conv_mkldnn_op.cc 53.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaolil1 已提交
17
#include "paddle/fluid/framework/data_layout_transform.h"
X
xiaolil1 已提交
18 19
#include <unordered_map>
#include <map>
20

21 22
#include "paddle/fluid/framework/data_layout_transform.h"

23 24 25
namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

34 35 36 37 38 39 40 41 42 43
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

61
  size_t GetDstMemorySize() const {
62 63
    return conv_pd_->dst_primitive_desc().get_size();
  }
Z
Zhang, Guoming 已提交
64 65 66 67 68
  
  mkldnn::memory::format GetDstFormat() const {
    return static_cast<mkldnn::memory::format>(
        conv_pd_->dst_primitive_desc().desc().data.format);
  }
69

70
  size_t GetDiffWeightsMemorySize() const {
71 72 73
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

74
  size_t GetDiffSourceMemorySize() const {
75 76 77
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

78 79
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
80
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
81 82 83 84 85 86 87 88
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
89
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
105
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
106 107 108 109 110 111 112 113
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
114
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
115 116 117 118 119 120
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

Z
Zhang, Guoming 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133
  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }
134

135 136 137 138 139 140
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

141 142 143 144 145 146 147
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
148
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
149
    auto src_pd = conv_pd_->src_primitive_desc();
150
    auto user_pd = user_memory_p->get_primitive_desc();
151 152 153 154 155 156
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
157
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
158 159 160 161
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
162 163 164 165
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
166 167
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
168 169
  }

170 171
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
172
      std::vector<mkldnn::primitive>& pipeline,
X
xiaolil1 已提交
173
      bool is_persistent = false,
X
xiaolil1 已提交
174 175 176
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
177 178 179
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
180 181
                               "@bias_mem_p", pipeline, is_persistent,
                               is_INT8, scale_data, mask);
182 183
  }

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

275 276
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
277 278 279 280 281 282
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
283 284 285 286 287 288 289
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
290 291 292 293
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
294 295
};

296
template <typename T>
297
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
298 299 300 301
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
K
Krzysztof Binias 已提交
302 303
    const bool is_test = ctx.Attr<bool>("is_test");

304 305
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
306 307 308 309
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
310
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
311 312
    auto* output = ctx.Output<Tensor>("Output");

313 314 315 316
    auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
    auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
    auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
    auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;
X
xiaolil1 已提交
317 318

    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
X
xiaolil1 已提交
319
    bool is_multi_channel = (is_INT8 && scale_weights->memory_size() > 1) ? true : false;
320

321 322 323 324 325 326
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
327 328 329 330 331 332 333 334 335 336 337
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
338 339 340 341

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
342
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
343
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
Z
Zhang, Guoming 已提交
344
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
345 346
    int groups = ctx.Attr<int>("groups");

Z
Zhang, Guoming 已提交
347
    // TODO(tpatejko): add support for dilation
348 349 350 351 352
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
X
xiaolil1 已提交
353
    const float* filter_data = filter->data<float>();
354 355 356 357

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
358 359 360 361 362 363 364 365 366 367 368 369 370
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
371 372
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

X
xiaolil1 已提交
373 374 375 376 377
    // Get unique name for storing MKLDNN primitives
    const std::string key = ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";
X
xiaolil1 已提交
378
    static std::unordered_map<std::string, std::vector<std::vector<float>>> scale_map;
X
xiaolil1 已提交
379 380
    //scale_map.insert({key_conv_pd,{1.0f}});
    //scale_map[key_conv_pd]={0.1f};
381
    bool scale_reuse = true;
X
xiaolil1 已提交
382 383 384 385 386 387
    //auto scale_in_key = key + "@scale_in";
    //auto scale_weights_key = key + "@scale_weights";
    //auto scale_out_key = key + "@scale_out";
    //auto output_shift_scale_key = key + "@output_shift_scale";
    //auto sum_scale_key = key + "@sum_scale";
    //auto scale_in_eltwise_key = key + "@scale_in_eltwise";
X
xiaolil1 已提交
388 389 390
    std::vector<float> scale_in_data;
    std::vector<float> scale_out_data;
    std::vector<float> scale_weights_data;
X
xiaolil1 已提交
391
    std::vector<float> scale_in_eltwise_data = {1.0f};
X
xiaolil1 已提交
392
    std::vector<float> output_shift_scale;
X
xiaolil1 已提交
393
    std::vector<float> sum_scale = {1.0f};
X
xiaolil1 已提交
394 395 396
    std::vector<float> scale_bias_data = {1.0f};
    std::vector<std::vector<float>> none_scale = {{0.0f}};
    std::vector<std::vector<float>> scale_datas(7,{1.0f});
397

