conv_mkldnn_op.cc 40.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

21 22 23 24 25 26 27 28
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

29 30 31 32 33 34 35 36 37 38
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

56
  size_t GetDstMemorySize() const {
57
    std::cout<<"dst size = "<<conv_pd_->dst_primitive_desc().get_size()<<std::endl;
58 59 60
    return conv_pd_->dst_primitive_desc().get_size();
  }

61
  size_t GetDiffWeightsMemorySize() const {
62 63 64
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

65
  size_t GetDiffSourceMemorySize() const {
66 67 68
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

69 70
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
71
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
72 73 74 75 76 77 78 79
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
80
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
96
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
97 98 99 100 101 102 103 104
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
105
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
106 107 108 109 110 111 112 113 114 115 116 117
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

118 119 120 121 122 123 124
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
125
      std::vector<mkldnn::primitive>& pipeline, bool is_INT8=false) {  // NOLINT
126
    auto src_pd = conv_pd_->src_primitive_desc();
127
    auto user_pd = is_INT8? src_pd : user_memory_p->get_primitive_desc();
128 129 130 131 132 133
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
134
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
135 136 137 138
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
139 140 141 142
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
143 144
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
145 146
  }

147 148
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
149 150 151 152
      std::vector<mkldnn::primitive>& pipeline,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
153 154 155
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
156 157
                               "@bias_mem_p", pipeline, 
                               false, is_INT8, scale_data, mask);
158 159
  }

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
X
xiaolil1 已提交
176
std::cout<<"4 is reuse = "<<is_reusing_;
177 178 179 180 181
      is_reusing_ = true;
    }
    return conv_p;
  }

182 183 184 185 186 187 188 189
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
X
xiaolil1 已提交
190
    //is_reusing_ = false;
191 192 193 194 195 196 197 198 199
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
X
xiaolil1 已提交
200
std::cout<<"5 is reuse = "<<is_reusing_;
201 202 203 204 205
      is_reusing_ = true;
    }
    return conv_p;
  }

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

254 255
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
256 257 258 259 260 261
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
262 263 264 265 266 267 268
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
269 270 271 272
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
273 274
};

275
template <typename T>
276
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
277 278 279 280
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
281
std::cout<<"this is conv kernel op....................."<<std::endl;
K
Krzysztof Binias 已提交
282 283
    const bool is_test = ctx.Attr<bool>("is_test");

284 285
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
286 287 288 289
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
290
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
291 292
    auto* output = ctx.Output<Tensor>("Output");

293
    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
294 295 296 297
    auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
    auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
    auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
    auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;
X
xiaolil1 已提交
298
    bool is_multi_channel = (is_INT8 && scale_weights->memory_size() > 1) ? true : false;
299

300 301 302 303 304 305
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
306 307 308 309 310 311 312 313 314 315 316
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
317 318 319 320

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
321
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
Z
Zhang, Guoming 已提交
322
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
323 324
    int groups = ctx.Attr<int>("groups");

Z
Zhang, Guoming 已提交
325
    // TODO(tpatejko): add support for dilation
326 327 328 329 330
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
331
    const float* filter_data = filter->data<float>();
332 333 334 335

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
336 337 338 339 340 341 342 343 344 345 346 347 348
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
349 350
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

351 352
    std::vector<float> output_shift_scale;
    float sum_scale = 1.0f;
353
    if(is_INT8){
354
std::cout<<"this is conv int8 op .............."<<std::endl;
X
xiaolil1 已提交
355
        int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
356 357
        float scale_in_data = *(scale_in->data<float>());
        std::vector<float> scale_weights_data(count);
358
        for(int i=0; i<count; i++){
359
            scale_weights_data[i] =*(scale_weights->data<float>() + i);
360
        }
361
        float scale_out_data = *(scale_out->data<float>());
362 363 364 365 366 367 368 369

        output_shift_scale.resize(count);
        for(int i=0; i<count; i++){
            if(scale_weights_data[i] == 0.0)
                output_shift_scale[i] = scale_out_data;
            else 
                output_shift_scale[i] = scale_out_data / (scale_in_data * scale_weights_data[i]);
        }
370 371 372 373
        if(fuse_residual_conn){
            float scale_in_eltwise_data = *(scale_in_eltwise->data<float>());
            sum_scale = scale_out_data / scale_in_eltwise_data;
        }
374 375
    }

