conv_mkldnn_op.cc 55.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaolil1 已提交
17
#include "paddle/fluid/framework/data_layout_transform.h"
X
xiaolil1 已提交
18 19
#include <unordered_map>
#include <map>
20

21 22
#include "paddle/fluid/framework/data_layout_transform.h"

23 24 25
namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

34 35 36 37 38 39 40 41 42 43
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

61
  size_t GetDstMemorySize() const {
62 63
    return conv_pd_->dst_primitive_desc().get_size();
  }
Z
Zhang, Guoming 已提交
64 65 66 67 68
  
  mkldnn::memory::format GetDstFormat() const {
    return static_cast<mkldnn::memory::format>(
        conv_pd_->dst_primitive_desc().desc().data.format);
  }
69

70
  size_t GetDiffWeightsMemorySize() const {
71 72 73
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

74
  size_t GetDiffSourceMemorySize() const {
75 76 77
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

78 79
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
80
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
81 82 83 84 85 86 87 88
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
89
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
105
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
106 107 108 109 110 111 112 113
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
114
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
115 116 117 118 119 120
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

Z
Zhang, Guoming 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133
  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }
134

135 136 137 138 139 140
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

141 142 143 144 145 146 147
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
148
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
149
    auto src_pd = conv_pd_->src_primitive_desc();
150
    auto user_pd = user_memory_p->get_primitive_desc();
151 152 153 154 155 156
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
157
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
158 159 160 161
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
162 163 164 165
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
166 167
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
168 169
  }

170 171
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
172
      std::vector<mkldnn::primitive>& pipeline,
X
xiaolil1 已提交
173
      bool is_persistent = false,
X
xiaolil1 已提交
174 175 176
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
177 178 179
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
180 181
                               "@bias_mem_p", pipeline, is_persistent,
                               is_INT8, scale_data, mask);
182 183
  }

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

275 276
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
277 278 279 280 281 282
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
283 284 285 286 287 288 289
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
290 291 292 293
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
294 295
};

X
xiaolil1 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
  struct key_desc{
      struct Hash{
          std::size_t operator()(const key_desc &key) const{
              int input_dim = 0;
              int weights_dim = 0;
              int stride_value = 0;
              int padding_value = 0;
              int dilation_value = 0;
              for(size_t i=0; i<key.input_tz.size(); i++){
                 input_dim += key.input_tz[i];
              }
              for(size_t i=0; i<key.weights_tz.size(); i++){
                  weights_dim += key.weights_tz[i];
              }
              for(size_t i=0; i<key.strides.size(); i++){
                  stride_value += key.strides[i];
              }
              for(size_t i=0; i<key.paddings.size(); i++){
                  padding_value += key.paddings[i];
              }
              for(size_t i=0; i<key.dilations.size(); i++){
                  dilation_value += key.dilations[i];
              }
              std::hash<int> hasher;
              return hasher( (input_dim << 8) +
                       (weights_dim << 8 * 2) +
                       (stride_value << 8 * 3) +
                       (padding_value << 8) +
                       (dilation_value << 8 * 2) +
                       (key.groups << 8 * 3));
          }
      };

      std::vector<int> input_tz;
      std::vector<int> weights_tz;
      std::vector<int> strides;
      std::vector<int> paddings;
      std::vector<int> dilations;
      int groups;
      const std::string suffix;
      key_desc(std::vector<int> input_tz, std::vector<int> weights_tz, std::vector<int> strides, std::vector<int> paddings, std::vector<int> dilations,int groups,const std::string suffix): input_tz(input_tz), weights_tz(weights_tz), strides(strides), paddings(paddings), dilations(dilations), groups(groups), suffix(suffix) {}

      bool operator==(const key_desc o) const{
          for(size_t i=0; i<input_tz.size(); i++){
              if(input_tz[i] != o.input_tz[i])
                  return false;
          }

          for(size_t i=0; i<weights_tz.size(); i++){
              if(weights_tz[i] != o.weights_tz[i])
                  return false;
          }

          for(size_t i=0; i<strides.size(); i++){
              if(strides[i] != o.strides[i])
                  return false;
          }

          for(size_t i=0; i<paddings.size(); i++){
              if(paddings[i] != o.paddings[i])
                  return false;
          }

