conv_mkldnn_op.cc 52.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaolil1 已提交
17
#include "paddle/fluid/framework/data_layout_transform.h"
X
xiaolil1 已提交
18 19
#include <unordered_map>
#include <map>
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

32 33 34 35 36 37 38 39 40 41
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

59
  size_t GetDstMemorySize() const {
60 61
    return conv_pd_->dst_primitive_desc().get_size();
  }
Z
Zhang, Guoming 已提交
62 63 64 65 66
  
  mkldnn::memory::format GetDstFormat() const {
    return static_cast<mkldnn::memory::format>(
        conv_pd_->dst_primitive_desc().desc().data.format);
  }
67

68
  size_t GetDiffWeightsMemorySize() const {
69 70 71
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

72
  size_t GetDiffSourceMemorySize() const {
73 74 75
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

76 77
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
78
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
79 80 81 82 83 84 85 86
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
87
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
103
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
104 105 106 107 108 109 110 111
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
112
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
113 114 115 116 117 118
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

Z
Zhang, Guoming 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }
  
134 135 136 137 138 139
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

140 141 142 143 144 145 146
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
147
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
148
    auto src_pd = conv_pd_->src_primitive_desc();
149
    auto user_pd = user_memory_p->get_primitive_desc();
150 151 152 153 154 155
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
156
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
157 158 159 160
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
161 162 163 164
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
165 166
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
167 168
  }

169 170
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
171
      std::vector<mkldnn::primitive>& pipeline,
X
xiaolil1 已提交
172
      bool is_persistent = false,
X
xiaolil1 已提交
173 174 175
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
176 177 178
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
179 180
                               "@bias_mem_p", pipeline, is_persistent,
                               is_INT8, scale_data, mask);
181 182
  }

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

274 275
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
276 277 278 279 280 281
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
282 283 284 285 286 287 288
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
289 290 291 292
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
293 294
};

295
template <typename T>
296
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
297 298 299 300
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
K
Krzysztof Binias 已提交
301 302
    const bool is_test = ctx.Attr<bool>("is_test");

303 304
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
305 306 307 308
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
309
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
310 311
    auto* output = ctx.Output<Tensor>("Output");

312 313 314 315
    auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
    auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
    auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
    auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;
X
xiaolil1 已提交
316 317

    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
X
xiaolil1 已提交
318
    bool is_multi_channel = (is_INT8 && scale_weights->memory_size() > 1) ? true : false;
319

320 321 322 323 324 325
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
326 327 328 329 330 331 332 333 334 335 336
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
337 338 339 340

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
341
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
342
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
Z
Zhang, Guoming 已提交
343
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
344 345
    int groups = ctx.Attr<int>("groups");

Z
Zhang, Guoming 已提交
346
    // TODO(tpatejko): add support for dilation
347 348 349 350 351
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
X
xiaolil1 已提交
352
    const float* filter_data = filter->data<float>();
353 354 355 356

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
357 358 359 360 361 362 363 364 365 366 367 368 369
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
370 371
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

X
xiaolil1 已提交
372 373 374 375 376
    // Get unique name for storing MKLDNN primitives
    const std::string key = ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";
X
xiaolil1 已提交
377
    static std::unordered_map<std::string, std::vector<std::vector<float>>> scale_map;
X
xiaolil1 已提交
378 379
    //scale_map.insert({key_conv_pd,{1.0f}});
    //scale_map[key_conv_pd]={0.1f};
380
    bool scale_reuse = true;
X
xiaolil1 已提交
381 382 383 384 385 386
    //auto scale_in_key = key + "@scale_in";
    //auto scale_weights_key = key + "@scale_weights";
    //auto scale_out_key = key + "@scale_out";
    //auto output_shift_scale_key = key + "@output_shift_scale";
    //auto sum_scale_key = key + "@sum_scale";
    //auto scale_in_eltwise_key = key + "@scale_in_eltwise";
X
xiaolil1 已提交
387 388 389
    std::vector<float> scale_in_data;
    std::vector<float> scale_out_data;
    std::vector<float> scale_weights_data;
X
xiaolil1 已提交
390
    std::vector<float> scale_in_eltwise_data = {1.0f};
X
xiaolil1 已提交
391
    std::vector<float> output_shift_scale;
X
xiaolil1 已提交
392
    std::vector<float> sum_scale = {1.0f};
X
xiaolil1 已提交
393 394 395
    std::vector<float> scale_bias_data = {1.0f};
    std::vector<std::vector<float>> none_scale = {{0.0f}};
    std::vector<std::vector<float>> scale_datas(7,{1.0f});
396