376 377 378 379 380 381
    // Get unique name for storing MKLDNN primitives
    const std::string key = ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";

X
xiaolil1 已提交
382
std::cout<<key_conv_pd<<std::endl;
383

X
xiaolil1 已提交
384 385
    std::vector<primitive> pipeline;
std::cout<<"log1....."<<std::endl;
386
    auto user_src_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
387 388
        {src_tz}, platform::MKLDNNGetDataType<float>(), mkldnn::memory::format::nChw16c);
std::cout<<"log2....."<<std::endl;
389
    auto user_weights_md = platform::MKLDNNMemDesc(
390
        {weights_tz}, platform::MKLDNNGetDataType<float>(),
391
        (g == 1) ? filter->format() : mkldnn::memory::format::goihw);
X
xiaolil1 已提交
392
std::cout<<"log3....."<<std::endl;
393 394 395 396 397

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
398
    std::string data_format = ctx.Attr<std::string>("data_format");
X
xiaolil1 已提交
399
    auto chosen_memory_format = 
400
        platform::data_format_to_memory_format(data_format);
X
xiaolil1 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    //std::shared_ptr<mkldnn::memory::desc> src_md; 
    //std::shared_ptr<mkldnn::memory::desc> weights_md;
    //std::shared_ptr<mkldnn::memory::desc> dst_md;
    std::vector<int> bias_tz; 

    //if(is_INT8){
    //    src_md.reset(new platform::MKLDNNMemDesc(
    //        src_tz, memory::data_type::u8, chosen_memory_format));
    //    weights_md.reset(new platform::MKLDNNMemDesc(
    //        weights_tz, memory::data_type::s8, 
    //        (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw));
    //    dst_md.reset(new platform::MKLDNNMemDesc(
    //        dst_tz, 
    //        fuse_relu?memory::data_type::u8:memory::data_type::s8,
    //        chosen_memory_format));
    //} else{
    //    src_md.reset(new platform::MKLDNNMemDesc(
    //        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format));
    //    weights_md.reset(new platform::MKLDNNMemDesc(
    //        weights_tz, platform::MKLDNNGetDataType<T>(),
    //        (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw));
    //    dst_md.reset(new platform::MKLDNNMemDesc(
    //        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format));
    //}
425
    auto src_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
426
        src_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format);
427
    auto weights_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
428
        weights_tz, platform::MKLDNNGetDataType<float>(),
429
        (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw);
430
    auto dst_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
431
        dst_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format);
432 433 434 435
    if(is_INT8){
        src_md = platform::MKLDNNMemDesc(
            src_tz, memory::data_type::u8, chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
436
            weights_tz, memory::data_type::s8,
437 438
            (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw);
        dst_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
439
            dst_tz,
X
xiaolil1 已提交
440
            fuse_relu?memory::data_type::u8:memory::data_type::s8,
441 442 443
            chosen_memory_format);
    }

444
    // create a conv primitive descriptor and save it for usage in backward
445 446 447 448
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    if (bias) {
      bias_tz = paddle::framework::vectorize2int(bias->dims());
      auto bias_md = platform::MKLDNNMemDesc(
449 450 451 452 453
          bias_tz, platform::MKLDNNGetDataType<float>(), memory::format::x);
      if(is_INT8){
          bias_md = platform::MKLDNNMemDesc(
              bias_tz, memory::data_type::s32, memory::format::x);
      }
454 455 456
      if(is_INT8){
          conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                         strides, paddings, mkldnn_engine,
Z
Zhang, Guoming 已提交
457
                                         fuse_relu, fuse_residual_conn, 
458 459 460 461
                                         output_shift_scale, sum_scale);
      } else{
          conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                         strides, paddings, mkldnn_engine,
Z
Zhang, Guoming 已提交
462
                                         fuse_relu, fuse_residual_conn);
463
      }
464
    } else {
465 466 467
      if(is_INT8){
          conv_pd =
              ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
Z
Zhang, Guoming 已提交
468
                                   mkldnn_engine, fuse_relu, fuse_residual_conn,
469 470 471 472
                                   output_shift_scale, sum_scale);
      } else{
          conv_pd =
              ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
Z
Zhang, Guoming 已提交
473
                                   mkldnn_engine, fuse_relu, fuse_residual_conn);
474
      }
475
    }
476 477
    // Save conv_pd/src_memory/weights_memory for backward pass
    dev_ctx.SetBlob(key_conv_pd, conv_pd);
478