          for(size_t i=0; i<dilations.size(); i++){
              if(dilations[i] != o.dilations[i])
                  return false;
          }
          if(groups != o.groups) return false;
          if(suffix != o.suffix) return false;

          return true;
      }
      bool operator!=(const key_desc& o) const { return !(*this == o); }
  };

class handle_key{
  public:
    void SetKeyMap(std::unordered_map<key_desc, std::string, key_desc::Hash> &key_map, key_desc key_dsr, std::string key){
      auto it = key_map.find(key_dsr);
      if (it == key_map.end()) {
        key_map[key_dsr] = key;  // create new blob
      } else {
        (*it).second = key;  // set data to existing blob
      }
      return;
    }

    std::string GetKeyMap(std::unordered_map<key_desc, std::string, key_desc::Hash> &key_map, key_desc key_dsr){
      auto it = key_map.find(key_dsr);
      if (it != key_map.end()) {
        return (*it).second;
      }
      return "";
    }
};

392
template <typename T>
393
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
394 395 396 397
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
K
Krzysztof Binias 已提交
398 399
    const bool is_test = ctx.Attr<bool>("is_test");

400 401
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
402 403 404 405
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
406
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
407 408
    auto* output = ctx.Output<Tensor>("Output");

409 410 411 412
    auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
    auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
    auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
    auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;
X
xiaolil1 已提交
413 414

    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
X
xiaolil1 已提交
415
    bool is_multi_channel = (is_INT8 && scale_weights->memory_size() > 1) ? true : false;
416

417 418 419 420 421 422
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
423 424 425 426 427 428 429 430 431 432 433
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
434 435 436 437

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
438
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
439
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
Z
Zhang, Guoming 已提交
440
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
441 442
    int groups = ctx.Attr<int>("groups");

Z
Zhang, Guoming 已提交
443
    // TODO(tpatejko): add support for dilation
444 445 446 447 448
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
X
xiaolil1 已提交
449
    const float* filter_data = filter->data<float>();
450 451

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
X
xiaolil1 已提交
452
    std::vector<int> weights_tz = 
453
        paddle::framework::vectorize2int(filter->dims());
454 455 456 457 458 459 460 461 462 463 464 465 466
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
467 468
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

X
xiaolil1 已提交
469
    // Get unique name for storing MKLDNN primitives
X
xiaolil1 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
    handle_key keyhandler;
    key_desc key_dsr = {src_tz, weights_tz, strides, paddings, dilations, groups, ctx.op().Output("Output")};
    
    static std::unordered_map<key_desc, std::string, key_desc::Hash> key_map;
    static std::shared_ptr<std::unordered_map<ConvMKLDNNHandler::key_suffix_desc, std::string, ConvMKLDNNHandler::key_suffix_desc::Hash>> key_suffix_map(new std::unordered_map<ConvMKLDNNHandler::key_suffix_desc, std::string, ConvMKLDNNHandler::key_suffix_desc::Hash>({}));
    bool key_reuse = true;
    std::string none_key = "";
    if(keyhandler.GetKeyMap(key_map, key_dsr) == none_key){
        key_reuse = false;
    }
    std::string key; 
    if(!key_reuse){
        key = ConvMKLDNNHandler::GetHash(
                src_tz, weights_tz, strides, paddings, dilations, groups,
                ctx.op().Output("Output"));
        keyhandler.SetKeyMap(key_map, key_dsr, key);
    } else{
        key = keyhandler.GetKeyMap(key_map, key_dsr);
    }
X
xiaolil1 已提交
489
    const std::string key_conv_pd = key + "@conv_pd";
X
xiaolil1 已提交
490
    static std::unordered_map<std::string, std::vector<std::vector<float>>> scale_map;
491
    bool scale_reuse = true;
X
xiaolil1 已提交
492 493 494
    std::vector<float> scale_in_data;
    std::vector<float> scale_out_data;
    std::vector<float> scale_weights_data;
X
xiaolil1 已提交
495
    std::vector<float> scale_in_eltwise_data = {1.0f};
X
xiaolil1 已提交
496
    std::vector<float> output_shift_scale;
X
xiaolil1 已提交
497
    std::vector<float> sum_scale = {1.0f};
X
xiaolil1 已提交
498 499 500
    std::vector<float> scale_bias_data = {1.0f};
    std::vector<std::vector<float>> none_scale = {{0.0f}};
    std::vector<std::vector<float>> scale_datas(7,{1.0f});
501

