conv_mkldnn_op.cc 39.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

21 22 23 24 25 26 27 28
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

29 30 31 32 33 34 35 36 37 38
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

56
  size_t GetDstMemorySize() const {
57
    std::cout<<"dst size = "<<conv_pd_->dst_primitive_desc().get_size()<<std::endl;
58 59 60
    return conv_pd_->dst_primitive_desc().get_size();
  }

61
  size_t GetDiffWeightsMemorySize() const {
62 63 64
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

65
  size_t GetDiffSourceMemorySize() const {
66 67 68
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

69 70
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
71
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
72 73 74 75 76 77 78 79
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
80
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
96
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
97 98 99 100 101 102 103 104
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
105
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
106 107 108 109 110 111 112 113 114 115 116 117
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

118 119 120 121 122 123 124
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
125
      std::vector<mkldnn::primitive>& pipeline, bool is_INT8=false) {  // NOLINT
126
    auto src_pd = conv_pd_->src_primitive_desc();
127
    auto user_pd = is_INT8? src_pd : user_memory_p->get_primitive_desc();
128 129 130 131 132 133
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
134
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
135 136 137 138
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
139 140 141 142
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
143 144
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
145 146
  }

147 148
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
149 150 151 152
      std::vector<mkldnn::primitive>& pipeline,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
153 154 155
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
156 157
                               "@bias_mem_p", pipeline, 
                               false, is_INT8, scale_data, mask);
158 159
  }

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

251 252
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
253 254 255 256 257 258
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
259 260 261 262 263 264 265
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
266 267 268 269
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
270 271
};

272
template <typename T>
273
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
274 275 276 277
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
278
std::cout<<"this is conv kernel op....................."<<std::endl;
K
Krzysztof Binias 已提交
279 280
    const bool is_test = ctx.Attr<bool>("is_test");

281 282
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
283 284 285 286
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
287
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
288 289
    auto* output = ctx.Output<Tensor>("Output");

290
    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
291 292 293 294
    auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
    auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
    auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
    auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;
X
xiaolil1 已提交
295
    bool is_multi_channel = (is_INT8 && scale_weights->memory_size() > 1) ? true : false;
296

297 298 299 300 301 302
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
303 304 305 306 307 308 309 310 311 312 313
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
314 315 316 317

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
318
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
Z
Zhang, Guoming 已提交
319
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
320 321
    int groups = ctx.Attr<int>("groups");

Z
Zhang, Guoming 已提交
322
    // TODO(tpatejko): add support for dilation
323 324 325 326 327
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
328
    const float* filter_data = filter->data<float>();
329 330 331 332

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
333 334 335 336 337 338 339 340 341 342 343 344 345
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
346 347
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

348 349
    std::vector<float> output_shift_scale;
    float sum_scale = 1.0f;
350
    if(is_INT8){
351
std::cout<<"this is conv int8 op .............."<<std::endl;
X
xiaolil1 已提交
352
        int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
353 354
        float scale_in_data = *(scale_in->data<float>());
        std::vector<float> scale_weights_data(count);
355
        for(int i=0; i<count; i++){
356
            scale_weights_data[i] =*(scale_weights->data<float>() + i);
357
        }
358
        float scale_out_data = *(scale_out->data<float>());
359 360 361 362 363 364 365 366

        output_shift_scale.resize(count);
        for(int i=0; i<count; i++){
            if(scale_weights_data[i] == 0.0)
                output_shift_scale[i] = scale_out_data;
            else 
                output_shift_scale[i] = scale_out_data / (scale_in_data * scale_weights_data[i]);
        }
367 368 369 370
        if(fuse_residual_conn){
            float scale_in_eltwise_data = *(scale_in_eltwise->data<float>());
            sum_scale = scale_out_data / scale_in_eltwise_data;
        }
371 372
    }

373 374 375 376 377 378
    // Get unique name for storing MKLDNN primitives
    const std::string key = ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";

X
xiaolil1 已提交
379
    std::vector<primitive> pipeline;
380

381
    auto user_src_md = platform::MKLDNNMemDesc(
382
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
383
    auto user_weights_md = platform::MKLDNNMemDesc(
384
        {weights_tz}, platform::MKLDNNGetDataType<float>(),
385
        (g == 1) ? filter->format() : mkldnn::memory::format::goihw);
386 387 388 389 390

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
391
    std::string data_format = ctx.Attr<std::string>("data_format");
392
    auto chosen_memory_format =
393
        platform::data_format_to_memory_format(data_format);
394

395
    auto src_md = platform::MKLDNNMemDesc(
396
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
397
    auto weights_md = platform::MKLDNNMemDesc(
398
        weights_tz, platform::MKLDNNGetDataType<T>(),
399
        (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw);
400 401
    std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
                               // Currently used whenever bias is != nullptr.
402
    auto dst_md = platform::MKLDNNMemDesc(
403 404
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

