Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f35d8ea8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f35d8ea8
编写于
10月 25, 2018
作者:
X
xiaolil1
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix bugs for INT8 with work around and debug logs
上级
6e6944cf
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
161 addition
and
28 deletion
+161
-28
paddle/fluid/framework/data_layout_transform.h
paddle/fluid/framework/data_layout_transform.h
+1
-1
paddle/fluid/framework/tensor_impl.h
paddle/fluid/framework/tensor_impl.h
+2
-2
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+58
-12
paddle/fluid/operators/dequantize_op.cc
paddle/fluid/operators/dequantize_op.cc
+16
-1
paddle/fluid/operators/pool_mkldnn_op.cc
paddle/fluid/operators/pool_mkldnn_op.cc
+23
-0
paddle/fluid/operators/requantize_op.cc
paddle/fluid/operators/requantize_op.cc
+52
-11
paddle/fluid/operators/softmax_mkldnn_op.cc
paddle/fluid/operators/softmax_mkldnn_op.cc
+9
-1
未找到文件。
paddle/fluid/framework/data_layout_transform.h
浏览文件 @
f35d8ea8
...
...
@@ -53,7 +53,7 @@ inline DataLayout ToPaddleLayout(const MKLDNNFormat& format) {
inline
MKLDNNDataType
ToMKLDNNDataType
(
const
std
::
type_index
type
)
{
static
const
std
::
map
<
std
::
type_index
,
MKLDNNDataType
>
dict
{
{
std
::
type_index
(
typeid
(
float
)),
MKLDNNDataType
::
f32
},
// NOLINT
{
std
::
type_index
(
typeid
(
char
)),
MKLDNNDataType
::
s8
},
// NOLINT
{
std
::
type_index
(
typeid
(
signed
char
)),
MKLDNNDataType
::
s8
},
// NOLINT
{
std
::
type_index
(
typeid
(
unsigned
char
)),
MKLDNNDataType
::
u8
},
{
std
::
type_index
(
typeid
(
int16_t
)),
MKLDNNDataType
::
s16
},
{
std
::
type_index
(
typeid
(
int32_t
)),
MKLDNNDataType
::
s32
}};
...
...
paddle/fluid/framework/tensor_impl.h
浏览文件 @
f35d8ea8
...
...
@@ -25,8 +25,8 @@ inline const T* Tensor::data() const {
check_memory_size
();
bool
valid
=
std
::
is_same
<
T
,
void
>::
value
||
holder_
->
type
()
==
std
::
type_index
(
typeid
(
T
));
PADDLE_ENFORCE
(
valid
,
"Tensor holds the wrong type, it holds %
s
"
,
this
->
holder_
->
type
()
.
name
()
);
PADDLE_ENFORCE
(
valid
,
"Tensor holds the wrong type, it holds %
d
"
,
this
->
holder_
->
type
());
return
reinterpret_cast
<
const
T
*>
(
reinterpret_cast
<
uintptr_t
>
(
holder_
->
ptr
())
+
offset_
);
...
...
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
f35d8ea8
...
...
@@ -358,7 +358,7 @@ printf("\n");fflush(stdout);
if
(
is_INT8
){
std
::
cout
<<
"this is conv int8 op .............."
<<
std
::
endl
;
//const uint8_t* input_data_int8 = input->data<uint8_t>(); //FIX ME XIAOLI
//unsigned char* a = (unsigned char*)(input_data);
//for(int i=0; i<50; i++){
// printf("%d ", *(a+i));
...
...
@@ -373,12 +373,14 @@ for(int i=0; i<50; i++){
}
printf
(
"
\n
"
);
fflush
(
stdout
);
std
::
cout
<<
"scale_in = "
<<
scale_in_data
<<
std
::
endl
;
std
::
vector
<
float
>
scale_weights_data
(
count
);
for
(
int
i
=
0
;
i
<
count
;
i
++
){
scale_weights_data
[
i
]
=*
(
scale_weights
->
data
<
float
>
()
+
i
);
}
float
scale_out_data
=
*
(
scale_out
->
data
<
float
>
());
std
::
cout
<<
"scale_out = "
<<
scale_out_data
<<
std
::
endl
;
output_shift_scale
.
resize
(
count
);
for
(
int
i
=
0
;
i
<
count
;
i
++
){
if
(
scale_weights_data
[
i
]
==
0.0
)
...
...