X
xiaolil1 已提交
502 503 504
//scale_in_data 0, scale_in_eltwise_data 1, scale_weights_data 2, scale_bias_data 3, scale_out_data 4, output_shift_scale 5, sum_scale 6

    if (is_INT8 && GetScaleMap(scale_map, key) == none_scale){
505
        scale_reuse = false;
X
xiaolil1 已提交
506 507
    } else{
        scale_datas = GetScaleMap(scale_map, key);
X
xiaolil1 已提交
508 509
    }
//std::cout<<"scale_reuse = "<<scale_reuse<<std::endl;
510
    if(is_INT8){
511
        if(!scale_reuse){
X
xiaolil1 已提交
512 513 514 515
//std::cout<<"load scale!!!!!!!!"<<std::endl;
            int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
            scale_in_data = {*(scale_in->data<float>())};
            scale_weights_data.resize(count);
X
xiaolil1 已提交
516
            #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
517 518 519 520
            for(int i=0; i<count; i++){
                scale_weights_data[i] =*(scale_weights->data<float>() + i);
            }
            scale_out_data = {*(scale_out->data<float>())};
521 522
            if(force_fp32_output) 
                scale_out_data[0] = 1.0;
X
xiaolil1 已提交
523
            output_shift_scale.resize(count);
X
xiaolil1 已提交
524
            #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
525 526 527 528 529 530 531 532 533
            for(int i=0; i<count; i++){
                if(scale_weights_data[i] == 0.0)
                    output_shift_scale[i] = scale_out_data[0];
                else 
                    output_shift_scale[i] = scale_out_data[0] / (scale_in_data[0] * scale_weights_data[i]);
            }
            if(fuse_residual_conn){
                scale_in_eltwise_data = {*(scale_in_eltwise->data<float>())};
                sum_scale[0] = scale_out_data[0] / scale_in_eltwise_data[0];
X
xiaolil1 已提交
534
                //SetScaleMap(scale_map, scale_in_eltwise_key, scale_in_eltwise_data);
X
xiaolil1 已提交
535 536 537
            }

            //scale reuse
X
xiaolil1 已提交
538 539 540 541 542 543 544 545 546 547 548
            scale_datas[0] = scale_in_data;
            scale_datas[1] = scale_in_eltwise_data;
            scale_datas[2] = scale_weights_data;
            scale_datas[4] = scale_out_data;
            scale_datas[5] = output_shift_scale;
            scale_datas[6] = sum_scale;
            //SetScaleMap(scale_map, key, scale_datas);
            //SetScaleMap(scale_map, scale_weights_key, scale_weights_data);
            //SetScaleMap(scale_map, scale_out_key, scale_out_data);
            //SetScaleMap(scale_map, output_shift_scale_key, output_shift_scale);
            //SetScaleMap(scale_map, sum_scale_key, sum_scale);
X
xiaolil1 已提交
549
        } else{
X
xiaolil1 已提交
550 551 552
            scale_in_data = scale_datas[0];
            scale_out_data = scale_datas[3];
            scale_weights_data = scale_datas[2];
X
xiaolil1 已提交
553
            if(fuse_residual_conn){
X
xiaolil1 已提交
554
                scale_in_eltwise_data = scale_datas[1];
X
xiaolil1 已提交
555
            }
X
xiaolil1 已提交
556 557
            output_shift_scale = scale_datas[5];
            sum_scale = scale_datas[6]; 
X
xiaolil1 已提交
558
            //printf("pause!!!");
X
xiaolil1 已提交
559
        }
X
xiaolil1 已提交
560