X
xiaolil1 已提交
397 398 399
//scale_in_data 0, scale_in_eltwise_data 1, scale_weights_data 2, scale_bias_data 3, scale_out_data 4, output_shift_scale 5, sum_scale 6

    if (is_INT8 && GetScaleMap(scale_map, key) == none_scale){
400
        scale_reuse = false;
X
xiaolil1 已提交
401 402
    } else{
        scale_datas = GetScaleMap(scale_map, key);
X
xiaolil1 已提交
403 404
    }
//std::cout<<"scale_reuse = "<<scale_reuse<<std::endl;
405
    if(is_INT8){
406
        if(!scale_reuse){
X
xiaolil1 已提交
407 408 409 410
//std::cout<<"load scale!!!!!!!!"<<std::endl;
            int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
            scale_in_data = {*(scale_in->data<float>())};
            scale_weights_data.resize(count);
X
xiaolil1 已提交
411
            #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
412 413 414 415
            for(int i=0; i<count; i++){
                scale_weights_data[i] =*(scale_weights->data<float>() + i);
            }
            scale_out_data = {*(scale_out->data<float>())};
416 417
            if(force_fp32_output) 
                scale_out_data[0] = 1.0;
X
xiaolil1 已提交
418
            output_shift_scale.resize(count);
X
xiaolil1 已提交
419
            #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
420 421 422 423 424 425 426 427 428
            for(int i=0; i<count; i++){
                if(scale_weights_data[i] == 0.0)
                    output_shift_scale[i] = scale_out_data[0];
                else 
                    output_shift_scale[i] = scale_out_data[0] / (scale_in_data[0] * scale_weights_data[i]);
            }
            if(fuse_residual_conn){
                scale_in_eltwise_data = {*(scale_in_eltwise->data<float>())};
                sum_scale[0] = scale_out_data[0] / scale_in_eltwise_data[0];
X
xiaolil1 已提交
429
                //SetScaleMap(scale_map, scale_in_eltwise_key, scale_in_eltwise_data);
X
xiaolil1 已提交
430 431 432
            }

            //scale reuse
X
xiaolil1 已提交
433 434 435 436 437 438 439 440 441 442 443
            scale_datas[0] = scale_in_data;
            scale_datas[1] = scale_in_eltwise_data;
            scale_datas[2] = scale_weights_data;
            scale_datas[4] = scale_out_data;
            scale_datas[5] = output_shift_scale;
            scale_datas[6] = sum_scale;
            //SetScaleMap(scale_map, key, scale_datas);
            //SetScaleMap(scale_map, scale_weights_key, scale_weights_data);
            //SetScaleMap(scale_map, scale_out_key, scale_out_data);
            //SetScaleMap(scale_map, output_shift_scale_key, output_shift_scale);
            //SetScaleMap(scale_map, sum_scale_key, sum_scale);
X
xiaolil1 已提交
444
        } else{
X
xiaolil1 已提交
445 446 447
            scale_in_data = scale_datas[0];
            scale_out_data = scale_datas[3];
            scale_weights_data = scale_datas[2];
X
xiaolil1 已提交
448
            if(fuse_residual_conn){
X
xiaolil1 已提交
449
                scale_in_eltwise_data = scale_datas[1];
X
xiaolil1 已提交
450
            }
X
xiaolil1 已提交
451 452
            output_shift_scale = scale_datas[5];
            sum_scale = scale_datas[6]; 
X
xiaolil1 已提交
453
            //printf("pause!!!");
X
xiaolil1 已提交
454
        }
X
xiaolil1 已提交
455