@@ -389,6 +391,7 @@ printf("\n");fflush(stdout);
if
(
fuse_residual_conn
){
float
scale_in_eltwise_data
=
*
(
scale_in_eltwise
->
data
<
float
>
());
sum_scale
=
scale_out_data
/
scale_in_eltwise_data
;
std
::
cout
<<
"scale_in_eltwise_data = "
<<
scale_in_eltwise_data
<<
" scale_out_data = "
<<
scale_out_data
<<
" sum_scale = "
<<
sum_scale
<<
std
::
endl
;
}
}
...
...
@@ -398,7 +401,7 @@ printf("\n");fflush(stdout);
ctx
.
op
().
Output
(
"Output"
));
const
std
::
string
key_conv_pd
=
key
+
"@conv_pd"
;
std
::
cout
<<
key_conv_pd
<<
std
::
endl
;
std
::
cout
<<
"current op is = "
<<
key_conv_pd
<<
std
::
endl
;
std
::
vector
<
primitive
>
pipeline
;
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
...
...
@@ -430,11 +433,20 @@ std::cout<<key_conv_pd<<std::endl;
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
memory
::
data_type
::
s8
,
(
g
==
1
)
?
chosen_memory_format
:
mkldnn
::
memory
::
format
::
goihw
);
auto
dst_dt
=
fuse_relu
?
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
unsigned
char
)))
:
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
signed
char
)));
if
(
fuse_residual_conn
){
auto
residual
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual
->
type
());
if
(
dst_dt
!=
residual_dt
)
dst_dt
=
residual_dt
;
}
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
fuse_relu
?
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
unsigned
char
)))
:
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
char
))),
dst_tz
,
// memory::data_type::f32, chosen_memory_format);
dst_dt
,
//paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char))),
chosen_memory_format
);
//fuse_relu? paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char))) :
//paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char))),
//chosen_memory_format);
}
// create a conv primitive descriptor and save it for usage in backward
...
...
@@ -486,7 +498,7 @@ std::cout<<key_conv_pd<<std::endl;
std
::
shared_ptr
<
mkldnn
::
memory
>
weights_memory_p
;
// = handler.AcquireWeightsMemoryFromPrimitive(
//user_weights_memory_p, pipeline, is_test);
if
(
is_INT8
){
int
mask_reorder
=
is_multi_channel
?
0
:
((
g
!=
1
)
?
(
1
<<
1
)
+
(
1
<<
0
)
:
1
<<
0
)
;
int
mask_reorder
=
is_multi_channel
?
((
g
!=
1
)
?
(
1
<<
1
)
+
(
1
<<
0
)
:
1
<<
0
)
:
0
;
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
std
::
vector
<
float
>
scale_weights_data
(
count
);
for
(
int
i
=
0
;
i
<
count
;
i
++
){
...
...
@@ -503,17 +515,48 @@ std::cout<<key_conv_pd<<std::endl;
if
(
is_INT8
){
if
(
fuse_residual_conn
)
{
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
//auto residual_param_data = residual_param->data<T>();
PADDLE_ENFORCE_EQ
(
output
->
dims
(),
residual_param
->
dims
(),
"Output and elementwise parameter need to have the "
"same dimension sizes"
);
//std::cout<<"output = "<<output<<" residual_param = "<<residual_param<<std::endl;
output
->
ShareDataWith
(
*
residual_param
);
if
(
fuse_relu
){
auto
residual_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
if
(
residual_dt
==
mkldnn
::
memory
::
data_type
::
u8
){
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
//std::cout<<"after share output = "<<output<<" residual_param = "<<residual_param<<std::endl;
//float scale_in_eltwise_data = *(scale_in_eltwise->data<float>());
printf
(
"residual is u8: this is bottom 1 data
\n
"
);
//unsigned char* f = (unsigned char*)(residual_param_data);
//for(int i=0; i<50; i++){
// printf("%f ", (float)f[i]/scale_in_eltwise_data);
//}
//printf("\n");
//printf("this is output data\n");
//unsigned char* e = (unsigned char*)(output_data);
//for(int i=0; i<50; i++){
// printf("%f ", (float)e[i]/scale_in_eltwise_data);
//}
//printf("\n");
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
uint8_t
>
(
output_data
));
}
else
{
int8_t
*
output_data
=
output
->
mutable_data
<
int8_t
>
(
ctx
.
GetPlace
());
//std::cout<<"after share output = "<<output<<" residual_param = "<<residual_param<<std::endl;
printf
(
"residual is s8 : this is bottom 1 data
\n
"
);
//char* f = (char*)(residual_param_data);
//for(int i=0; i<50; i++){
// printf("%f ", (float)f[i]);
//}
//printf("\n");
//printf("this is output data\n");
//char* e = (char*)(output_data);
//for(int i=0; i<50; i++){
// printf("%f ", (float)e[i]);
//}
//printf("\n");
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
int8_t
>
(
output_data
));
}
...
