std::shared_ptr<mkldnn::memory> dst_memory_p;
482
    bool need_s8_to_u8 = false;
X
xiaolil1 已提交
483 484 485 486 487 488 489
    if(is_INT8){
        if (fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                            "Output and elementwise parameter need to have the "
                            "same dimension sizes");
          output->ShareDataWith(*residual_param);
490 491 492
          auto residual_dt = paddle::framework::ToMKLDNNDataType(residual_param->type());
          if(residual_dt == mkldnn::memory::data_type::u8){

X
xiaolil1 已提交
493 494 495 496 497 498 499
              uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
          } else{
              int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
500 501
              if(fuse_relu)
                need_s8_to_u8 = true;
X
xiaolil1 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
          }
        } else {
          if(fuse_relu){
              uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
          } else{
              int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
          }
        }
    } else{
        T* output_data = nullptr;
        if (fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
          auto residual_param_data = residual_param->data<T>();

          PADDLE_ENFORCE(
              residual_param_data != nullptr,
              "Provide data if you want MKLDNN conv+elementwise_add fusion");
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                            "Output and elementwise parameter need to have the "
                            "same dimension sizes");

          output->ShareDataWith(*residual_param);
          output_data = output->mutable_data<T>(ctx.GetPlace());
        } else {
          output_data =
              output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
        }
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
X
xiaolil1 已提交
535
    }
536 537

    // create convolution op primitive
538 539
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    if (bias) {
X
xiaolil1 已提交
540
      const float* bias_data = bias->data<float>();
541
      auto user_bias_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
542
          {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x);
543
      auto user_bias_memory_p =
X
xiaolil1 已提交
544
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<float>(bias_data));
X
xiaolil1 已提交
545
      std::shared_ptr<mkldnn::memory>  bias_memory_p;
X
xiaolil1 已提交
546
      if(is_INT8){
547
          int mask_reorder = is_multi_channel? 1<<0 : 1;
X
xiaolil1 已提交
548
          int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
X
xiaolil1 已提交
549
          std::vector<float> scale_bias_data(count);
X
xiaolil1 已提交
550
          for(int i=0; i<count; i++){
X
xiaolil1 已提交
551
              scale_bias_data[i] = (*scale_in->data<float>()) * (*(scale_weights->data<float>() + i));
X
xiaolil1 已提交
552
          }
X
xiaolil1 已提交
553
          bias_memory_p =
X
xiaolil1 已提交
554
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test, is_INT8, scale_bias_data, mask_reorder);
X
xiaolil1 已提交
555 556 557 558
      } else{
          bias_memory_p =
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      } 
559 560 561 562 563 564
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
565

X
xiaolil1 已提交
566

567
    // push primitive to stream and wait until it's executed
568
    pipeline.push_back(*conv_p);
569 570
    stream(stream::kind::eager).submit(pipeline).wait();

571
    if(need_s8_to_u8){
572 573 574
        output->mutable_data<uint8_t>(ctx.GetPlace());
    }

575
    output->set_layout(DataLayout::kMKLDNN);
576
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
577
  }
578

579
 private:
Z
Zhang, Guoming 已提交
580
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
X
xiaolil1 已提交
581
                          const std::vector<float> output_shift_scale, float sum_scale) const {
582 583
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
584
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
585 586 587 588
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
589
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
590
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
591
      if (fuse_residual_conn) {
592 593 594 595 596
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
597
        constexpr float placeholder = 1.0f; //beta
598 599 600 601 602
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
603
    }
604

X
xiaolil1 已提交
605
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
606 607 608 609

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
610
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
611 612 613
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.

X
xiaolil1 已提交
614
      if (fuse_residual_conn) {
615 616 617 618 619 620 621 622 623 624 625 626 627
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
628
    }
M
Michal Gallus 已提交
629

Z
Zhang, Guoming 已提交
630
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
631 632 633 634
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
635
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
636
                         const std::vector<float> output_shift_scale, const float sum_scale) const {
637 638 639 640
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
641
          mkldnn::prop_kind::forward_scoring, mkldnn::convolution_direct, src, weights,
642 643 644 645
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
646
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
647 648 649 650 651 652

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
653
    }
M
Michal Gallus 已提交
654

655
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
656 657 658 659
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
660
                         const bool fuse_residual_conn) const{
661 662 663 664 665 666 667 668
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
  
      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
669
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
670 671 672 673 674 675 676
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
677 678

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
679 680 681 682 683
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
684
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
685
                         const std::vector<float> output_shift_scale, const float sum_scale) const {
686 687 688 689
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
690
          mkldnn::prop_kind::forward_scoring, mkldnn::convolution_direct, src, weights,
691 692 693 694
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
695
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
696 697 698 699 700 701 702 703 704 705 706 707 708 709

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
710
                         const bool fuse_residual_conn) const{
711 712 713 714 715 716 717 718
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
719
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
720 721 722 723 724 725 726 727

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

728 729 730
};

template <typename T>
731
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
732 733 734 735 736
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

737 738
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
739 740 741 742 743 744 745 746 747 748
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

749 750 751 752 753 754 755 756 757 758 759 760 761
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

762 763 764 765
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
766 767
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
768 769 770 771 772 773 774 775 776 777 778 779

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

780
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
781
    // as well as attributes of primitive to be created
782 783 784 785 786 787
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
788
    std::vector<primitive> pipeline;
789

790 791 792 793 794 795 796
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
797 798 799 800 801

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
802 803 804 805
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

806
    auto src_md = platform::MKLDNNMemDesc(
807
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
808
    auto diff_src_md = platform::MKLDNNMemDesc(
809
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
810
    auto weights_md = platform::MKLDNNMemDesc(
811
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
812
    auto diff_weights_md = platform::MKLDNNMemDesc(
813
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
814
    auto diff_dst_md = platform::MKLDNNMemDesc(
815
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
816

817
    // Retrieve conv_pd from device context
818 819 820
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
821 822 823
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

851 852
    // create backward conv primitive for weights
    if (filter_grad) {
853 854
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
855

856 857 858 859
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

860
      const size_t size = handler.GetDiffWeightsMemorySize();
861 862
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);

863 864 865 866 867 868 869 870 871
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
872 873

      filter_grad->set_layout(DataLayout::kMKLDNN);
874
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
875 876 877
    }

    if (input_grad) {
878 879 880 881 882 883 884
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

885
      const size_t size = handler.GetDiffSourceMemorySize();
886 887
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);

888 889 890 891 892 893 894
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
895 896

      input_grad->set_layout(DataLayout::kMKLDNN);
897
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
898
    }
899
    stream(stream::kind::eager).submit(pipeline).wait();
900 901 902 903 904 905 906 907 908
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
909 910
                   ops::ConvMKLDNNOpKernel<float>,
                   ops::ConvMKLDNNOpKernel<uint8_t>);
911 912

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
913
                   ops::ConvMKLDNNGradOpKernel<float>);