456 457
    }

X
xiaolil1 已提交
458
    static std::unordered_map<std::string, std::vector<std::shared_ptr<mkldnn::memory::desc>>> md_map;
459
    bool md_reuse = true;
X
xiaolil1 已提交
460 461 462 463
    std::vector<std::shared_ptr<mkldnn::memory::desc>> mds(8, nullptr);
    std::vector<std::shared_ptr<mkldnn::memory::desc>> none_mds = {};
    //auto user_src_md_key = key + "@user_src_md";
    if (GetMdMap(md_map, key) == none_mds){
464
        md_reuse = false;   //we suppose all mds are reused if the first md is in the map.
X
xiaolil1 已提交
465 466
    } else{
        mds = GetMdMap(md_map, key);
467
    }
X
xiaolil1 已提交
468
    //auto user_weights_md_key = key + "@user_weights_md";
469 470
    std::shared_ptr<mkldnn::memory::desc> user_src_md;
    std::shared_ptr<mkldnn::memory::desc> user_weights_md;
X
xiaolil1 已提交
471
    std::vector<primitive> pipeline;
472 473 474 475 476 477 478 479
//std::cout<<"md_reuse = "<<md_reuse<<std::endl;
    if(!md_reuse){
//std::cout<<"create md.......... "<<std::endl;
        user_src_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                {src_tz}, paddle::framework::ToMKLDNNDataType(input->type()), input->format())));
        user_weights_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                {weights_tz}, platform::MKLDNNGetDataType<float>(),
                (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw)));
X
xiaolil1 已提交
480 481 482 483 484

        mds[0] = user_src_md;
        mds[1] = user_weights_md;        
        //SetMdMap(md_map, user_src_md_key, user_src_md);
        //SetMdMap(md_map, user_weights_md_key, user_weights_md);
485
    } else{
X
xiaolil1 已提交
486 487 488 489
        user_src_md = mds[0];
        user_weights_md = mds[1];
        //user_src_md = GetMdMap(md_map, user_src_md_key);
        //user_weights_md = GetMdMap(md_map, user_weights_md_key);
490
    }
491 492 493 494 495

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
496
    std::string data_format = ctx.Attr<std::string>("data_format");
X
xiaolil1 已提交
497
    auto chosen_memory_format = 
498
        platform::data_format_to_memory_format(data_format);
499

X
xiaolil1 已提交
500 501
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    auto bias_tz = paddle::framework::vectorize2int(bias->dims());
502

X
xiaolil1 已提交
503 504 505 506
    //auto src_md_key = key + "@src_md";
    //auto weights_md_key = key + "@weights_md_key";
    //auto dst_md_key = key + "@dst_md_key";
    //auto bias_md_key = key + "@bias_md_key";
507 508 509 510
    std::shared_ptr<mkldnn::memory::desc> src_md;
    std::shared_ptr<mkldnn::memory::desc> weights_md;
    std::shared_ptr<mkldnn::memory::desc> dst_md;

X
xiaolil1 已提交
511
    if(is_INT8){
512 513 514 515
        if(!md_reuse){
            src_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                src_tz, memory::data_type::u8, chosen_memory_format)));
            weights_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
516
                weights_tz, memory::data_type::s8, chosen_memory_format)));
517 518 519 520 521 522 523
            auto dst_dt = fuse_relu? paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char))) : paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char)));
            if(fuse_residual_conn){
                auto residual = ctx.Input<Tensor>("ResidualData");
                auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
                if(dst_dt != residual_dt)
                    dst_dt = residual_dt;
            }
524
            if(force_fp32_output)
H
Haihao Shen 已提交
525
                dst_dt = paddle::framework::ToMKLDNNDataType(std::type_index(typeid(float)));
526
            dst_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format)));
X
xiaolil1 已提交
527 528 529 530 531 532
            mds[2] = src_md;
            mds[3] = weights_md;
            mds[4] = dst_md;
            //SetMdMap(md_map, src_md_key, src_md);
            //SetMdMap(md_map, weights_md_key, weights_md);
            //SetMdMap(md_map, dst_md_key, dst_md);
533
        } else{
X
xiaolil1 已提交
534 535 536 537 538 539
            src_md = mds[2];
            weights_md = mds[3];
            dst_md = mds[4];
            //src_md = GetMdMap(md_map, src_md_key);
            //weights_md = GetMdMap(md_map, weights_md_key);
            //dst_md = GetMdMap(md_map, dst_md_key);
540
        }
541