...
@@ -563,7 +606,7 @@ std::cout<<"input fmt = "<<input->format()<<" input dt = "<<paddle::framework:
std
::
shared_ptr
<
mkldnn
::
memory
>
bias_memory_p
;
// =
//handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
if
(
is_INT8
){
int
mask_reorder
=
is_multi_channel
?
0
:
1
<<
0
;
int
mask_reorder
=
is_multi_channel
?
1
<<
0
:
1
;
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
std
::
vector
<
float
>
scale_bias_data
(
count
);
for
(
int
i
=
0
;
i
<
count
;
i
++
){
...
...
@@ -589,7 +632,10 @@ std::cout<<"input fmt = "<<input->format()<<" input dt = "<<paddle::framework:
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory_p
));
//if(is_INT8){
// uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace()); //work aroud forsum fusion
// std::cout<<"output_data = "<<output_data<<std::endl;
//}
std
::
cout
<<
"input fmt = "
<<
input
->
format
()
<<
" output fmt = "
<<
output
->
format
()
<<
" dst fmt = "
<<
dst_memory_p
->
get_primitive_desc
().
desc
().
data
.
format
<<
"output dt = "
<<
paddle
::
framework
::
ToMKLDNNDataType
(
output
->
type
())
<<
"dst dt = "
<<
dst_memory_p
->
get_primitive_desc
().
desc
().
data
.
data_type
<<
std
::
endl
;
std
::
cout
<<
"this is conv end!!!!!!!!!!!!!!!!!!!!"
<<
std
::
endl
;
}
...
...
@@ -612,7 +658,7 @@ std::cout<<"input fmt = "<<input->format()<<" output fmt = "<<output->format()<
if
(
fuse_relu
)
{
constexpr
float
scale
=
1.0
f
;
constexpr
float
negative_slope
=
0.0
f
;
constexpr
float
placeholder
=
0
.0
f
;
//beta
constexpr
float
placeholder
=
1
.0
f
;
//beta
post_operations
.
append_eltwise
(
scale
,
mkldnn
::
algorithm
::
eltwise_relu
,
negative_slope
,
placeholder
);
}
...
...
paddle/fluid/operators/dequantize_op.cc
浏览文件 @
f35d8ea8
...
...
@@ -49,6 +49,17 @@ std::cout<<"this is dequant op ***********"<<std::endl;
float
*
output_data
=
output
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
//T scale_data = *(scale->data<T>());
std
::
vector
<
float
>
scale_data
=
{
*
(
scale
->
data
<
float
>
())};
std
::
vector
<
float
>
reorder_scale
=
{
1.0
f
/
scale_data
[
0
]};
for
(
int
i
=
0
;
i
<
50
;
i
++
){
printf
(
"%d "
,
*
(
input_data
+
i
));
}
printf
(
"
\n
"
);
fflush
(
stdout
);
for
(
int
i
=
0
;
i
<
50
;
i
++
){
printf
(
"%f "
,
*
(
input_data
+
i
)
/
scale_data
[
0
]);
}
printf
(
"
\n
"
);
fflush
(
stdout
);
std
::
cout
<<
"scale = "
<<
scale_data
[
0
]
<<
std
::
endl
;
std
::
vector
<
primitive
>
pipeline
;
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
...
...
@@ -58,7 +69,7 @@ std::cout<<"this is dequant op ***********"<<std::endl;
mkldnn
::
primitive_attr
attri
;
int
mask
=
0
;
attri
.
set_output_scales
(
mask
,
scale_data
);
attri
.
set_output_scales
(
mask
,
reorder_scale
);
auto
src_md
=
platform
::
MKLDNNMemDesc
(
{
src_tz
},
src_dt
,
src_fmt
);
...
...
@@ -75,6 +86,10 @@ std::cout<<"this is dequant op ***********"<<std::endl;
new
reorder
::
primitive_desc
(
src_pd
,
dst_pd
,
attri
));
auto
reorder_p
=
std
::
shared_ptr
<
reorder
>
(
new
reorder
(
*
reorder_pd
,
*
src_memory_p
,
dst_memory
));
pipeline
.
push_back
(
*
reorder_p
);
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
GetMKLDNNFormat
(
dst_memory
));
}
};
...
...
paddle/fluid/operators/pool_mkldnn_op.cc
浏览文件 @
f35d8ea8
...
...
