conv_mkldnn_op.cc 45.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaolil1 已提交
17
#include "paddle/fluid/framework/data_layout_transform.h"
X
xiaolil1 已提交
18 19
#include <unordered_map>
#include <map>
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

32 33 34 35 36 37 38 39 40 41
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

59
  size_t GetDstMemorySize() const {
60 61
    return conv_pd_->dst_primitive_desc().get_size();
  }
Z
Zhang, Guoming 已提交
62 63 64 65 66
  
  mkldnn::memory::format GetDstFormat() const {
    return static_cast<mkldnn::memory::format>(
        conv_pd_->dst_primitive_desc().desc().data.format);
  }
67

68
  size_t GetDiffWeightsMemorySize() const {
69 70 71
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

72
  size_t GetDiffSourceMemorySize() const {
73 74 75
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

76 77
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
78
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
79 80 81 82 83 84 85 86
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
87
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
103
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
104 105 106 107 108 109 110 111
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
112
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
113 114 115 116 117 118
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

Z
Zhang, Guoming 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }
  
134 135 136 137 138 139
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

140 141 142 143 144 145 146
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
147
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
148
    auto src_pd = conv_pd_->src_primitive_desc();
149
    auto user_pd = user_memory_p->get_primitive_desc();
150 151 152 153 154 155
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
156
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
157 158 159 160
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
161 162 163 164
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
165 166
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
167 168
  }

169 170
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
171
      std::vector<mkldnn::primitive>& pipeline,
X
xiaolil1 已提交
172
      bool is_persistent = false,
X
xiaolil1 已提交
173 174 175
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
176 177 178
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
179 180
                               "@bias_mem_p", pipeline, is_persistent,
                               is_INT8, scale_data, mask);
181 182
  }

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

274 275
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
276 277 278 279 280 281
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
282 283 284 285 286 287 288
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
289 290 291 292
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
293 294
};

295
template <typename T>
296
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
297 298 299 300
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
K
Krzysztof Binias 已提交
301 302
    const bool is_test = ctx.Attr<bool>("is_test");

303 304
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
305 306 307 308
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
309
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
310 311
    auto* output = ctx.Output<Tensor>("Output");

312 313 314 315
    auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
    auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
    auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
    auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;
X
xiaolil1 已提交
316 317

    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
X
xiaolil1 已提交
318
    bool is_multi_channel = (is_INT8 && scale_weights->memory_size() > 1) ? true : false;
319

320 321 322 323 324 325
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
326 327 328 329 330 331 332 333 334 335 336
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
337 338 339 340

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
341
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
Z
Zhang, Guoming 已提交
342
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
343 344
    int groups = ctx.Attr<int>("groups");

Z
Zhang, Guoming 已提交
345
    // TODO(tpatejko): add support for dilation
346 347 348 349 350
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
X
xiaolil1 已提交
351
    const float* filter_data = filter->data<float>();
352 353 354 355

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
356 357 358 359 360 361 362 363 364 365 366 367 368
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
369 370
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

X
xiaolil1 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
    // Get unique name for storing MKLDNN primitives
    const std::string key = ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";
    static std::unordered_map<std::string, std::vector<float>> scale_map;
    //scale_map.insert({key_conv_pd,{1.0f}});
    //scale_map[key_conv_pd]={0.1f};
    bool scale_reuse = false;
    auto scale_in_key = key + "@scale_in";
    auto scale_weights_key = key + "@scale_weights";
    auto scale_out_key = key + "@scale_out";
    auto output_shift_scale_key = key + "@output_shift_scale";
    auto sum_scale_key = key + "@sum_scale";
    auto scale_in_eltwise_key = key + "@scale_in_eltwise";
    std::vector<float> scale_in_data;
    std::vector<float> scale_out_data;
    std::vector<float> scale_weights_data;
    std::vector<float> scale_in_eltwise_data;
X
xiaolil1 已提交
390
    std::vector<float> output_shift_scale;
X
xiaolil1 已提交
391 392
    std::vector<float> sum_scale = {1.0f};
    std::vector<float> none_scale = {0};
393