561 562
    }

X
xiaolil1 已提交
563 564 565 566 567 568 569
    //static std::unordered_map<std::string, std::shared_ptr<mkldnn::memory::desc>> md_map;
    //bool md_reuse = true;
    //auto user_src_md_key = key + "@user_src_md";
    //if (GetMdMap(md_map, user_src_md_key) == nullptr){
    //    md_reuse = false;   //we suppose all mds are reused if the first md is in the map.
    //}
    //auto user_weights_md_key = key + "@user_weights_md";
570 571
    std::shared_ptr<mkldnn::memory::desc> user_src_md;
    std::shared_ptr<mkldnn::memory::desc> user_weights_md;
X
xiaolil1 已提交
572
    std::vector<primitive> pipeline;
573
//std::cout<<"md_reuse = "<<md_reuse<<std::endl;
X
xiaolil1 已提交
574
//    if(!md_reuse){
575 576 577 578 579 580
//std::cout<<"create md.......... "<<std::endl;
        user_src_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                {src_tz}, paddle::framework::ToMKLDNNDataType(input->type()), input->format())));
        user_weights_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                {weights_tz}, platform::MKLDNNGetDataType<float>(),
                (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw)));
581
        
X
xiaolil1 已提交
582 583 584 585 586 587
//        SetMdMap(md_map, user_src_md_key, user_src_md);
//        SetMdMap(md_map, user_weights_md_key, user_weights_md);
//    } else{
//        user_src_md = GetMdMap(md_map, user_src_md_key);
//        user_weights_md = GetMdMap(md_map, user_weights_md_key);
//    }
588 589 590 591 592

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
593
    std::string data_format = ctx.Attr<std::string>("data_format");
X
xiaolil1 已提交
594
    auto chosen_memory_format = 
595
        platform::data_format_to_memory_format(data_format);
596

X
xiaolil1 已提交
597 598
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    auto bias_tz = paddle::framework::vectorize2int(bias->dims());
599

X
xiaolil1 已提交
600 601 602 603
    //auto src_md_key = key + "@src_md";
    //auto weights_md_key = key + "@weights_md_key";
    //auto dst_md_key = key + "@dst_md_key";
    //auto bias_md_key = key + "@bias_md_key";
604 605 606 607
    std::shared_ptr<mkldnn::memory::desc> src_md;
    std::shared_ptr<mkldnn::memory::desc> weights_md;
    std::shared_ptr<mkldnn::memory::desc> dst_md;

X
xiaolil1 已提交
608
    if(is_INT8){
X
xiaolil1 已提交
609
        //if(!md_reuse){
610 611 612
            src_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                src_tz, memory::data_type::u8, chosen_memory_format)));
            weights_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
613
                weights_tz, memory::data_type::s8, chosen_memory_format)));
614 615 616 617 618 619 620
            auto dst_dt = fuse_relu? paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char))) : paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char)));
            if(fuse_residual_conn){
                auto residual = ctx.Input<Tensor>("ResidualData");
                auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
                if(dst_dt != residual_dt)
                    dst_dt = residual_dt;
            }
621
            if(force_fp32_output)
H
Haihao Shen 已提交
622
                dst_dt = paddle::framework::ToMKLDNNDataType(std::type_index(typeid(float)));
623
            dst_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format)));
X
xiaolil1 已提交
624 625 626 627 628 629 630 631
            //SetMdMap(md_map, src_md_key, src_md);
            //SetMdMap(md_map, weights_md_key, weights_md);
            //SetMdMap(md_map, dst_md_key, dst_md);
        //} else{
        //    src_md = GetMdMap(md_map, src_md_key);
        //    weights_md = GetMdMap(md_map, weights_md_key);
        //    dst_md = GetMdMap(md_map, dst_md_key);
        //}
632

X
xiaolil1 已提交
633 634
        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
635
            std::shared_ptr<mkldnn::memory::desc> bias_md;
X
xiaolil1 已提交
636
            //if(!md_reuse){
637 638
                bias_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                    bias_tz, memory::data_type::s32, memory::format::x)));
X
xiaolil1 已提交
639 640 641 642
            //    SetMdMap(md_map, bias_md_key, bias_md);
            //} else{
            //    bias_md = GetMdMap(md_map, bias_md_key);
            //}
643 644
             