X
xiaolil1 已提交
542 543
        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
544 545 546 547
            std::shared_ptr<mkldnn::memory::desc> bias_md;
            if(!md_reuse){
                bias_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                    bias_tz, memory::data_type::s32, memory::format::x)));
X
xiaolil1 已提交
548 549
                mds[5] = bias_md;
                //SetMdMap(md_map, bias_md_key, bias_md);
550
            } else{
X
xiaolil1 已提交
551 552
                bias_md = mds[5];
                //bias_md = GetMdMap(md_map, bias_md_key);
553 554 555
            }
             
            conv_pd = ConvFwdPrimitiveDesc(*src_md, *weights_md, *bias_md, *dst_md,
X
xiaolil1 已提交
556
                                           strides, paddings, mkldnn_engine,
X
xiaolil1 已提交
557
                                           fuse_relu, fuse_residual_conn,
X
xiaolil1 已提交
558
                                           output_shift_scale, sum_scale[0], is_test);
X
xiaolil1 已提交
559
        } else {
X
xiaolil1 已提交
560
            conv_pd =
561
                ConvFwdPrimitiveDesc(*src_md, *weights_md, *dst_md, strides, paddings,
X
xiaolil1 已提交
562
                                     mkldnn_engine, fuse_relu, fuse_residual_conn,
X
xiaolil1 已提交
563
                                     output_shift_scale, sum_scale[0], is_test);
X
xiaolil1 已提交
564 565
        }
    } else{
566 567 568 569
        if(!md_reuse){
            src_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                src_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format)));
            weights_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
570
                weights_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format)));
571 572
            dst_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                dst_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format)));
X
xiaolil1 已提交
573 574 575 576 577 578
            mds[2] = src_md;
            mds[3] = weights_md;
            mds[4] = dst_md;
            //SetMdMap(md_map, src_md_key, src_md);
            //SetMdMap(md_map, weights_md_key, weights_md);
            //SetMdMap(md_map, dst_md_key, dst_md);
579
        } else{
X
xiaolil1 已提交
580 581 582 583 584 585
            src_md = mds[2];
            weights_md = mds[3];
            dst_md = mds[4];
            //src_md = GetMdMap(md_map, src_md_key);
            //weights_md = GetMdMap(md_map, weights_md_key);
            //dst_md = GetMdMap(md_map, dst_md_key);
586
        }
X
xiaolil1 已提交
587 588
        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
589 590 591 592
            std::shared_ptr<mkldnn::memory::desc> bias_md;
            if(!md_reuse){
                bias_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                    bias_tz, platform::MKLDNNGetDataType<float>(), memory::format::x)));
X
xiaolil1 已提交
593 594
                mds[5] = bias_md;
                //SetMdMap(md_map, bias_md_key, bias_md);
595
            } else{
X
xiaolil1 已提交
596 597
                bias_md = mds[5];
                //bias_md = GetMdMap(md_map, bias_md_key);
598 599 600 601
            }
            conv_pd = ConvFwdPrimitiveDesc(*src_md, *weights_md, *bias_md, *dst_md,
                                           strides, paddings, mkldnn_engine,
                                           fuse_relu, fuse_residual_conn, is_test);
X
xiaolil1 已提交
602
        } else {
603 604
            conv_pd =
                ConvFwdPrimitiveDesc(*src_md, *weights_md, *dst_md, strides, paddings,
X
xiaolil1 已提交
605
                                         mkldnn_engine, fuse_relu, fuse_residual_conn, is_test);
X
xiaolil1 已提交
606
        }
607
    }
608 609
    // Save conv_pd/src_memory/weights_memory for backward pass
    dev_ctx.SetBlob(key_conv_pd, conv_pd);
610

611
    ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
612

613 614
    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
615
        handler.AcquireSrcMemory(*user_src_md, to_void_cast<T>(input_data));
616
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
617
        *user_weights_md, to_void_cast<float>(filter_data));
Z
Zhang, Guoming 已提交
618

619 620
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
621
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
Z
Zhang, Guoming 已提交
622
        
X
xiaolil1 已提交
623
    std::shared_ptr<mkldnn::memory> weights_memory_p;
X
xiaolil1 已提交
624
    if(is_INT8){
625
        int mask_reorder = is_multi_channel? ((g!= 1) ? (1<<1)+(1<<0) : 1<<0) : 0;
X
xiaolil1 已提交
626
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
X
xiaolil1 已提交
627
            user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);
X
xiaolil1 已提交
628 629 630 631 632 633
    } else{
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
            user_weights_memory_p, pipeline, is_test);
    }

