conv_mkldnn_op.cc 43.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaolil1 已提交
17
#include "paddle/fluid/framework/data_layout_transform.h"
18 19 20 21

namespace paddle {
namespace operators {

22 23 24 25 26 27 28 29
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

30 31 32 33 34 35 36 37 38 39
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

57
  size_t GetDstMemorySize() const {
58 59 60
    return conv_pd_->dst_primitive_desc().get_size();
  }

61
  size_t GetDiffWeightsMemorySize() const {
62 63 64
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

65
  size_t GetDiffSourceMemorySize() const {
66 67 68
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

69 70
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
71
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
72 73 74 75 76 77 78 79
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
80
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
96
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
97 98 99 100 101 102 103 104
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
105
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
106 107 108 109 110 111 112 113 114 115 116 117
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

118 119 120 121 122 123 124
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
125
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
126
    auto src_pd = conv_pd_->src_primitive_desc();
127
    auto user_pd = user_memory_p->get_primitive_desc();
128 129 130 131 132 133
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
134
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
135 136 137 138
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
139 140 141 142
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
143 144
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
145 146
  }

147 148
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
149 150 151 152
      std::vector<mkldnn::primitive>& pipeline,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
153 154 155
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
156 157
                               "@bias_mem_p", pipeline, 
                               false, is_INT8, scale_data, mask);
158 159
  }

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

251 252
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
253 254 255 256 257 258
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
259 260 261 262 263 264 265
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
266 267 268 269
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
270 271
};

272
template <typename T>
273
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
274 275 276 277
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
X
xiaolil1 已提交
278
std::cout<<"this is conv kernel op....................."<<std::endl;
K
Krzysztof Binias 已提交
279 280
    const bool is_test = ctx.Attr<bool>("is_test");

281 282
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
283 284 285 286
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
287
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
288 289
    auto* output = ctx.Output<Tensor>("Output");

290 291 292 293
    auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
    auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
    auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
    auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;
X
xiaolil1 已提交
294 295

    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
X
xiaolil1 已提交
296
    bool is_multi_channel = (is_INT8 && scale_weights->memory_size() > 1) ? true : false;
297

298 299 300 301 302 303
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
304 305 306 307 308 309 310 311 312 313 314
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
315 316 317 318

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
319
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
Z
Zhang, Guoming 已提交
320
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
321 322
    int groups = ctx.Attr<int>("groups");

X
xiaolil1 已提交
323 324
std::cout<<"fuse_relu = "<<fuse_relu<<"  fuse_residual_conn = "<<fuse_residual_conn<<std::endl;

Z
Zhang, Guoming 已提交
325
    // TODO(tpatejko): add support for dilation
326 327 328 329 330
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
X
xiaolil1 已提交
331
    const float* filter_data = filter->data<float>();
332 333 334 335

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
336 337 338 339 340 341 342 343 344 345 346 347 348
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
349 350
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

X
xiaolil1 已提交
351 352
    std::vector<float> output_shift_scale;
    float sum_scale = 1.0f;
353 354 355 356 357 358

for(int i=0; i<50; i++){
    printf("%f ", (float)*(input_data+i));
}
printf("\n");fflush(stdout);

359
    if(is_INT8){
X
xiaolil1 已提交
360
std::cout<<"this is conv int8 op .............."<<std::endl;
361
        //const uint8_t* input_data_int8 = input->data<uint8_t>(); //FIX ME XIAOLI
362 363 364 365 366 367
//unsigned char* a = (unsigned char*)(input_data);
//for(int i=0; i<50; i++){
//    printf("%d ", *(a+i));
//}
//printf("\n");

X
xiaolil1 已提交
368
        int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
X
xiaolil1 已提交
369
        float scale_in_data = *(scale_in->data<float>());
370 371 372 373 374 375

for(int i=0; i<50; i++){
    printf("%f ", *(input_data+i)/scale_in_data);
}
printf("\n");fflush(stdout);

376 377
std::cout<<"scale_in = "<<scale_in_data<<std::endl;

X
xiaolil1 已提交
378
        std::vector<float> scale_weights_data(count);
379
        for(int i=0; i<count; i++){
X
xiaolil1 已提交
380
            scale_weights_data[i] =*(scale_weights->data<float>() + i);
381
        }
X
xiaolil1 已提交
382
        float scale_out_data = *(scale_out->data<float>());
383
std::cout<<"scale_out = "<<scale_out_data<<std::endl;
384 385 386 387 388 389 390
        output_shift_scale.resize(count);
        for(int i=0; i<count; i++){
            if(scale_weights_data[i] == 0.0)
                output_shift_scale[i] = scale_out_data;
            else 
                output_shift_scale[i] = scale_out_data / (scale_in_data * scale_weights_data[i]);
        }
X
xiaolil1 已提交
391 392 393
        if(fuse_residual_conn){
            float scale_in_eltwise_data = *(scale_in_eltwise->data<float>());
            sum_scale = scale_out_data / scale_in_eltwise_data;
394
std::cout<<"scale_in_eltwise_data = "<<scale_in_eltwise_data<<" scale_out_data = "<<scale_out_data<<" sum_scale = "<<sum_scale<<std::endl;
X
xiaolil1 已提交
395
        }
396 397
    }