479
    ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
480

481 482 483 484
    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
485
        user_weights_md, to_void_cast<float>(filter_data));
Z
Zhang, Guoming 已提交
486

487 488
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
489
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline, is_INT8);
490
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
K
Krzysztof Binias 已提交
491
        user_weights_memory_p, pipeline, is_test);
X
xiaolil1 已提交
492 493 494
    if(is_INT8){
        int mask_reorder = is_multi_channel? 0 : ((g!= 1) ? (1<<1)+(1<<0) : 1<<0);
        int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
495
        std::vector<float> scale_weights_data(count);
X
xiaolil1 已提交
496
        for(int i=0; i<count; i++){
X
xiaolil1 已提交
497
            scale_weights_data[i] = *(scale_weights->data<float>() + i);
X
xiaolil1 已提交
498 499 500 501
        }
        auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
            user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);
    }
502 503 504

    std::shared_ptr<mkldnn::memory> dst_memory_p;
    if(is_INT8){
X
xiaolil1 已提交
505
        int8_t* output_data = nullptr;
506 507 508 509 510 511 512
        if (fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                            "Output and elementwise parameter need to have the "
                            "same dimension sizes");

          output->ShareDataWith(*residual_param);
X
xiaolil1 已提交
513
          output_data = output->mutable_data<int8_t>(ctx.GetPlace());
514 515
        } else {
          std::cout<<"conv log 1 ....................."<<std::endl;
X
xiaolil1 已提交
516 517
          output_data =
              output->mutable_data<int8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
518 519
          std::cout<<"conv log 2 //////////////////////"<<std::endl;
        }
X
xiaolil1 已提交
520 521
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
std::cout<<"input fmt = "<<input->format()<<"  output fmt = "<<output->format()<<"   dst fmt = "<<dst_memory_p->get_primitive_desc().desc().data.format<<std::endl;
    } else{
        T* output_data = nullptr;
        if (fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
          auto residual_param_data = residual_param->data<T>();

          PADDLE_ENFORCE(
              residual_param_data != nullptr,
              "Provide data if you want MKLDNN conv+elementwise_add fusion");
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                            "Output and elementwise parameter need to have the "
                            "same dimension sizes");

          output->ShareDataWith(*residual_param);
          output_data = output->mutable_data<T>(ctx.GetPlace());
        } else {
          std::cout<<"conv log 1 ....................."<<std::endl;
          output_data =
              output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
          std::cout<<"conv log 2 //////////////////////"<<std::endl;
        }
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
    }
547 548

    // create convolution op primitive
549 550
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    if (bias) {
551
      const float* bias_data = bias->data<float>();
552
      auto user_bias_md = platform::MKLDNNMemDesc(
553
          {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x);
554
      auto user_bias_memory_p =
555
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<float>(bias_data));
X
xiaolil1 已提交
556 557
      std::shared_ptr<mkldnn::memory>  bias_memory_p;// =
          //handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
X
xiaolil1 已提交
558 559 560
      if(is_INT8){
          int mask_reorder = is_multi_channel? 0 : 1<<0;
          int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
561
          std::vector<float> scale_bias_data(count);
X
xiaolil1 已提交
562
          for(int i=0; i<count; i++){
563
              scale_bias_data[i] = (*scale_in->data<float>()) * (*(scale_weights->data<float>() + i));
X
xiaolil1 已提交
564
          }
X
xiaolil1 已提交
565
          bias_memory_p =
X
xiaolil1 已提交
566
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_INT8, scale_bias_data, mask_reorder);
X
xiaolil1 已提交
567 568 569 570
      } else{
          bias_memory_p =
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      } 
571 572 573 574 575 576
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
577