X
xiaolil1 已提交
394 395 396 397
    if (is_INT8 && GetScaleMap(scale_map, scale_in_key) == none_scale){
        scale_reuse = true;
    }
//std::cout<<"scale_reuse = "<<scale_reuse<<std::endl;
398
    if(is_INT8){
X
xiaolil1 已提交
399 400 401 402 403
        if(scale_reuse){
//std::cout<<"load scale!!!!!!!!"<<std::endl;
            int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
            scale_in_data = {*(scale_in->data<float>())};
            scale_weights_data.resize(count);
X
xiaolil1 已提交
404
            #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
405 406 407 408 409
            for(int i=0; i<count; i++){
                scale_weights_data[i] =*(scale_weights->data<float>() + i);
            }
            scale_out_data = {*(scale_out->data<float>())};
            output_shift_scale.resize(count);
X
xiaolil1 已提交
410
            #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
            for(int i=0; i<count; i++){
                if(scale_weights_data[i] == 0.0)
                    output_shift_scale[i] = scale_out_data[0];
                else 
                    output_shift_scale[i] = scale_out_data[0] / (scale_in_data[0] * scale_weights_data[i]);
            }
            if(fuse_residual_conn){
                scale_in_eltwise_data = {*(scale_in_eltwise->data<float>())};
                sum_scale[0] = scale_out_data[0] / scale_in_eltwise_data[0];
                SetScaleMap(scale_map, scale_in_eltwise_key, scale_in_eltwise_data);
            }

            //scale reuse
            SetScaleMap(scale_map, scale_in_key, scale_in_data);
            SetScaleMap(scale_map, scale_weights_key, scale_weights_data);
            SetScaleMap(scale_map, scale_out_key, scale_out_data);
            SetScaleMap(scale_map, output_shift_scale_key, output_shift_scale);
            SetScaleMap(scale_map, sum_scale_key, sum_scale);
        } else{
            scale_in_data = GetScaleMap(scale_map, scale_in_key);
            scale_out_data = GetScaleMap(scale_map, scale_out_key);
            scale_weights_data = GetScaleMap(scale_map, scale_weights_key);
            if(fuse_residual_conn){
                scale_in_eltwise_data = GetScaleMap(scale_map, scale_in_eltwise_key);
            }
            output_shift_scale = GetScaleMap(scale_map, output_shift_scale_key);
            sum_scale = GetScaleMap(scale_map, sum_scale_key); 
            //printf("pause!!!");
X
xiaolil1 已提交
439
        }
X
xiaolil1 已提交
440

441 442
    }

443

X
xiaolil1 已提交
444
    std::vector<primitive> pipeline;
445
    auto user_src_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
446
            {src_tz}, paddle::framework::ToMKLDNNDataType(input->type()), input->format());
447
    auto user_weights_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
448 449
            {weights_tz}, platform::MKLDNNGetDataType<float>(),
            (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw);
450 451 452 453 454

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
455
    std::string data_format = ctx.Attr<std::string>("data_format");
X
xiaolil1 已提交
456
    auto chosen_memory_format = 
457
        platform::data_format_to_memory_format(data_format);
458

X
xiaolil1 已提交
459 460
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    auto bias_tz = paddle::framework::vectorize2int(bias->dims());
X
xiaolil1 已提交
461
    if(is_INT8){
X
xiaolil1 已提交
462
        auto src_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
463
            src_tz, memory::data_type::u8, chosen_memory_format);
X
xiaolil1 已提交
464
        auto weights_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
465 466
            weights_tz, memory::data_type::s8,
            (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw);
467 468 469 470
        auto dst_dt = fuse_relu? paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char))) : paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char)));
        if(fuse_residual_conn){
            auto residual = ctx.Input<Tensor>("ResidualData");
            auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
X
xiaolil1 已提交
471
            if(dst_dt != residual_dt)
472 473
                dst_dt = residual_dt;
        }
X
xiaolil1 已提交
474
        auto dst_md = platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format);
475