            conv_pd = ConvFwdPrimitiveDesc(*src_md, *weights_md, *bias_md, *dst_md,
X
xiaolil1 已提交
645
                                           strides, paddings, mkldnn_engine,
X
xiaolil1 已提交
646
                                           fuse_relu, fuse_residual_conn,
X
xiaolil1 已提交
647
                                           output_shift_scale, sum_scale[0], is_test);
X
xiaolil1 已提交
648
        } else {
X
xiaolil1 已提交
649
            conv_pd =
650
                ConvFwdPrimitiveDesc(*src_md, *weights_md, *dst_md, strides, paddings,
X
xiaolil1 已提交
651
                                     mkldnn_engine, fuse_relu, fuse_residual_conn,
X
xiaolil1 已提交
652
                                     output_shift_scale, sum_scale[0], is_test);
X
xiaolil1 已提交
653 654
        }
    } else{
X
xiaolil1 已提交
655
        //if(!md_reuse){
656 657 658
            src_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                src_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format)));
            weights_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
659
                weights_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format)));
660 661
            dst_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                dst_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format)));
X
xiaolil1 已提交
662 663 664 665 666 667 668 669
        //    SetMdMap(md_map, src_md_key, src_md);
        //    SetMdMap(md_map, weights_md_key, weights_md);
        //    SetMdMap(md_map, dst_md_key, dst_md);
        //} else{
        //    src_md = GetMdMap(md_map, src_md_key);
        //    weights_md = GetMdMap(md_map, weights_md_key);
        //    dst_md = GetMdMap(md_map, dst_md_key);
        //}
X
xiaolil1 已提交
670 671
        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
672
            std::shared_ptr<mkldnn::memory::desc> bias_md;
X
xiaolil1 已提交
673
            //if(!md_reuse){
674 675
                bias_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                    bias_tz, platform::MKLDNNGetDataType<float>(), memory::format::x)));
X
xiaolil1 已提交
676 677 678 679
            //    SetMdMap(md_map, bias_md_key, bias_md);
            //} else{
            //    bias_md = GetMdMap(md_map, bias_md_key);
            //}
680 681 682
            conv_pd = ConvFwdPrimitiveDesc(*src_md, *weights_md, *bias_md, *dst_md,
                                           strides, paddings, mkldnn_engine,
                                           fuse_relu, fuse_residual_conn, is_test);
X
xiaolil1 已提交
683
        } else {
684 685
            conv_pd =
                ConvFwdPrimitiveDesc(*src_md, *weights_md, *dst_md, strides, paddings,
X
xiaolil1 已提交
686
                                         mkldnn_engine, fuse_relu, fuse_residual_conn, is_test);
X
xiaolil1 已提交
687
        }
688
    }
689 690
    // Save conv_pd/src_memory/weights_memory for backward pass
    dev_ctx.SetBlob(key_conv_pd, conv_pd);
691

692
    ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
X
xiaolil1 已提交
693
    handler.key_suffix_map_ = key_suffix_map;
694

695 696
    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
697
        handler.AcquireSrcMemory(*user_src_md, to_void_cast<T>(input_data));
698
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
699
        *user_weights_md, to_void_cast<float>(filter_data));
Z
Zhang, Guoming 已提交
700

701 702
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
703
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
Z
Zhang, Guoming 已提交
704
        
X
xiaolil1 已提交
705
    std::shared_ptr<mkldnn::memory> weights_memory_p;
X
xiaolil1 已提交
706
    if(is_INT8){
707
        int mask_reorder = is_multi_channel? ((g!= 1) ? (1<<1)+(1<<0) : 1<<0) : 0;
X
xiaolil1 已提交
708
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
X
xiaolil1 已提交
709
            user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);
X
xiaolil1 已提交
710 711 712 713 714 715
    } else{
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
            user_weights_memory_p, pipeline, is_test);
    }

    std::shared_ptr<mkldnn::memory> dst_memory_p;
716
    bool need_s8_to_u8 = false;
X
xiaolil1 已提交
717
    //auto user_residual_md_key = key + "@user_residual_md";
718 719 720 721 722 723 724
    if(fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
              "Output and elementwise parameter need to have the "
              "same dimension sizes");
        auto residual_dt = paddle::framework::ToMKLDNNDataType(residual_param->type());
        if(residual_param->format() != handler.GetDstFormat()) {
725
            std::shared_ptr<mkldnn::memory::desc> user_residual_md;
X
xiaolil1 已提交
726
            //if(!md_reuse){
727 728 729 730 731 732
                auto residual_data_tz =
                    paddle::framework::vectorize2int(residual_param->dims());
                auto residual_data_type =
                    paddle::framework::ToMKLDNNDataType(residual_param->type());
                user_residual_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                    residual_data_tz, residual_data_type, residual_param->format())));
X
xiaolil1 已提交
733 734 735 736
                //SetMdMap(md_map, user_residual_md_key, user_residual_md);
            //} else{
            //    user_residual_md = GetMdMap(md_map, user_residual_md_key);
            //}
737
            if(is_INT8){
738 739 740 741
                PADDLE_ENFORCE(
                      force_fp32_output == false,
                      "Conv and sum does not support force_fp32_output");