405 406 407 408
    if(is_INT8){
        src_md = platform::MKLDNNMemDesc(
            src_tz, memory::data_type::u8, chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
409
            weights_tz, memory::data_type::s8, 
410 411
            (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw);
        dst_md = platform::MKLDNNMemDesc(
412
            dst_tz, 
X
xiaolil1 已提交
413
            fuse_relu?memory::data_type::u8:memory::data_type::s8,
414 415 416
            chosen_memory_format);
    }

417
    // create a conv primitive descriptor and save it for usage in backward
418 419 420 421
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    if (bias) {
      bias_tz = paddle::framework::vectorize2int(bias->dims());
      auto bias_md = platform::MKLDNNMemDesc(
422 423 424 425 426
          bias_tz, platform::MKLDNNGetDataType<float>(), memory::format::x);
      if(is_INT8){
          bias_md = platform::MKLDNNMemDesc(
              bias_tz, memory::data_type::s32, memory::format::x);
      }
427 428 429
      if(is_INT8){
          conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                         strides, paddings, mkldnn_engine,
Z
Zhang, Guoming 已提交
430
                                         fuse_relu, fuse_residual_conn, 
431 432 433 434
                                         output_shift_scale, sum_scale);
      } else{
          conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                         strides, paddings, mkldnn_engine,
Z
Zhang, Guoming 已提交
435
                                         fuse_relu, fuse_residual_conn);
436
      }
437
    } else {
438 439 440
      if(is_INT8){
          conv_pd =
              ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
Z
Zhang, Guoming 已提交
441
                                   mkldnn_engine, fuse_relu, fuse_residual_conn,
442 443 444 445
                                   output_shift_scale, sum_scale);
      } else{
          conv_pd =
              ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
Z
Zhang, Guoming 已提交
446
                                   mkldnn_engine, fuse_relu, fuse_residual_conn);
447
      }
448
    }
449 450
    // Save conv_pd/src_memory/weights_memory for backward pass
    dev_ctx.SetBlob(key_conv_pd, conv_pd);
451

452
    ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
453

454 455 456 457
    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
458
        user_weights_md, to_void_cast<float>(filter_data));
Z
Zhang, Guoming 已提交
459

460 461
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
462
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline, is_INT8);
463
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
K
Krzysztof Binias 已提交
464
        user_weights_memory_p, pipeline, is_test);
X
xiaolil1 已提交
465 466 467
    if(is_INT8){
        int mask_reorder = is_multi_channel? 0 : ((g!= 1) ? (1<<1)+(1<<0) : 1<<0);
        int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
468
        std::vector<float> scale_weights_data(count);
X
xiaolil1 已提交
469
        for(int i=0; i<count; i++){
470
            scale_weights_data[i] = *(scale_weights->data<T>() + i);
X
xiaolil1 已提交
471 472 473 474
        }
        auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
            user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);
    }
475 476 477

    std::shared_ptr<mkldnn::memory> dst_memory_p;
    if(is_INT8){
X
xiaolil1 已提交
478
        int8_t* output_data = nullptr;
479 480 481 482 483 484 485
        if (fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                            "Output and elementwise parameter need to have the "
                            "same dimension sizes");

          output->ShareDataWith(*residual_param);
X
xiaolil1 已提交
486
          output_data = output->mutable_data<int8_t>(ctx.GetPlace());
487 488
        } else {
          std::cout<<"conv log 1 ....................."<<std::endl;
X
xiaolil1 已提交
489 490
          output_data =
              output->mutable_data<int8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
491 492
          std::cout<<"conv log 2 //////////////////////"<<std::endl;
        }
X
xiaolil1 已提交
493 494
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
std::cout<<"input fmt = "<<input->format()<<"  output fmt = "<<output->format()<<"   dst fmt = "<<dst_memory_p->get_primitive_desc().desc().data.format<<std::endl;
    } else{
        T* output_data = nullptr;
        if (fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
          auto residual_param_data = residual_param->data<T>();

          PADDLE_ENFORCE(
              residual_param_data != nullptr,
              "Provide data if you want MKLDNN conv+elementwise_add fusion");
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                            "Output and elementwise parameter need to have the "
                            "same dimension sizes");

          output->ShareDataWith(*residual_param);
          output_data = output->mutable_data<T>(ctx.GetPlace());
        } else {
          std::cout<<"conv log 1 ....................."<<std::endl;
          output_data =
              output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
          std::cout<<"conv log 2 //////////////////////"<<std::endl;
        }
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
    }
520 521