X
xiaolil1 已提交
476 477 478
        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
            auto bias_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
479 480 481
                bias_tz, memory::data_type::s32, memory::format::x);
            conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                           strides, paddings, mkldnn_engine,
X
xiaolil1 已提交
482
                                           fuse_relu, fuse_residual_conn,
X
xiaolil1 已提交
483
                                           output_shift_scale, sum_scale[0]);
X
xiaolil1 已提交
484
        } else {
X
xiaolil1 已提交
485 486 487
            conv_pd =
                ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                     mkldnn_engine, fuse_relu, fuse_residual_conn,
X
xiaolil1 已提交
488
                                     output_shift_scale, sum_scale[0]);
X
xiaolil1 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
        }
    } else{
        auto src_md = platform::MKLDNNMemDesc(
            src_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format);
        auto weights_md = platform::MKLDNNMemDesc(
            weights_tz, platform::MKLDNNGetDataType<float>(),
            (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw);
        auto dst_md = platform::MKLDNNMemDesc(
            dst_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format);
        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
            auto bias_md = platform::MKLDNNMemDesc(
                bias_tz, platform::MKLDNNGetDataType<float>(), memory::format::x);
                conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                               strides, paddings, mkldnn_engine,
                                               fuse_relu, fuse_residual_conn);
        } else {
                conv_pd =
                    ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                         mkldnn_engine, fuse_relu, fuse_residual_conn);
X
xiaolil1 已提交
509
        }
510
    }
511 512
    // Save conv_pd/src_memory/weights_memory for backward pass
    dev_ctx.SetBlob(key_conv_pd, conv_pd);
513

514
    ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
515

516 517 518 519
    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
X
xiaolil1 已提交
520
        user_weights_md, to_void_cast<float>(filter_data));
Z
Zhang, Guoming 已提交
521

522 523
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
524
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
Z
Zhang, Guoming 已提交
525
        
X
xiaolil1 已提交
526
    std::shared_ptr<mkldnn::memory> weights_memory_p;
X
xiaolil1 已提交
527
    if(is_INT8){
528
        int mask_reorder = is_multi_channel? ((g!= 1) ? (1<<1)+(1<<0) : 1<<0) : 0;
X
xiaolil1 已提交
529
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
X
xiaolil1 已提交
530
            user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);
X
xiaolil1 已提交
531 532 533 534 535 536
    } else{
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
            user_weights_memory_p, pipeline, is_test);
    }

    std::shared_ptr<mkldnn::memory> dst_memory_p;
537
    bool need_s8_to_u8 = false;
X
xiaolil1 已提交
538 539 540 541 542 543 544
    if(is_INT8){
        if (fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                            "Output and elementwise parameter need to have the "
                            "same dimension sizes");
          output->ShareDataWith(*residual_param);
545 546 547
          auto residual_dt = paddle::framework::ToMKLDNNDataType(residual_param->type());
          if(residual_dt == mkldnn::memory::data_type::u8){

X
xiaolil1 已提交
548 549 550 551 552 553 554
              uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
          } else{
              int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
555 556
              if(fuse_relu)
                need_s8_to_u8 = true;
X
xiaolil1 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569
          }
        } else {
          if(fuse_relu){
              uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
          } else{
              int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
          }
        }
    } else{
Z
Zhang, Guoming 已提交
570 571 572 573 574 575 576
            // create reorder primitive if the input format is not the preferred one
        // auto src_memory_p =
        //     handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
        // auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        //     user_weights_memory_p, pipeline, is_test);
        // std::shared_ptr<mkldnn::memory> dst_memory_p;

X
xiaolil1 已提交
577 578 579 580 581 582 583 584 585 586 587
        if (fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
          auto residual_param_data = residual_param->data<T>();

          PADDLE_ENFORCE(
              residual_param_data != nullptr,
              "Provide data if you want MKLDNN conv+elementwise_add fusion");
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                            "Output and elementwise parameter need to have the "
                            "same dimension sizes");