398 399 400 401 402 403
    // Get unique name for storing MKLDNN primitives
    const std::string key = ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";

404
std::cout<<"current op is = "<<key_conv_pd<<std::endl;
405

X
xiaolil1 已提交
406
    std::vector<primitive> pipeline;
407
    auto user_src_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
408
            {src_tz}, paddle::framework::ToMKLDNNDataType(input->type()), input->format());
409
    auto user_weights_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
410 411
            {weights_tz}, platform::MKLDNNGetDataType<float>(),
            (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw);
412 413 414 415 416

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
417
    std::string data_format = ctx.Attr<std::string>("data_format");
X
xiaolil1 已提交
418
    auto chosen_memory_format = 
419
        platform::data_format_to_memory_format(data_format);
420

421
    auto src_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
422
        src_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format);
423
    auto weights_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
424
        weights_tz, platform::MKLDNNGetDataType<float>(),
425
        (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw);
426
    auto dst_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
427 428 429 430 431 432 433 434 435
        dst_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format);
    std::vector<int> bias_tz;

    if(is_INT8){
        src_md = platform::MKLDNNMemDesc(
            src_tz, memory::data_type::u8, chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
            weights_tz, memory::data_type::s8,
            (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw);
436 437 438 439 440 441 442
        auto dst_dt = fuse_relu? paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char))) : paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char)));
        if(fuse_residual_conn){
            auto residual = ctx.Input<Tensor>("ResidualData");
            auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
            if(dst_dt != residual_dt) 
                dst_dt = residual_dt;
        }
X
xiaolil1 已提交
443
        dst_md = platform::MKLDNNMemDesc(
444 445
            dst_tz,// memory::data_type::f32, chosen_memory_format);
            dst_dt,//paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char))),
X
xiaolil1 已提交
446
            chosen_memory_format);
447 448 449
            //fuse_relu? paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char))) : 
            //paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char))),
            //chosen_memory_format);
X
xiaolil1 已提交
450
    }
451

452
    // create a conv primitive descriptor and save it for usage in backward
453 454
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    if (bias) {
X
xiaolil1 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
        bias_tz = paddle::framework::vectorize2int(bias->dims());
        auto bias_md = platform::MKLDNNMemDesc(
            bias_tz, platform::MKLDNNGetDataType<float>(), memory::format::x);
        if(is_INT8){
            bias_md = platform::MKLDNNMemDesc(
                bias_tz, memory::data_type::s32, memory::format::x);
        }
        if(is_INT8){
            conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                           strides, paddings, mkldnn_engine,
                                           fuse_relu, fuse_residual_conn, 
                                           output_shift_scale, sum_scale);
        } else{
            conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                           strides, paddings, mkldnn_engine,
                                           fuse_relu, fuse_residual_conn);
        }
472
    } else {
X
xiaolil1 已提交
473 474 475 476 477 478 479 480 481 482
        if(is_INT8){
            conv_pd =
                ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                     mkldnn_engine, fuse_relu, fuse_residual_conn,
                                     output_shift_scale, sum_scale);
        } else{
            conv_pd =
                ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                     mkldnn_engine, fuse_relu, fuse_residual_conn);
        }
483
    }
484 485
    // Save conv_pd/src_memory/weights_memory for backward pass
    dev_ctx.SetBlob(key_conv_pd, conv_pd);
486

487
    ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
488

489 490 491 492
    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
X
xiaolil1 已提交
493
        user_weights_md, to_void_cast<float>(filter_data));
Z
Zhang, Guoming 已提交
494

495 496
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
497
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
X
xiaolil1 已提交
498 499
    std::shared_ptr<mkldnn::memory> weights_memory_p;// = handler.AcquireWeightsMemoryFromPrimitive(
        //user_weights_memory_p, pipeline, is_test);
X
xiaolil1 已提交
500
    if(is_INT8){
501
        int mask_reorder = is_multi_channel? ((g!= 1) ? (1<<1)+(1<<0) : 1<<0) : 0;
X
xiaolil1 已提交
502
        int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
X
xiaolil1 已提交
503
        std::vector<float> scale_weights_data(count);
X
xiaolil1 已提交
504
        for(int i=0; i<count; i++){
X
xiaolil1 已提交
505
            scale_weights_data[i] = *(scale_weights->data<float>() + i);
X
xiaolil1 已提交
506
        }
X
xiaolil1 已提交
507
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
X
xiaolil1 已提交
508
            user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);
X
xiaolil1 已提交
509 510 511 512 513 514 515 516 517
    } else{
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
            user_weights_memory_p, pipeline, is_test);
    }