    // create convolution op primitive
522 523
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    if (bias) {
524
      const float* bias_data = bias->data<float>();
525
      auto user_bias_md = platform::MKLDNNMemDesc(
526
          {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x);
527
      auto user_bias_memory_p =
528
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<float>(bias_data));
529 530
      auto bias_memory_p =
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
X
xiaolil1 已提交
531 532 533
      if(is_INT8){
          int mask_reorder = is_multi_channel? 0 : 1<<0;
          int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
534
          std::vector<float> scale_bias_data(count);
X
xiaolil1 已提交
535
          for(int i=0; i<count; i++){
536
              scale_bias_data[i] = (*scale_in->data<float>()) * (*(scale_weights->data<float>() + i));
X
xiaolil1 已提交
537
          }
538
          auto bias_memory_p =
X
xiaolil1 已提交
539
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_INT8, scale_bias_data, mask_reorder);
540
      }
541 542 543 544 545 546
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
547

548

549
    // push primitive to stream and wait until it's executed
550
    pipeline.push_back(*conv_p);
551 552 553
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
554
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
X
xiaolil1 已提交
555
    std::cout<<"input fmt = "<<input->format()<<"  output fmt = "<<output->format()<<"   dst fmt = "<<dst_memory_p->get_primitive_desc().desc().data.format<<std::endl;
556
  }
557

558
 private:
Z
Zhang, Guoming 已提交
559
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
560
                          const std::vector<float> output_shift_scale, float sum_scale) const {
561 562
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
563
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
564 565 566 567
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
568
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
569
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
570
      if (fuse_residual_conn) {
571 572 573 574 575
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
576
        constexpr float placeholder = 0.0f; //beta
577 578 579 580 581
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
582
    }
583

X
xiaolil1 已提交
584
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
585 586 587 588

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
589
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
590 591 592
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.

X
xiaolil1 已提交
593
      if (fuse_residual_conn) {
594 595 596 597 598 599 600 601 602 603 604 605 606
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
607
    }
M
Michal Gallus 已提交
608

Z
Zhang, Guoming 已提交
609
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
610 611 612 613
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
614
                         const bool fuse_residual_conn,
615
                         const std::vector<float> output_shift_scale, const float sum_scale) const {
616 617 618 619 620 621 622 623 624
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
625
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
626 627 628 629 630 631

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
632
    }
M
Michal Gallus 已提交
633

634
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
635 636 637 638
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
639
                         const bool fuse_residual_conn) const{
640 641 642 643 644 645 646 647
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
  
      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
648
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
649 650 651 652 653 654 655
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
656 657

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
658 659 660 661 662
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
663
                         const bool fuse_residual_conn,
664
                         const std::vector<float> output_shift_scale, const float sum_scale) const {
665 666 667 668 669 670 671 672 673
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
674
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
675 676 677 678 679 680 681 682 683 684 685 686 687 688

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
689
                         const bool fuse_residual_conn) const{
690 691 692 693 694 695 696 697
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
698
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
699 700 701 702 703 704 705 706

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

707 708 709
};

template <typename T>
710
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
711 712 713 714 715
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

716 717
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
718 719 720 721 722 723 724 725 726 727
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

728 729 730 731 732 733 734 735 736 737 738 739 740
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

741 742 743 744
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
745 746
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
747 748 749 750 751 752 753 754 755 756 757 758

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

759
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
760
    // as well as attributes of primitive to be created
761 762 763 764 765 766
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
767
    std::vector<primitive> pipeline;
768

769 770 771 772 773 774 775
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
776 777 778 779 780

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
781 782 783 784
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

785
    auto src_md = platform::MKLDNNMemDesc(
786
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
787
    auto diff_src_md = platform::MKLDNNMemDesc(
788
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
789
    auto weights_md = platform::MKLDNNMemDesc(
790
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
791
    auto diff_weights_md = platform::MKLDNNMemDesc(
792
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
793
    auto diff_dst_md = platform::MKLDNNMemDesc(
794
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
795

796
    // Retrieve conv_pd from device context
797 798 799
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
800 801 802
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

830 831
    // create backward conv primitive for weights
    if (filter_grad) {
832 833
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
834

835 836 837 838
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

839
      const size_t size = handler.GetDiffWeightsMemorySize();
840 841
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);

842 843 844 845 846 847 848 849 850
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
851 852

      filter_grad->set_layout(DataLayout::kMKLDNN);
853
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
854 855 856
    }

    if (input_grad) {
857 858 859 860 861 862 863
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

864
      const size_t size = handler.GetDiffSourceMemorySize();
865 866
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);

867 868 869 870 871 872 873
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
874 875

      input_grad->set_layout(DataLayout::kMKLDNN);
876
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
877
    }
878
    stream(stream::kind::eager).submit(pipeline).wait();
879 880 881 882 883 884 885 886 887
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
888
                   ops::ConvMKLDNNOpKernel<float>,
X
xiaolil1 已提交
889
                   ops::ConvMKLDNNOpKernel<int8_t>);
890 891

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
892
                   ops::ConvMKLDNNGradOpKernel<float>);