Z
Zhang, Guoming 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
            if (residual_param->format() != handler.GetDstFormat()) {
                auto output_data =
                    output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
                auto residual_data_tz =
                    paddle::framework::vectorize2int(residual_param->dims());
                auto residual_data_type =
                    paddle::framework::ToMKLDNNDataType(residual_param->type());
                auto user_residual_md = platform::MKLDNNMemDesc(
                    residual_data_tz, residual_data_type, residual_param->format());
                auto user_residual_memory_p = handler.AcquireResidualDataMemory(
                    user_residual_md, to_void_cast<T>(residual_param_data));
                dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
                    user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
            } else {
                output->ShareDataWith(*residual_param);
                auto output_data = output->mutable_data<T>(ctx.GetPlace());
                dst_memory_p =
                    handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
            }
X
xiaolil1 已提交
607
        } else {
Z
Zhang, Guoming 已提交
608 609 610 611 612

            auto output_data =
                output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
            dst_memory_p =
                handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
X
xiaolil1 已提交
613
        }
Z
Zhang, Guoming 已提交
614 615
        // dst_memory_p =
        //     handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
X
xiaolil1 已提交
616
    }
617 618

    // create convolution op primitive
619
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
X
xiaolil1 已提交
620 621
    std::vector<float> scale_bias_data;
    auto scale_bias_key = key + "@scale_bias";
622
    if (bias) {
X
xiaolil1 已提交
623
      const float* bias_data = bias->data<float>();
624
      auto user_bias_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
625
          {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x);
626
      auto user_bias_memory_p =
X
xiaolil1 已提交
627
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<float>(bias_data));
X
xiaolil1 已提交
628
      std::shared_ptr<mkldnn::memory>  bias_memory_p;
X
xiaolil1 已提交
629
      if(is_INT8){
630
          int mask_reorder = is_multi_channel? 1<<0 : 1;
X
xiaolil1 已提交
631 632 633
          if(scale_reuse){
              int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
              scale_bias_data.resize(count);
X
xiaolil1 已提交
634
              #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
635 636 637 638 639 640
              for(int i=0; i<count; i++){
                  scale_bias_data[i] = scale_in_data[0] * scale_weights_data[i];
              }
              SetScaleMap(scale_map, scale_bias_key, scale_bias_data);
          } else{
              scale_bias_data = GetScaleMap(scale_map, scale_bias_key);
X
xiaolil1 已提交
641
          }
X
xiaolil1 已提交
642
          bias_memory_p =
X
xiaolil1 已提交
643
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test, is_INT8, scale_bias_data, mask_reorder);
X
xiaolil1 已提交
644 645 646 647
      } else{
          bias_memory_p =
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      } 
648 649 650 651 652 653
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
654

X
xiaolil1 已提交
655

656
    // push primitive to stream and wait until it's executed
657
    pipeline.push_back(*conv_p);
658 659
    stream(stream::kind::eager).submit(pipeline).wait();

660
    if(need_s8_to_u8){
661 662 663
        output->mutable_data<uint8_t>(ctx.GetPlace());
    }

664
    output->set_layout(DataLayout::kMKLDNN);
665
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
666
  }
667

668
 private:
X
xiaolil1 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689

    void SetScaleMap(std::unordered_map<std::string, std::vector<float>> &scale_map,
                       const std::string& name, std::vector<float> scale_data) const {
      auto it = scale_map.find(name);
      if (it == scale_map.end()) {
        scale_map[name] = scale_data;  // create new blob
      } else {
        (*it).second = scale_data;  // set data to existing blob
      }
      return;
    }

    std::vector<float> GetScaleMap(std::unordered_map<std::string, std::vector<float>> &scale_map,
         const std::string& name) const {
      auto it = scale_map.find(name);
      if (it != scale_map.end()) {
        return (*it).second;
      }
      return {0};
    }