X
xiaolil1 已提交
398 399 400
//scale_in_data 0, scale_in_eltwise_data 1, scale_weights_data 2, scale_bias_data 3, scale_out_data 4, output_shift_scale 5, sum_scale 6

    if (is_INT8 && GetScaleMap(scale_map, key) == none_scale){
401
        scale_reuse = false;
X
xiaolil1 已提交
402 403
    } else{
        scale_datas = GetScaleMap(scale_map, key);
X
xiaolil1 已提交
404 405
    }
//std::cout<<"scale_reuse = "<<scale_reuse<<std::endl;
406
    if(is_INT8){
407
        if(!scale_reuse){
X
xiaolil1 已提交
408 409 410 411
//std::cout<<"load scale!!!!!!!!"<<std::endl;
            int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
            scale_in_data = {*(scale_in->data<float>())};
            scale_weights_data.resize(count);
X
xiaolil1 已提交
412
            #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
413 414 415 416
            for(int i=0; i<count; i++){
                scale_weights_data[i] =*(scale_weights->data<float>() + i);
            }
            scale_out_data = {*(scale_out->data<float>())};
417 418
            if(force_fp32_output) 
                scale_out_data[0] = 1.0;
X
xiaolil1 已提交
419
            output_shift_scale.resize(count);
X
xiaolil1 已提交
420
            #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
421 422 423 424 425 426 427 428 429
            for(int i=0; i<count; i++){
                if(scale_weights_data[i] == 0.0)
                    output_shift_scale[i] = scale_out_data[0];
                else 
                    output_shift_scale[i] = scale_out_data[0] / (scale_in_data[0] * scale_weights_data[i]);
            }
            if(fuse_residual_conn){
                scale_in_eltwise_data = {*(scale_in_eltwise->data<float>())};
                sum_scale[0] = scale_out_data[0] / scale_in_eltwise_data[0];
X
xiaolil1 已提交
430
                //SetScaleMap(scale_map, scale_in_eltwise_key, scale_in_eltwise_data);
X
xiaolil1 已提交
431 432 433
            }

            //scale reuse
X
xiaolil1 已提交
434 435 436 437 438 439 440 441 442 443 444
            scale_datas[0] = scale_in_data;
            scale_datas[1] = scale_in_eltwise_data;
            scale_datas[2] = scale_weights_data;
            scale_datas[4] = scale_out_data;
            scale_datas[5] = output_shift_scale;
            scale_datas[6] = sum_scale;
            //SetScaleMap(scale_map, key, scale_datas);
            //SetScaleMap(scale_map, scale_weights_key, scale_weights_data);
            //SetScaleMap(scale_map, scale_out_key, scale_out_data);
            //SetScaleMap(scale_map, output_shift_scale_key, output_shift_scale);
            //SetScaleMap(scale_map, sum_scale_key, sum_scale);
X
xiaolil1 已提交
445
        } else{
X
xiaolil1 已提交
446 447 448
            scale_in_data = scale_datas[0];
            scale_out_data = scale_datas[3];
            scale_weights_data = scale_datas[2];
X
xiaolil1 已提交
449
            if(fuse_residual_conn){
X
xiaolil1 已提交
450
                scale_in_eltwise_data = scale_datas[1];
X
xiaolil1 已提交
451
            }
X
xiaolil1 已提交
452 453
            output_shift_scale = scale_datas[5];
            sum_scale = scale_datas[6]; 
X
xiaolil1 已提交
454
            //printf("pause!!!");
X
xiaolil1 已提交
455
        }
X
xiaolil1 已提交
456