578

579
    // push primitive to stream and wait until it's executed
580
    pipeline.push_back(*conv_p);
581 582 583
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
584
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
X
xiaolil1 已提交
585
    std::cout<<"input fmt = "<<input->format()<<"  output fmt = "<<output->format()<<"   dst fmt = "<<dst_memory_p->get_primitive_desc().desc().data.format<<std::endl;
586
  }
587

588
 private:
Z
Zhang, Guoming 已提交
589
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
590
                          const std::vector<float> output_shift_scale, float sum_scale) const {
591 592
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
593
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
594 595 596 597
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
598
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
599
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
600
      if (fuse_residual_conn) {
601 602 603 604 605
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
606
        constexpr float placeholder = 0.0f; //beta
607 608 609 610 611
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
612
    }
613

X
xiaolil1 已提交
614
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
615 616 617 618

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
619
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
620 621 622
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.

X
xiaolil1 已提交
623
      if (fuse_residual_conn) {
624 625 626 627 628 629 630 631 632 633 634 635 636
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
637
    }
M
Michal Gallus 已提交
638

Z
Zhang, Guoming 已提交
639
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
640 641 642 643
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
644
                         const bool fuse_residual_conn,
645
                         const std::vector<float> output_shift_scale, const float sum_scale) const {
646 647 648 649 650 651 652 653 654
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
655
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
656 657 658 659 660 661

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
662
    }
M
Michal Gallus 已提交
663

664
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
665 666 667 668
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
669
                         const bool fuse_residual_conn) const{
670 671 672 673 674 675 676 677
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
  
      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
678
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
679 680 681 682 683 684 685
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
686 687

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
688 689 690 691 692
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
693
                         const bool fuse_residual_conn,
694
                         const std::vector<float> output_shift_scale, const float sum_scale) const {
695 696 697 698 699 700 701 702 703
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
704
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
705 706 707 708 709 710 711 712 713 714 715 716 717 718

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
719
                         const bool fuse_residual_conn) const{
720 721 722 723 724 725 726 727
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
728
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
729 730 731 732 733 734 735 736

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

737 738 739
};

template <typename T>
740
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
741 742 743 744 745
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

746 747
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
748 749 750 751 752 753 754 755 756 757
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

758 759 760 761 762 763 764 765 766 767 768 769 770
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

771 772 773 774
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
775 776
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
777 778 779 780 781 782 783 784 785 786 787 788

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

789
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
790
    // as well as attributes of primitive to be created
791 792 793 794 795 796
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
797
    std::vector<primitive> pipeline;
798

799 800 801 802 803 804 805
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
806 807 808 809 810

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
811 812 813 814
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

815
    auto src_md = platform::MKLDNNMemDesc(
816
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
817
    auto diff_src_md = platform::MKLDNNMemDesc(
818
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
819
    auto weights_md = platform::MKLDNNMemDesc(
820
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
821
    auto diff_weights_md = platform::MKLDNNMemDesc(
822
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
823
    auto diff_dst_md = platform::MKLDNNMemDesc(
824
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
825

826
    // Retrieve conv_pd from device context
827 828 829
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
830 831 832
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

860 861
    // create backward conv primitive for weights
    if (filter_grad) {
862 863
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
864

865 866 867 868
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

869
      const size_t size = handler.GetDiffWeightsMemorySize();
870 871
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);

872 873 874 875 876 877 878 879 880
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
881 882

      filter_grad->set_layout(DataLayout::kMKLDNN);
883
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
884 885 886
    }

    if (input_grad) {
887 888 889 890 891 892 893
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

894
      const size_t size = handler.GetDiffSourceMemorySize();
895 896
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);

897 898 899 900 901 902 903
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
904 905

      input_grad->set_layout(DataLayout::kMKLDNN);
906
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
907
    }
908
    stream(stream::kind::eager).submit(pipeline).wait();
909 910 911 912 913 914 915 916 917
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
918
                   ops::ConvMKLDNNOpKernel<float>,
X
xiaolil1 已提交
919
                   ops::ConvMKLDNNOpKernel<int8_t>);
920 921

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
922
                   ops::ConvMKLDNNGradOpKernel<float>);