Z
Zhang, Guoming 已提交
690
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
X
xiaolil1 已提交
691
                          const std::vector<float> output_shift_scale, float sum_scale) const {
692 693
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
694
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
695 696 697 698
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
699
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
700
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
701
      if (fuse_residual_conn) {
702 703 704 705 706
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
707
        constexpr float placeholder = 1.0f; //beta
708 709 710 711 712
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
713
    }
714

X
xiaolil1 已提交
715
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
716 717 718 719

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
720
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
721 722
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
723
      conv_attr.set_output_scales(0, {1.0f});
X
xiaolil1 已提交
724
      if (fuse_residual_conn) {
725 726 727 728 729 730 731 732 733 734 735 736 737
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
738
    }
M
Michal Gallus 已提交
739

Z
Zhang, Guoming 已提交
740
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
741 742 743 744
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
745
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
746
                         const std::vector<float> output_shift_scale, const float sum_scale) const {
747 748 749 750
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
751
          mkldnn::prop_kind::forward_scoring, mkldnn::convolution_direct, src, weights,
752 753 754 755
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
756
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
757 758 759 760 761 762

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
763
    }
M
Michal Gallus 已提交
764

765
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
766 767 768 769
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
770
                         const bool fuse_residual_conn) const{
771 772 773 774
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
  
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
775
          mkldnn::prop_kind::forward_scoring, mkldnn::convolution_direct, src, weights,
776 777 778
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
779
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
780 781 782 783 784 785 786
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
787 788

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
789 790 791 792 793
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
794
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
795
                         const std::vector<float> output_shift_scale, const float sum_scale) const {
796 797 798 799
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
800
          mkldnn::prop_kind::forward_scoring, mkldnn::convolution_direct, src, weights,
801 802 803 804
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
805
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
806 807 808 809 810 811 812 813 814 815 816 817 818 819

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
820
                         const bool fuse_residual_conn) const{
821 822 823 824
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
825
          mkldnn::prop_kind::forward_scoring, mkldnn::convolution_direct, src, weights,
826 827 828
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
829
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
830 831 832 833 834 835 836 837

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

838 839 840
};

template <typename T>
841
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
842 843 844 845 846
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

847 848
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
849 850 851 852 853 854 855 856 857 858
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

859 860 861 862 863 864 865 866 867 868 869 870 871
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

872 873 874 875
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
876 877
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
878 879 880 881 882 883 884 885 886 887 888 889

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

890
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
891
    // as well as attributes of primitive to be created
892 893 894 895 896 897
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
898
    std::vector<primitive> pipeline;
899

900 901 902 903 904 905 906
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
907 908 909 910 911

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
912 913 914 915
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

916
    auto src_md = platform::MKLDNNMemDesc(
917
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
918
    auto diff_src_md = platform::MKLDNNMemDesc(
919
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
920
    auto weights_md = platform::MKLDNNMemDesc(
921
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
922
    auto diff_weights_md = platform::MKLDNNMemDesc(
923
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
924
    auto diff_dst_md = platform::MKLDNNMemDesc(
925
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
926

927
    // Retrieve conv_pd from device context
928 929 930
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
931 932 933
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
960 961
    // create backward conv primitive for weights
    if (filter_grad) {
962 963
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
964

965 966 967 968
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

969
      const size_t size = handler.GetDiffWeightsMemorySize();
970 971
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);

972 973 974 975 976 977 978 979 980
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
981 982

      filter_grad->set_layout(DataLayout::kMKLDNN);
983
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
984 985 986
    }

    if (input_grad) {
987 988 989 990 991 992 993
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

994
      const size_t size = handler.GetDiffSourceMemorySize();
995 996
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);

997 998 999 1000 1001 1002 1003
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
1004 1005

      input_grad->set_layout(DataLayout::kMKLDNN);
1006
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1007
    }
1008
    stream(stream::kind::eager).submit(pipeline).wait();
1009 1010 1011 1012 1013 1014 1015 1016 1017
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
1018 1019
                   ops::ConvMKLDNNOpKernel<float>,
                   ops::ConvMKLDNNOpKernel<uint8_t>);
1020 1021

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
1022
                   ops::ConvMKLDNNGradOpKernel<float>);