457 458
    }

X
xiaolil1 已提交
459
    static std::unordered_map<std::string, std::vector<std::shared_ptr<mkldnn::memory::desc>>> md_map;
460
    bool md_reuse = true;
X
xiaolil1 已提交
461 462 463 464
    std::vector<std::shared_ptr<mkldnn::memory::desc>> mds(8, nullptr);
    std::vector<std::shared_ptr<mkldnn::memory::desc>> none_mds = {};
    //auto user_src_md_key = key + "@user_src_md";
    if (GetMdMap(md_map, key) == none_mds){
465
        md_reuse = false;   //we suppose all mds are reused if the first md is in the map.
X
xiaolil1 已提交
466 467
    } else{
        mds = GetMdMap(md_map, key);
468
    }
X
xiaolil1 已提交
469
    //auto user_weights_md_key = key + "@user_weights_md";
470 471
    std::shared_ptr<mkldnn::memory::desc> user_src_md;
    std::shared_ptr<mkldnn::memory::desc> user_weights_md;
X
xiaolil1 已提交
472
    std::vector<primitive> pipeline;
473 474 475 476 477 478 479 480
//std::cout<<"md_reuse = "<<md_reuse<<std::endl;
    if(!md_reuse){
//std::cout<<"create md.......... "<<std::endl;
        user_src_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                {src_tz}, paddle::framework::ToMKLDNNDataType(input->type()), input->format())));
        user_weights_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                {weights_tz}, platform::MKLDNNGetDataType<float>(),
                (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw)));
X
xiaolil1 已提交
481 482 483 484 485

        mds[0] = user_src_md;
        mds[1] = user_weights_md;        
        //SetMdMap(md_map, user_src_md_key, user_src_md);
        //SetMdMap(md_map, user_weights_md_key, user_weights_md);
486
    } else{
X
xiaolil1 已提交
487 488 489 490
        user_src_md = mds[0];
        user_weights_md = mds[1];
        //user_src_md = GetMdMap(md_map, user_src_md_key);
        //user_weights_md = GetMdMap(md_map, user_weights_md_key);
491
    }
492 493 494 495 496

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
497
    std::string data_format = ctx.Attr<std::string>("data_format");
X
xiaolil1 已提交
498
    auto chosen_memory_format = 
499
        platform::data_format_to_memory_format(data_format);
500

X
xiaolil1 已提交
501 502
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    auto bias_tz = paddle::framework::vectorize2int(bias->dims());
503

X
xiaolil1 已提交
504 505 506 507
    //auto src_md_key = key + "@src_md";
    //auto weights_md_key = key + "@weights_md_key";
    //auto dst_md_key = key + "@dst_md_key";
    //auto bias_md_key = key + "@bias_md_key";
508 509 510 511
    std::shared_ptr<mkldnn::memory::desc> src_md;
    std::shared_ptr<mkldnn::memory::desc> weights_md;
    std::shared_ptr<mkldnn::memory::desc> dst_md;

X
xiaolil1 已提交
512
    if(is_INT8){
513 514 515 516
        if(!md_reuse){
            src_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                src_tz, memory::data_type::u8, chosen_memory_format)));
            weights_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
517
                weights_tz, memory::data_type::s8, chosen_memory_format)));
518 519 520 521 522 523 524
            auto dst_dt = fuse_relu? paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char))) : paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char)));
            if(fuse_residual_conn){
                auto residual = ctx.Input<Tensor>("ResidualData");
                auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
                if(dst_dt != residual_dt)
                    dst_dt = residual_dt;
            }
525
            if(force_fp32_output)
H
Haihao Shen 已提交
526
                dst_dt = paddle::framework::ToMKLDNNDataType(std::type_index(typeid(float)));
527
            dst_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format)));
X
xiaolil1 已提交
528 529 530 531 532 533
            mds[2] = src_md;
            mds[3] = weights_md;
            mds[4] = dst_md;
            //SetMdMap(md_map, src_md_key, src_md);
            //SetMdMap(md_map, weights_md_key, weights_md);
            //SetMdMap(md_map, dst_md_key, dst_md);
534
        } else{
X
xiaolil1 已提交
535 536 537 538 539 540
            src_md = mds[2];
            weights_md = mds[3];
            dst_md = mds[4];
            //src_md = GetMdMap(md_map, src_md_key);
            //weights_md = GetMdMap(md_map, weights_md_key);
            //dst_md = GetMdMap(md_map, dst_md_key);
541
        }
542