742
                if(residual_dt == mkldnn::memory::data_type::u8){
743 744 745 746 747 748 749 750 751 752
                    auto residual_param_data = residual_param->data<uint8_t>();
                    auto user_residual_memory_p = handler.AcquireResidualDataMemory(
                        *user_residual_md, to_void_cast<uint8_t>(residual_param_data));
                    PADDLE_ENFORCE(
                          residual_param_data != nullptr,
                          "Provide data if you want MKLDNN conv+elementwise_add fusion");
                        uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
                        dst_memory_p =
                            handler.AcquireDstMemoryFromResidualDataMemory(
                                user_residual_memory_p, to_void_cast<uint8_t>(output_data), pipeline);
753
                } else{
754 755 756 757 758 759 760 761 762 763
                    auto residual_param_data = residual_param->data<int8_t>();
                    auto user_residual_memory_p = handler.AcquireResidualDataMemory(
                        *user_residual_md, to_void_cast<int8_t>(residual_param_data));
                    PADDLE_ENFORCE(
                          residual_param_data != nullptr,
                          "Provide data if you want MKLDNN conv+elementwise_add fusion");
                        int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
                        dst_memory_p =
                            handler.AcquireDstMemoryFromResidualDataMemory(
                                user_residual_memory_p, to_void_cast<int8_t>(output_data), pipeline);
764 765 766 767 768 769
                    if(fuse_relu)
                      need_s8_to_u8 = true;
                }
            } else{
                auto residual_param_data = residual_param->data<T>();
                auto user_residual_memory_p = handler.AcquireResidualDataMemory(
770
                    *user_residual_md, to_void_cast<T>(residual_param_data));
771 772 773 774 775 776 777 778
                PADDLE_ENFORCE(
                      residual_param_data != nullptr,
                      "Provide data if you want MKLDNN conv+elementwise_add fusion");
                 auto output_data =
                     output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
                 dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
                      user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
            }
X
xiaolil1 已提交
779
        } else {
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
             output->ShareDataWith(*residual_param);
             if(is_INT8){
                 if(residual_dt == mkldnn::memory::data_type::u8){
                     uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
                     dst_memory_p =
                         handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
                 } else{
                     int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
                     dst_memory_p =
                         handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
                     if(fuse_relu)
                       need_s8_to_u8 = true;
                 }
             } else{
                  auto output_data = output->mutable_data<T>(ctx.GetPlace());
                  dst_memory_p =
                      handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));               
             }
        }
    } else {
800
        if(is_INT8 && !force_fp32_output){
X
xiaolil1 已提交
801 802 803 804 805 806 807 808 809
          if(fuse_relu){
              uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
          } else{
              int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
          }
810 811 812 813 814
        } else{
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
X
xiaolil1 已提交
815
        }
X
xiaolil1 已提交
816
    }
817 818