    std::shared_ptr<mkldnn::memory> dst_memory_p;
634
    bool need_s8_to_u8 = false;
X
xiaolil1 已提交
635
    //auto user_residual_md_key = key + "@user_residual_md";
636 637 638 639 640 641 642
    if(fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
              "Output and elementwise parameter need to have the "
              "same dimension sizes");
        auto residual_dt = paddle::framework::ToMKLDNNDataType(residual_param->type());
        if(residual_param->format() != handler.GetDstFormat()) {
643 644 645 646 647 648 649 650
            std::shared_ptr<mkldnn::memory::desc> user_residual_md;
            if(!md_reuse){
                auto residual_data_tz =
                    paddle::framework::vectorize2int(residual_param->dims());
                auto residual_data_type =
                    paddle::framework::ToMKLDNNDataType(residual_param->type());
                user_residual_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                    residual_data_tz, residual_data_type, residual_param->format())));
X
xiaolil1 已提交
651 652
                mds[6] = user_residual_md;
                //SetMdMap(md_map, user_residual_md_key, user_residual_md);
653
            } else{
X
xiaolil1 已提交
654 655
                user_residual_md = mds[6];
                //user_residual_md = GetMdMap(md_map, user_residual_md_key);
656
            }
657 658
            if(is_INT8){
                if(residual_dt == mkldnn::memory::data_type::u8){
659 660 661 662 663 664 665 666 667 668
                    auto residual_param_data = residual_param->data<uint8_t>();
                    auto user_residual_memory_p = handler.AcquireResidualDataMemory(
                        *user_residual_md, to_void_cast<uint8_t>(residual_param_data));
                    PADDLE_ENFORCE(
                          residual_param_data != nullptr,
                          "Provide data if you want MKLDNN conv+elementwise_add fusion");
                        uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
                        dst_memory_p =
                            handler.AcquireDstMemoryFromResidualDataMemory(
                                user_residual_memory_p, to_void_cast<uint8_t>(output_data), pipeline);
669
                } else{
670 671 672 673 674 675 676 677 678 679
                    auto residual_param_data = residual_param->data<int8_t>();
                    auto user_residual_memory_p = handler.AcquireResidualDataMemory(
                        *user_residual_md, to_void_cast<int8_t>(residual_param_data));
                    PADDLE_ENFORCE(
                          residual_param_data != nullptr,
                          "Provide data if you want MKLDNN conv+elementwise_add fusion");
                        int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
                        dst_memory_p =
                            handler.AcquireDstMemoryFromResidualDataMemory(
                                user_residual_memory_p, to_void_cast<int8_t>(output_data), pipeline);
680 681 682 683 684 685
                    if(fuse_relu)
                      need_s8_to_u8 = true;
                }
            } else{
                auto residual_param_data = residual_param->data<T>();
                auto user_residual_memory_p = handler.AcquireResidualDataMemory(
686
                    *user_residual_md, to_void_cast<T>(residual_param_data));
687 688 689 690 691 692 693 694
                PADDLE_ENFORCE(
                      residual_param_data != nullptr,
                      "Provide data if you want MKLDNN conv+elementwise_add fusion");
                 auto output_data =
                     output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
                 dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
                      user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
            }
X
xiaolil1 已提交
695
        } else {
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
             output->ShareDataWith(*residual_param);
             if(is_INT8){
                 if(residual_dt == mkldnn::memory::data_type::u8){
                     uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
                     dst_memory_p =
                         handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
                 } else{
                     int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
                     dst_memory_p =
                         handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
                     if(fuse_relu)
                       need_s8_to_u8 = true;
                 }
             } else{
                  auto output_data = output->mutable_data<T>(ctx.GetPlace());
                  dst_memory_p =
                      handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));               
             }
        }
    } else {
716
        if(is_INT8 && !force_fp32_output){
X
xiaolil1 已提交
717 718 719 720 721 722 723 724 725
          if(fuse_relu){
              uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
          } else{
              int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
          }
726 727 728 729 730
        } else{
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
X
xiaolil1 已提交
731
        }
X
xiaolil1 已提交
732
    }
733 734