    std::shared_ptr<mkldnn::memory> dst_memory_p;
    if(is_INT8){
        if (fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
518
          //auto residual_param_data = residual_param->data<T>();
X
xiaolil1 已提交
519 520 521
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                            "Output and elementwise parameter need to have the "
                            "same dimension sizes");
522
//std::cout<<"output = "<<output<<" residual_param = "<<residual_param<<std::endl;
X
xiaolil1 已提交
523
          output->ShareDataWith(*residual_param);
524 525 526
          auto residual_dt = paddle::framework::ToMKLDNNDataType(residual_param->type());
          if(residual_dt == mkldnn::memory::data_type::u8){

X
xiaolil1 已提交
527
              uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
528 529 530 531 532 533 534 535 536 537 538 539 540 541
//std::cout<<"after share output = "<<output<<" residual_param = "<<residual_param<<std::endl;
//float scale_in_eltwise_data = *(scale_in_eltwise->data<float>());
printf("residual is u8: this is bottom 1 data\n");
//unsigned char* f = (unsigned char*)(residual_param_data);
//for(int i=0; i<50; i++){
//    printf("%f ", (float)f[i]/scale_in_eltwise_data);
//}
//printf("\n");
//printf("this is output data\n");
//unsigned char* e = (unsigned char*)(output_data);
//for(int i=0; i<50; i++){
//    printf("%f ", (float)e[i]/scale_in_eltwise_data);
//}
//printf("\n");
X
xiaolil1 已提交
542 543 544 545
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
          } else{
              int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
546 547 548 549 550 551 552 553 554 555 556 557 558 559
//std::cout<<"after share output = "<<output<<" residual_param = "<<residual_param<<std::endl;

printf("residual is s8 : this is bottom 1 data\n");
//char* f = (char*)(residual_param_data);
//for(int i=0; i<50; i++){
//    printf("%f ", (float)f[i]);
//}
//printf("\n");
//printf("this is output data\n");
//char* e = (char*)(output_data);
//for(int i=0; i<50; i++){
//    printf("%f ", (float)e[i]);
//}
//printf("\n");
X
xiaolil1 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
          }
        } else {
          if(fuse_relu){
              uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
          } else{
              int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
          }
        }
574
std::cout<<"input fmt = "<<input->format()<<"   input dt = "<<paddle::framework::ToMKLDNNDataType(input->type())<<"  output fmt = "<<output->format()<<"   output dt = "<<paddle::framework::ToMKLDNNDataType(output->type())<<"   dst fmt = "<<dst_memory_p->get_primitive_desc().desc().data.format<<"  dst dt = "<<dst_memory_p->get_primitive_desc().desc().data.data_type<<std::endl;
X
xiaolil1 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    } else{
        T* output_data = nullptr;
        if (fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
          auto residual_param_data = residual_param->data<T>();

          PADDLE_ENFORCE(
              residual_param_data != nullptr,
              "Provide data if you want MKLDNN conv+elementwise_add fusion");
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                            "Output and elementwise parameter need to have the "
                            "same dimension sizes");

          output->ShareDataWith(*residual_param);
          output_data = output->mutable_data<T>(ctx.GetPlace());
        } else {
          output_data =
              output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
        }
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
X
xiaolil1 已提交
596
    }
597 598

    // create convolution op primitive
599 600
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    if (bias) {
X
xiaolil1 已提交
601
      const float* bias_data = bias->data<float>();
602
      auto user_bias_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
603
          {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x);
604
      auto user_bias_memory_p =
X
xiaolil1 已提交
605 606 607
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<float>(bias_data));
      std::shared_ptr<mkldnn::memory>  bias_memory_p;// =
          //handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
X
xiaolil1 已提交
608
      if(is_INT8){
609
          int mask_reorder = is_multi_channel? 1<<0 : 1;
X
xiaolil1 已提交
610
          int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
X
xiaolil1 已提交
611
          std::vector<float> scale_bias_data(count);
X
xiaolil1 已提交
612
          for(int i=0; i<count; i++){
X
xiaolil1 已提交
613
              scale_bias_data[i] = (*scale_in->data<float>()) * (*(scale_weights->data<float>() + i));
X
xiaolil1 已提交
614
          }
X
xiaolil1 已提交
615
          bias_memory_p =
X
xiaolil1 已提交
616
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_INT8, scale_bias_data, mask_reorder);
X
xiaolil1 已提交
617 618 619 620
      } else{
          bias_memory_p =
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      } 
621 622 623 624 625 626
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
627