    // create convolution op primitive
819
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
X
xiaolil1 已提交
820
    //auto scale_bias_key = key + "@scale_bias";
X
xiaolil1 已提交
821
    //auto user_bias_md_key = key + "@user_bias_md";
822
    if (bias) {
X
xiaolil1 已提交
823
      const float* bias_data = bias->data<float>();
824
      std::shared_ptr<mkldnn::memory::desc> user_bias_md;
X
xiaolil1 已提交
825
      //if(!md_reuse){
826 827
          user_bias_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
              {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x)));
X
xiaolil1 已提交
828 829 830 831
      //    SetMdMap(md_map, user_bias_md_key, user_bias_md);
      //} else{
      //    user_bias_md = GetMdMap(md_map, user_bias_md_key);
      //}
832
      auto user_bias_memory_p =
833
          handler.AcquireBiasMemory(*user_bias_md, to_void_cast<float>(bias_data));
X
xiaolil1 已提交
834
      std::shared_ptr<mkldnn::memory>  bias_memory_p;
X
xiaolil1 已提交
835
      if(is_INT8){
836
          int mask_reorder = is_multi_channel? 1<<0 : 1;
837
          if(!scale_reuse){
X
xiaolil1 已提交
838 839
              int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
              scale_bias_data.resize(count);
X
xiaolil1 已提交
840
              #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
841
              for(int i=0; i<count; i++){
842 843 844 845
                  if (scale_weights_data[i] == 0.0)
                      scale_bias_data[i] = 1.0;
                  else
                      scale_bias_data[i] = scale_in_data[0] * scale_weights_data[i];
X
xiaolil1 已提交
846
              }
X
xiaolil1 已提交
847 848
              scale_datas[3] = scale_bias_data;
              //SetScaleMap(scale_map, scale_bias_key, scale_bias_data);
X
xiaolil1 已提交
849
          } else{
X
xiaolil1 已提交
850
              scale_bias_data = scale_datas[3];
X
xiaolil1 已提交
851
          }
X
xiaolil1 已提交
852
          bias_memory_p =
X
xiaolil1 已提交
853
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test, is_INT8, scale_bias_data, mask_reorder);
X
xiaolil1 已提交
854 855 856 857
      } else{
          bias_memory_p =
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      } 
858 859 860 861 862 863
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
864

X
xiaolil1 已提交
865
    SetScaleMap(scale_map, key, scale_datas);
X
xiaolil1 已提交
866

867
    // push primitive to stream and wait until it's executed
868
    pipeline.push_back(*conv_p);
869 870
    stream(stream::kind::eager).submit(pipeline).wait();

H
Haihao Shen 已提交
871
    if(need_s8_to_u8 && !force_fp32_output){
872 873 874
        output->mutable_data<uint8_t>(ctx.GetPlace());
    }

875
    output->set_layout(DataLayout::kMKLDNN);
876
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
877
  }
878

879
 private:
X
xiaolil1 已提交
880

X
xiaolil1 已提交
881 882
    void SetScaleMap(std::unordered_map<std::string, std::vector<std::vector<float>>> &scale_map,
                       const std::string& name, std::vector<std::vector<float>> scale_datas) const {
X
xiaolil1 已提交
883 884
      auto it = scale_map.find(name);
      if (it == scale_map.end()) {
X
xiaolil1 已提交
885
        scale_map[name] = scale_datas;  // create new blob
X
xiaolil1 已提交
886
      } else {
X
xiaolil1 已提交
887
        (*it).second = scale_datas;  // set data to existing blob
X
xiaolil1 已提交
888 889 890 891
      }
      return;
    }

X
xiaolil1 已提交
892
    std::vector<std::vector<float>> GetScaleMap(std::unordered_map<std::string, std::vector<std::vector<float>>> scale_map,
X
xiaolil1 已提交
893 894 895 896 897
         const std::string& name) const {
      auto it = scale_map.find(name);
      if (it != scale_map.end()) {
        return (*it).second;
      }
X
xiaolil1 已提交
898
      return {{0.0f}};
899 900
    }

X
xiaolil1 已提交
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
    //void SetMdMap(std::unordered_map<std::string, std::shared_ptr<mkldnn::memory::desc>> &md_map,
    //                   const std::string& name, std::shared_ptr<mkldnn::memory::desc> mds) const {
    //  auto it = md_map.find(name);
    //  if (it == md_map.end()) {
    //    md_map[name] = mds;  // create new blob
    //  } else {
    //    (*it).second = mds;  // set data to existing blob
    //  }
    //  return;
    //}

    //std::shared_ptr<mkldnn::memory::desc> GetMdMap(std::unordered_map<std::string, std::shared_ptr<mkldnn::memory::desc>> md_map,
    //     const std::string& name) const {
    //  auto it = md_map.find(name);
    //  if (it != md_map.end()) {
    //    return (*it).second;
    //  }
    //  return nullptr;
    //}
X
xiaolil1 已提交
920