    // create convolution op primitive
735
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
X
xiaolil1 已提交
736
    //auto scale_bias_key = key + "@scale_bias";
X
xiaolil1 已提交
737
    //auto user_bias_md_key = key + "@user_bias_md";
738
    if (bias) {
X
xiaolil1 已提交
739
      const float* bias_data = bias->data<float>();
740 741 742 743
      std::shared_ptr<mkldnn::memory::desc> user_bias_md;
      if(!md_reuse){
          user_bias_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
              {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x)));
X
xiaolil1 已提交
744 745
          mds[7] = user_bias_md;
          //SetMdMap(md_map, user_bias_md_key, user_bias_md);
746
      } else{
X
xiaolil1 已提交
747 748
          user_bias_md = mds[7];
          //user_bias_md = GetMdMap(md_map, user_bias_md_key);
749
      }
750
      auto user_bias_memory_p =
751
          handler.AcquireBiasMemory(*user_bias_md, to_void_cast<float>(bias_data));
X
xiaolil1 已提交
752
      std::shared_ptr<mkldnn::memory>  bias_memory_p;
X
xiaolil1 已提交
753
      if(is_INT8){
754
          int mask_reorder = is_multi_channel? 1<<0 : 1;
755
          if(!scale_reuse){
X
xiaolil1 已提交
756 757
              int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
              scale_bias_data.resize(count);
X
xiaolil1 已提交
758
              #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
759 760 761
              for(int i=0; i<count; i++){
                  scale_bias_data[i] = scale_in_data[0] * scale_weights_data[i];
              }
X
xiaolil1 已提交
762 763
              scale_datas[3] = scale_bias_data;
              //SetScaleMap(scale_map, scale_bias_key, scale_bias_data);
X
xiaolil1 已提交
764
          } else{
X
xiaolil1 已提交
765
              scale_bias_data = scale_datas[3];
X
xiaolil1 已提交
766
          }
X
xiaolil1 已提交
767
          bias_memory_p =
X
xiaolil1 已提交
768
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test, is_INT8, scale_bias_data, mask_reorder);
X
xiaolil1 已提交
769 770 771 772
      } else{
          bias_memory_p =
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      } 
773 774 775 776 777 778
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
779

X
xiaolil1 已提交
780
    SetScaleMap(scale_map, key, scale_datas);
X
xiaolil1 已提交
781
    SetMdMap(md_map, key, mds);
X
xiaolil1 已提交
782

783
    // push primitive to stream and wait until it's executed
784
    pipeline.push_back(*conv_p);
785 786
    stream(stream::kind::eager).submit(pipeline).wait();

H
Haihao Shen 已提交
787
    if(need_s8_to_u8 && !force_fp32_output){
788 789 790
        output->mutable_data<uint8_t>(ctx.GetPlace());
    }

791
    output->set_layout(DataLayout::kMKLDNN);
792
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
793
  }
794

795
 private:
X
xiaolil1 已提交
796

X
xiaolil1 已提交
797 798
    void SetScaleMap(std::unordered_map<std::string, std::vector<std::vector<float>>> &scale_map,
                       const std::string& name, std::vector<std::vector<float>> scale_datas) const {
X
xiaolil1 已提交
799 800
      auto it = scale_map.find(name);
      if (it == scale_map.end()) {
X
xiaolil1 已提交
801
        scale_map[name] = scale_datas;  // create new blob
X
xiaolil1 已提交
802
      } else {
X
xiaolil1 已提交
803
        (*it).second = scale_datas;  // set data to existing blob
X
xiaolil1 已提交
804 805 806 807
      }
      return;
    }

X
xiaolil1 已提交
808
    std::vector<std::vector<float>> GetScaleMap(std::unordered_map<std::string, std::vector<std::vector<float>>> scale_map,
X
xiaolil1 已提交
809 810 811 812 813
         const std::string& name) const {
      auto it = scale_map.find(name);
      if (it != scale_map.end()) {
        return (*it).second;
      }
X
xiaolil1 已提交
814
      return {{0.0f}};
815 816
    }

X
xiaolil1 已提交
817 818
    void SetMdMap(std::unordered_map<std::string, std::vector<std::shared_ptr<mkldnn::memory::desc>>> &md_map,
                       const std::string& name, std::vector<std::shared_ptr<mkldnn::memory::desc>> mds) const {
819 820
      auto it = md_map.find(name);
      if (it == md_map.end()) {
X
xiaolil1 已提交
821
        md_map[name] = mds;  // create new blob
822
      } else {
X
xiaolil1 已提交
823
        (*it).second = mds;  // set data to existing blob
824 825 826 827
      }
      return;
    }

X
xiaolil1 已提交
828
    std::vector<std::shared_ptr<mkldnn::memory::desc>> GetMdMap(std::unordered_map<std::string, std::vector<std::shared_ptr<mkldnn::memory::desc>>> md_map,
829 830 831 832 833
         const std::string& name) const {
      auto it = md_map.find(name);
      if (it != md_map.end()) {
        return (*it).second;
      }
X
xiaolil1 已提交
834
      return {};
X
xiaolil1 已提交
835 836
    }