X
xiaolil1 已提交
628

629
    // push primitive to stream and wait until it's executed
630
    pipeline.push_back(*conv_p);
631 632 633
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
634
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
635 636 637 638
    //if(is_INT8){
    //    uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace()); //work aroud forsum fusion 
    //    std::cout<<"output_data = "<<output_data<<std::endl;
    //}
X
xiaolil1 已提交
639 640
std::cout<<"input fmt = "<<input->format()<<"  output fmt = "<<output->format()<<"   dst fmt = "<<dst_memory_p->get_primitive_desc().desc().data.format<<"output dt = "<<paddle::framework::ToMKLDNNDataType(output->type())<<"dst dt = "<<dst_memory_p->get_primitive_desc().desc().data.data_type<<std::endl;
    std::cout<<"this is conv end!!!!!!!!!!!!!!!!!!!!"<<std::endl;
641
  }
642

643
 private:
Z
Zhang, Guoming 已提交
644
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
X
xiaolil1 已提交
645
                          const std::vector<float> output_shift_scale, float sum_scale) const {
646 647
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
648
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
649 650 651 652
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
653
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
654
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
655
      if (fuse_residual_conn) {
656 657 658 659 660
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
661
        constexpr float placeholder = 1.0f; //beta
662 663 664 665 666
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
667
    }
668

X
xiaolil1 已提交
669
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
670 671 672 673

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
674
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
675 676 677
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.

X
xiaolil1 已提交
678
      if (fuse_residual_conn) {
679 680 681 682 683 684 685 686 687 688 689 690 691
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
692
    }
M
Michal Gallus 已提交
693

Z
Zhang, Guoming 已提交
694
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
695 696 697 698
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
699
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
700
                         const std::vector<float> output_shift_scale, const float sum_scale) const {
701 702 703 704 705 706 707 708 709
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
710
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
711 712 713 714 715 716

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
717
    }
M
Michal Gallus 已提交
718

719
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
720 721 722 723
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
724
                         const bool fuse_residual_conn) const{
725 726 727 728 729 730 731 732
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
  
      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
733
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
734 735 736 737 738 739 740
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
741 742

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
743 744 745 746 747
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
748
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
749
                         const std::vector<float> output_shift_scale, const float sum_scale) const {
750 751 752 753 754 755 756 757 758
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
759
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
760 761 762 763 764 765 766 767 768 769 770 771 772 773

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
774
                         const bool fuse_residual_conn) const{
775 776 777 778 779 780 781 782
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

      auto conv_desc = mkldnn::convolution_forward::desc(
          mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
783
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
784 785 786 787 788 789 790 791

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

792 793 794
};

template <typename T>
795
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
796 797 798 799 800
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

801 802
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
803 804 805 806 807 808 809 810 811 812
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

813 814 815 816 817 818 819 820 821 822 823 824 825
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

826 827 828 829
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
830 831
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
832 833 834 835 836 837 838 839 840 841 842 843

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

844
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
845
    // as well as attributes of primitive to be created
846 847 848 849 850 851
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
852
    std::vector<primitive> pipeline;
853

854 855 856 857 858 859 860
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
861 862 863 864 865

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
866 867 868 869
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

870
    auto src_md = platform::MKLDNNMemDesc(
871
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
872
    auto diff_src_md = platform::MKLDNNMemDesc(
873
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
874
    auto weights_md = platform::MKLDNNMemDesc(
875
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
876
    auto diff_weights_md = platform::MKLDNNMemDesc(
877
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
878
    auto diff_dst_md = platform::MKLDNNMemDesc(
879
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
880

881
    // Retrieve conv_pd from device context
882 883 884
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
885 886 887
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

915 916
    // create backward conv primitive for weights
    if (filter_grad) {
917 918
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
919

920 921 922 923
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

924
      const size_t size = handler.GetDiffWeightsMemorySize();
925 926
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);

927 928 929 930 931 932 933 934 935
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
936 937

      filter_grad->set_layout(DataLayout::kMKLDNN);
938
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
939 940 941
    }

    if (input_grad) {
942 943 944 945 946 947 948
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

949
      const size_t size = handler.GetDiffSourceMemorySize();
950 951
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);

952 953 954 955 956 957 958
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
959 960

      input_grad->set_layout(DataLayout::kMKLDNN);
961
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
962
    }
963
    stream(stream::kind::eager).submit(pipeline).wait();
964 965 966 967 968 969 970 971 972
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
973 974
                   ops::ConvMKLDNNOpKernel<float>,
                   ops::ConvMKLDNNOpKernel<uint8_t>);
975 976

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
977
                   ops::ConvMKLDNNGradOpKernel<float>);