@@ -105,6 +105,16 @@ std::cout<<"this is pool op"<<std::endl;
const
T
*
input_data
=
input
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
for
(
int
i
=
0
;
i
<
50
;
i
++
){
printf
(
"%f "
,(
float
)
*
(
input_data
+
i
));
}
printf
(
"
\n
"
);
fflush
(
stdout
);
for
(
int
i
=
0
;
i
<
50
;
i
++
){
printf
(
"%f "
,
*
(
input_data
+
i
)
/
14.4791
);
}
printf
(
"
\n
"
);
fflush
(
stdout
);
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
...
...
@@ -193,12 +203,25 @@ std::cout<<"input type = "<<dt<<std::endl;
.
data
.
format
;
}
printf
(
"befor submit!!!!!!!!!!!
\n
"
);
for
(
int
i
=
0
;
i
<
50
;
i
++
){
printf
(
"%f "
,
*
(
output_data
+
i
)
/
14.4791
);
}
printf
(
"
\n
"
);
fflush
(
stdout
);
// push primitive to stream and wait until it's executed
std
::
vector
<
mkldnn
::
primitive
>
pipeline
{
*
(
pool_p
.
get
())};
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
printf
(
"after submit!!!!!!!!!!!
\n
"
);
for
(
int
i
=
0
;
i
<
50
;
i
++
){
printf
(
"%f "
,
*
(
output_data
+
i
)
/
14.4791
);
}
printf
(
"
\n
"
);
fflush
(
stdout
);
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
output_format
);
std
::
cout
<<
"input fmt = "
<<
input
->
format
()
<<
" output fmt = "
<<
output
->
format
()
<<
"output dt = "
<<
paddle
::
framework
::
ToMKLDNNDataType
(
output
->
type
())
<<
std
::
endl
;
}
private:
...
...
paddle/fluid/operators/requantize_op.cc
浏览文件 @
f35d8ea8
...
...
@@ -36,9 +36,9 @@ class ReQuantOpKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
//
auto* scale = ctx.Input<Tensor>("Scale");
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
std
::
cout
<<
"this is requantize op!!!!!!!!!!"
<<
std
::
endl
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
MKLDNNDeviceContext
>();
const
auto
&
engine
=
dev_ctx
.
GetEngine
();
...
...
@@ -47,18 +47,18 @@ class ReQuantOpKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
mkldnn
::
memory
::
data_type
src_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
());
mkldnn
::
memory
::
data_type
dst_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
output
->
type
());
mkldnn
::
memory
::
data_type
dst_dt
=
mkldnn
::
memory
::
data_type
::
u8
;
//
paddle::framework::ToMKLDNNDataType(output->type());
mkldnn
::
memory
::
format
src_fmt
=
memory
::
format
::
nhwc
;
//input->format();
mkldnn
::
memory
::
format
dst_fmt
=
memory
::
format
::
nhwc
;
//output->format();
const
T
*
input_data
=
input
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
//T scale_data = *(scale->data<T>());
std
::
vector
<
T
>
scale_data
=
{
*
(
scale
->
data
<
T
>
())};
std
::
vector
<
float
>
scale_data
=
{
0.9999999
};
//{*(scale->data<float
>())};
mkldnn
::
primitive_attr
attri
;
int
mask
=
0
;
attri
.
set_output_scales
(
mask
,
scale_data
);
attri
.
set_output_scales
(
mask
,
scale_data
);
//
scale_data);
//attri.set_int_output_round_mode(round_nearest); //FIX ME
auto
src_md
=
platform
::
MKLDNNMemDesc
(
...
...
@@ -70,13 +70,54 @@ class ReQuantOpKernel : public framework::OpKernel<T> {
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
{
dst_tz
},
dst_dt
,
dst_fmt
);
auto
dst_pd
=
mkldnn
::
memory
::
primitive_desc
(
dst_md
,
engine
);
auto
dst_memory
=
mkldnn
::
memory
(
dst_pd
,
to_void_cast
<
T
>
(
output_data
));
auto
dst_memory
=
mkldnn
::
memory
(
dst_pd
,
to_void_cast
<
uint8_t
>
(
output_data
));
auto
reorder_pd
=
std
::
shared_ptr
<
reorder
::
primitive_desc
>
(
new
reorder
::
primitive_desc
(
dst_pd
,
src_pd
,
attri
));
auto
reorder_p
=
std
::
shared_ptr
<
reorder
>
(
new
reorder
(
*
reorder_pd
,
*
src_memory_p
,
dst_memory
));
pipeline
.