Z
Zhang, Guoming 已提交
837
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
X
xiaolil1 已提交
838
                          const std::vector<float> output_shift_scale, float sum_scale) const {
839 840
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
841
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
842 843 844 845
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
846
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
847
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
848
      if (fuse_residual_conn) {
849 850 851 852 853
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
854
        constexpr float placeholder = 1.0f; //beta
855 856 857 858 859
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
860
    }
861

X
xiaolil1 已提交
862
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
863 864 865 866

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
867
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
868 869
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
870
      conv_attr.set_output_scales(0, {1.0f});
X
xiaolil1 已提交
871
      if (fuse_residual_conn) {
872 873 874 875 876 877 878 879 880 881 882 883 884
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
885
    }
M
Michal Gallus 已提交
886

Z
Zhang, Guoming 已提交
887
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
888 889 890 891
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
892
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
893
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
894 895 896
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
897 898
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

899
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
900
          propagation, mkldnn::convolution_direct, src, weights,
901 902 903 904
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
905
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
906 907 908 909 910 911

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
912
    }
M
Michal Gallus 已提交
913

914
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
915 916 917 918
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
X
xiaolil1 已提交
919
                         const bool fuse_residual_conn, bool is_test) const{
920 921
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
X
xiaolil1 已提交
922 923 924
 
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;
 
925
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
926
          propagation, mkldnn::convolution_direct, src, weights,
927 928 929
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
930
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
931 932 933 934 935 936 937
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
938 939

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
940 941 942 943 944
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
945
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
946
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
947 948 949
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
950 951
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

952
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
953
          propagation, mkldnn::convolution_direct, src, weights,
954 955 956 957
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
958
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
959 960 961 962 963 964 965 966 967 968 969 970 971 972

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
X
xiaolil1 已提交
973
                         const bool fuse_residual_conn, bool is_test) const{
974 975 976
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
977 978
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

979
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
980
          propagation, mkldnn::convolution_direct, src, weights,
981 982 983
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
984
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
985 986 987 988 989 990 991 992

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

993 994 995
};

template <typename T>
996
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
997 998 999 1000 1001
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

1002 1003
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

1027 1028 1029 1030
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
1031 1032
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

1045
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
1046
    // as well as attributes of primitive to be created
1047 1048 1049 1050 1051 1052
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
1053
    std::vector<primitive> pipeline;
1054

1055 1056 1057 1058 1059 1060 1061
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
1062 1063 1064 1065 1066

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
1067 1068 1069 1070
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

1071
    auto src_md = platform::MKLDNNMemDesc(
1072
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1073
    auto diff_src_md = platform::MKLDNNMemDesc(
1074
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1075
    auto weights_md = platform::MKLDNNMemDesc(
1076
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1077
    auto diff_weights_md = platform::MKLDNNMemDesc(
1078
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1079
    auto diff_dst_md = platform::MKLDNNMemDesc(
1080
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1081

1082
    // Retrieve conv_pd from device context
1083 1084 1085
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
1086 1087 1088
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
1115 1116
    // create backward conv primitive for weights
    if (filter_grad) {
1117 1118
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1119

1120 1121 1122 1123
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1124
      const size_t size = handler.GetDiffWeightsMemorySize();
1125 1126
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);

1127 1128 1129 1130 1131 1132 1133 1134 1135
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
1136 1137

      filter_grad->set_layout(DataLayout::kMKLDNN);
1138
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
1139 1140 1141
    }

    if (input_grad) {
1142 1143 1144 1145 1146 1147 1148
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1149
      const size_t size = handler.GetDiffSourceMemorySize();
1150 1151
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);

1152 1153 1154 1155 1156 1157 1158
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
1159 1160

      input_grad->set_layout(DataLayout::kMKLDNN);
1161
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1162
    }
1163
    stream(stream::kind::eager).submit(pipeline).wait();
1164 1165 1166 1167 1168 1169 1170 1171 1172
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
1173 1174
                   ops::ConvMKLDNNOpKernel<float>,
                   ops::ConvMKLDNNOpKernel<uint8_t>);
1175 1176

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
1177
                   ops::ConvMKLDNNGradOpKernel<float>);