X
xiaolil1 已提交
543 544
        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
545 546 547 548
            std::shared_ptr<mkldnn::memory::desc> bias_md;
            if(!md_reuse){
                bias_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                    bias_tz, memory::data_type::s32, memory::format::x)));
X
xiaolil1 已提交
549 550
                mds[5] = bias_md;
                //SetMdMap(md_map, bias_md_key, bias_md);
551
            } else{
X
xiaolil1 已提交
552 553
                bias_md = mds[5];
                //bias_md = GetMdMap(md_map, bias_md_key);
554 555 556
            }
             
            conv_pd = ConvFwdPrimitiveDesc(*src_md, *weights_md, *bias_md, *dst_md,
X
xiaolil1 已提交
557
                                           strides, paddings, mkldnn_engine,
X
xiaolil1 已提交
558
                                           fuse_relu, fuse_residual_conn,
X
xiaolil1 已提交
559
                                           output_shift_scale, sum_scale[0], is_test);
X
xiaolil1 已提交
560
        } else {
X
xiaolil1 已提交
561
            conv_pd =
562
                ConvFwdPrimitiveDesc(*src_md, *weights_md, *dst_md, strides, paddings,
X
xiaolil1 已提交
563
                                     mkldnn_engine, fuse_relu, fuse_residual_conn,
X
xiaolil1 已提交
564
                                     output_shift_scale, sum_scale[0], is_test);
X
xiaolil1 已提交
565 566
        }
    } else{
567 568 569 570
        if(!md_reuse){
            src_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                src_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format)));
            weights_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
571
                weights_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format)));
572 573
            dst_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                dst_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format)));
X
xiaolil1 已提交
574 575 576 577 578 579
            mds[2] = src_md;
            mds[3] = weights_md;
            mds[4] = dst_md;
            //SetMdMap(md_map, src_md_key, src_md);
            //SetMdMap(md_map, weights_md_key, weights_md);
            //SetMdMap(md_map, dst_md_key, dst_md);
580
        } else{
X
xiaolil1 已提交
581 582 583 584 585 586
            src_md = mds[2];
            weights_md = mds[3];
            dst_md = mds[4];
            //src_md = GetMdMap(md_map, src_md_key);
            //weights_md = GetMdMap(md_map, weights_md_key);
            //dst_md = GetMdMap(md_map, dst_md_key);
587
        }
X
xiaolil1 已提交
588 589
        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
590 591 592 593
            std::shared_ptr<mkldnn::memory::desc> bias_md;
            if(!md_reuse){
                bias_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                    bias_tz, platform::MKLDNNGetDataType<float>(), memory::format::x)));
X
xiaolil1 已提交
594 595
                mds[5] = bias_md;
                //SetMdMap(md_map, bias_md_key, bias_md);
596
            } else{
X
xiaolil1 已提交
597 598
                bias_md = mds[5];
                //bias_md = GetMdMap(md_map, bias_md_key);
599 600 601 602
            }
            conv_pd = ConvFwdPrimitiveDesc(*src_md, *weights_md, *bias_md, *dst_md,
                                           strides, paddings, mkldnn_engine,
                                           fuse_relu, fuse_residual_conn, is_test);
X
xiaolil1 已提交
603
        } else {
604 605
            conv_pd =
                ConvFwdPrimitiveDesc(*src_md, *weights_md, *dst_md, strides, paddings,
X
xiaolil1 已提交
606
                                         mkldnn_engine, fuse_relu, fuse_residual_conn, is_test);
X
xiaolil1 已提交
607
        }
608
    }
609 610
    // Save conv_pd/src_memory/weights_memory for backward pass
    dev_ctx.SetBlob(key_conv_pd, conv_pd);
611