push_back
(
*
reorder_p
);
new
reorder
::
primitive_desc
(
src_pd
,
dst_pd
,
attri
));
for
(
int
i
=
0
;
i
<
50
;
i
++
){
printf
(
"%d "
,
*
(
input_data
+
i
));
}
printf
(
"
\n
"
);
fflush
(
stdout
);
//for(int i=0; i<50; i++){
// printf("%f ", *(input_data+i)/107.426);
//}
//printf("\n");fflush(stdout);
std
::
cout
<<
"scale = "
<<
scale_data
[
0
]
<<
std
::
endl
;
//for(int i=0; i<50; i++){
// printf("%f ", *(output_data+i)/107.426);
//}
//printf("\n");fflush(stdout);
// int is_sum = false;//ctx.Attr<int>("is_sum");
// if(is_sum){
//std::cout<<"input fmt = "<<input->format()<<" output fmt = "<<output->format()<<"output dt = "<<paddle::framework::ToMKLDNNDataType(output->type())<<std::endl;
// output_data = (uint8_t*)input_data;
//std::cout<<"input fmt = "<<input->format()<<" output fmt = "<<output->format()<<"output dt = "<<paddle::framework::ToMKLDNNDataType(output->type())<<std::endl;
//
//printf("after*************\n");
//for(int i=0; i<50; i++){
// printf("%f ", *(output_data+i)/107.426);
//}
//printf("\n");fflush(stdout);
//
// } else{
auto
reorder_p
=
std
::
shared_ptr
<
reorder
>
(
new
reorder
(
*
reorder_pd
,
*
src_memory_p
,
dst_memory
));
pipeline
.
push_back
(
*
reorder_p
);
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
// }
//uint8_t* output_data_2 = output->mutable_data<uint8_t>(ctx.GetPlace());
//for(int i=0; i<50; i++){
// printf("%f ", *(output_data_2+i)/107.426);
//}
//printf("\n");fflush(stdout);
for
(
int
i
=
0
;
i
<
50
;
i
++
){
printf
(
"%d "
,
*
(
output_data
+
i
));
}
printf
(
"
\n
"
);
fflush
(
stdout
);
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
GetMKLDNNFormat
(
dst_memory
));
std
::
cout
<<
"input fmt = "
<<
input
->
format
()
<<
" output fmt = "
<<
output
->
format
()
<<
"output dt = "
<<
paddle
::
framework
::
ToMKLDNNDataType
(
output
->
type
())
<<
std
::
endl
;
}
};
...
...
@@ -113,4 +154,4 @@ namespace ops = paddle::operators;
REGISTER_OPERATOR
(
requantize
,
ops
::
ReQuantOp
,
ops
::
ReQuantOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OP_KERNEL
(
requantize
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
ReQuantOpKernel
<
floa
t
>
);
REGISTER_OP_KERNEL
(
requantize
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
ReQuantOpKernel
<
int8_
t
>
);
paddle/fluid/operators/softmax_mkldnn_op.cc
浏览文件 @
f35d8ea8
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include "mkldnn.hpp"
#include "paddle/fluid/operators/softmax_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/framework/data_layout_transform.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -131,6 +132,13 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
const
T
*
input_data
=
flattened_input
.
data
<
T
>
();
T
*
output_data
=
flattened_output
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
printf
(
"this is softmax!!!!!!!!!!!!!!
\n
"
);
for
(
int
i
=
0
;
i
<
50
;
i
++
){
printf
(
"%f "
,
(
float
)
*
(
input_data
+
i
));
}
printf
(
"
\n
"
);
fflush
(
stdout
);
std
::
cout
<<
"input fmt = "
<<
input
->
format
()
<<
" input dt = "
<<
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
())
<<
" output fmt = "
<<
output
->
format
()
<<
" output dt = "
<<
paddle
::
framework
::
ToMKLDNNDataType
(
output
->
type
())
<<
std
::
endl
;
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
flattened_dims
);
std
::
vector
<
int
>
dst_tz
=
src_tz
;
...
...
@@ -162,7 +170,7 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
primitive
>
pipeline
{
*
(
static_cast
<
softmax_forward
::
primitive
*>
(
softmax_p
.
get
()))};
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
std
::
cout
<<
"input fmt = "
<<
input
->
format
()
<<
" input dt = "
<<
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
())
<<
" output fmt = "
<<
output
->
format
()
<<
" output dt = "
<<
paddle
::
framework
::
ToMKLDNNDataType
(
output
->
type
())
<<
std
::
endl
;
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
if
(
!
is_test
)
{
T
threshold
=
exp
(
-
64
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录