Z
Zhang, Guoming 已提交
921
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
X
xiaolil1 已提交
922
                          const std::vector<float> output_shift_scale, float sum_scale) const {
923 924
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
925
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
926 927 928 929
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
930
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
931
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
932
      if (fuse_residual_conn) {
933 934 935 936 937
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
938
        constexpr float placeholder = 1.0f; //beta
939 940 941 942 943
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
944
    }
945

X
xiaolil1 已提交
946
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
947 948 949 950

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
951
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
952 953
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
954
      conv_attr.set_output_scales(0, {1.0f});
X
xiaolil1 已提交
955
      if (fuse_residual_conn) {
956 957 958 959 960 961 962 963 964 965 966 967 968
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
969
    }
M
Michal Gallus 已提交
970

Z
Zhang, Guoming 已提交
971
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
972 973 974 975
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
976
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
977
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
978 979 980
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
981 982
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

983
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
984
          propagation, mkldnn::convolution_direct, src, weights,
985 986 987 988
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
989
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
990 991 992 993 994 995

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
996
    }
M
Michal Gallus 已提交
997

998
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
999 1000 1001 1002
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
X
xiaolil1 已提交
1003
                         const bool fuse_residual_conn, bool is_test) const{
1004 1005
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
X
xiaolil1 已提交
1006 1007 1008
 
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;
 
1009
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
1010
          propagation, mkldnn::convolution_direct, src, weights,
1011 1012 1013
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
1014
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
1015 1016 1017 1018 1019 1020 1021
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
1022 1023

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
1024 1025 1026 1027 1028
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
1029
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
1030
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
1031 1032 1033
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
1034 1035
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

1036
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
1037
          propagation, mkldnn::convolution_direct, src, weights,
1038 1039 1040 1041
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
1042
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
X
xiaolil1 已提交
1057
                         const bool fuse_residual_conn, bool is_test) const{
1058 1059 1060
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
1061 1062
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

1063
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
1064
          propagation, mkldnn::convolution_direct, src, weights,
1065 1066 1067
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
1068
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
1069 1070 1071 1072 1073 1074 1075 1076

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

1077 1078 1079
};

template <typename T>
1080
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
1081 1082 1083 1084 1085
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

1086 1087
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

1111 1112 1113 1114
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
1115 1116
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

1129
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
1130
    // as well as attributes of primitive to be created
1131 1132 1133 1134 1135 1136
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
1137
    std::vector<primitive> pipeline;
1138

1139 1140 1141 1142 1143 1144 1145
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
1146 1147 1148 1149 1150

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
1151 1152 1153 1154
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

1155
    auto src_md = platform::MKLDNNMemDesc(
1156
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1157
    auto diff_src_md = platform::MKLDNNMemDesc(
1158
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1159
    auto weights_md = platform::MKLDNNMemDesc(
1160
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1161
    auto diff_weights_md = platform::MKLDNNMemDesc(
1162
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1163
    auto diff_dst_md = platform::MKLDNNMemDesc(
1164
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1165

1166
    // Retrieve conv_pd from device context
1167 1168 1169
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
1170 1171 1172
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
1199 1200
    // create backward conv primitive for weights
    if (filter_grad) {
1201 1202
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1203

1204 1205 1206 1207
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1208
      const size_t size = handler.GetDiffWeightsMemorySize();
1209 1210
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);

1211 1212 1213 1214 1215 1216 1217 1218 1219
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
1220 1221

      filter_grad->set_layout(DataLayout::kMKLDNN);
1222
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
1223 1224 1225
    }

    if (input_grad) {
1226 1227 1228 1229 1230 1231 1232
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1233
      const size_t size = handler.GetDiffSourceMemorySize();
1234 1235
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);

1236 1237 1238 1239 1240 1241 1242
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
1243 1244

      input_grad->set_layout(DataLayout::kMKLDNN);
1245
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1246
    }
1247
    stream(stream::kind::eager).submit(pipeline).wait();
1248 1249 1250 1251 1252 1253 1254 1255 1256
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
1257 1258
                   ops::ConvMKLDNNOpKernel<float>,
                   ops::ConvMKLDNNOpKernel<uint8_t>);
1259 1260

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
1261
                   ops::ConvMKLDNNGradOpKernel<float>);