612
    ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
613

614 615
    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
616
        handler.AcquireSrcMemory(*user_src_md, to_void_cast<T>(input_data));
617
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
618
        *user_weights_md, to_void_cast<float>(filter_data));
Z
Zhang, Guoming 已提交
619

620 621
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
622
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
Z
Zhang, Guoming 已提交
623
        
X
xiaolil1 已提交
624
    std::shared_ptr<mkldnn::memory> weights_memory_p;
X
xiaolil1 已提交
625
    if(is_INT8){
626
        int mask_reorder = is_multi_channel? ((g!= 1) ? (1<<1)+(1<<0) : 1<<0) : 0;
X
xiaolil1 已提交
627
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
X
xiaolil1 已提交
628
            user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);
X
xiaolil1 已提交
629 630 631 632 633 634
    } else{
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
            user_weights_memory_p, pipeline, is_test);
    }

    std::shared_ptr<mkldnn::memory> dst_memory_p;
635
    bool need_s8_to_u8 = false;
X
xiaolil1 已提交
636
    //auto user_residual_md_key = key + "@user_residual_md";
637 638 639 640 641 642 643
    if(fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
              "Output and elementwise parameter need to have the "
              "same dimension sizes");
        auto residual_dt = paddle::framework::ToMKLDNNDataType(residual_param->type());
        if(residual_param->format() != handler.GetDstFormat()) {
644 645 646 647 648 649 650 651
            std::shared_ptr<mkldnn::memory::desc> user_residual_md;
            if(!md_reuse){
                auto residual_data_tz =
                    paddle::framework::vectorize2int(residual_param->dims());
                auto residual_data_type =
                    paddle::framework::ToMKLDNNDataType(residual_param->type());
                user_residual_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                    residual_data_tz, residual_data_type, residual_param->format())));
X
xiaolil1 已提交
652 653
                mds[6] = user_residual_md;
                //SetMdMap(md_map, user_residual_md_key, user_residual_md);
654
            } else{
X
xiaolil1 已提交
655 656
                user_residual_md = mds[6];
                //user_residual_md = GetMdMap(md_map, user_residual_md_key);
657
            }
658
            if(is_INT8){
659 660 661 662
                PADDLE_ENFORCE(
                      force_fp32_output == false,
                      "Conv and sum does not support force_fp32_output");

663
                if(residual_dt == mkldnn::memory::data_type::u8){
664 665 666 667 668 669 670 671 672 673
                    auto residual_param_data = residual_param->data<uint8_t>();
                    auto user_residual_memory_p = handler.AcquireResidualDataMemory(
                        *user_residual_md, to_void_cast<uint8_t>(residual_param_data));
                    PADDLE_ENFORCE(
                          residual_param_data != nullptr,
                          "Provide data if you want MKLDNN conv+elementwise_add fusion");
                        uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
                        dst_memory_p =
                            handler.AcquireDstMemoryFromResidualDataMemory(
                                user_residual_memory_p, to_void_cast<uint8_t>(output_data), pipeline);
674
                } else{
675 676 677 678 679 680 681 682 683 684
                    auto residual_param_data = residual_param->data<int8_t>();
                    auto user_residual_memory_p = handler.AcquireResidualDataMemory(
                        *user_residual_md, to_void_cast<int8_t>(residual_param_data));
                    PADDLE_ENFORCE(
                          residual_param_data != nullptr,
                          "Provide data if you want MKLDNN conv+elementwise_add fusion");
                        int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
                        dst_memory_p =
                            handler.AcquireDstMemoryFromResidualDataMemory(
                                user_residual_memory_p, to_void_cast<int8_t>(output_data), pipeline);
685 686 687 688 689 690
                    if(fuse_relu)
                      need_s8_to_u8 = true;
                }
            } else{
                auto residual_param_data = residual_param->data<T>();
                auto user_residual_memory_p = handler.AcquireResidualDataMemory(
691
                    *user_residual_md, to_void_cast<T>(residual_param_data));
692 693 694 695 696 697 698 699
                PADDLE_ENFORCE(
                      residual_param_data != nullptr,
                      "Provide data if you want MKLDNN conv+elementwise_add fusion");
                 auto output_data =
                     output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
                 dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
                      user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
            }
X
xiaolil1 已提交
700
        } else {
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
             output->ShareDataWith(*residual_param);
             if(is_INT8){
                 if(residual_dt == mkldnn::memory::data_type::u8){
                     uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
                     dst_memory_p =
                         handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
                 } else{
                     int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
                     dst_memory_p =
                         handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
                     if(fuse_relu)
                       need_s8_to_u8 = true;
                 }
             } else{
                  auto output_data = output->mutable_data<T>(ctx.GetPlace());
                  dst_memory_p =
                      handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));               
             }
        }
    } else {
721
        if(is_INT8 && !force_fp32_output){
X
xiaolil1 已提交
722 723 724 725 726 727 728 729 730
          if(fuse_relu){
              uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
          } else{
              int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
          }
731 732 733 734 735
        } else{
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
X
xiaolil1 已提交
736
        }
X
xiaolil1 已提交
737
    }
738 739

    // create convolution op primitive
740
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
X
xiaolil1 已提交
741
    //auto scale_bias_key = key + "@scale_bias";
X
xiaolil1 已提交
742
    //auto user_bias_md_key = key + "@user_bias_md";
743
    if (bias) {
X
xiaolil1 已提交
744
      const float* bias_data = bias->data<float>();
745 746 747 748
      std::shared_ptr<mkldnn::memory::desc> user_bias_md;
      if(!md_reuse){
          user_bias_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
              {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x)));
X
xiaolil1 已提交
749 750
          mds[7] = user_bias_md;
          //SetMdMap(md_map, user_bias_md_key, user_bias_md);
751
      } else{
X
xiaolil1 已提交
752 753
          user_bias_md = mds[7];
          //user_bias_md = GetMdMap(md_map, user_bias_md_key);
754
      }
755
      auto user_bias_memory_p =
756
          handler.AcquireBiasMemory(*user_bias_md, to_void_cast<float>(bias_data));
X
xiaolil1 已提交
757
      std::shared_ptr<mkldnn::memory>  bias_memory_p;
X
xiaolil1 已提交
758
      if(is_INT8){
759
          int mask_reorder = is_multi_channel? 1<<0 : 1;
760
          if(!scale_reuse){
X
xiaolil1 已提交
761 762
              int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
              scale_bias_data.resize(count);
X
xiaolil1 已提交
763
              #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
764
              for(int i=0; i<count; i++){
765 766 767 768
                  if (scale_weights_data[i] == 0.0)
                      scale_bias_data[i] = 1.0;
                  else
                      scale_bias_data[i] = scale_in_data[0] * scale_weights_data[i];
X
xiaolil1 已提交
769
              }
X
xiaolil1 已提交
770 771
              scale_datas[3] = scale_bias_data;
              //SetScaleMap(scale_map, scale_bias_key, scale_bias_data);
X
xiaolil1 已提交
772
          } else{
X
xiaolil1 已提交
773
              scale_bias_data = scale_datas[3];
X
xiaolil1 已提交
774
          }
X
xiaolil1 已提交
775
          bias_memory_p =
X
xiaolil1 已提交
776
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test, is_INT8, scale_bias_data, mask_reorder);
X
xiaolil1 已提交
777 778 779 780
      } else{
          bias_memory_p =
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      } 
781 782 783 784 785 786
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
787

X
xiaolil1 已提交
788
    SetScaleMap(scale_map, key, scale_datas);
X
xiaolil1 已提交
789
    SetMdMap(md_map, key, mds);
X
xiaolil1 已提交
790

791
    // push primitive to stream and wait until it's executed
792
    pipeline.push_back(*conv_p);
793 794
    stream(stream::kind::eager).submit(pipeline).wait();

H
Haihao Shen 已提交
795
    if(need_s8_to_u8 && !force_fp32_output){
796 797 798
        output->mutable_data<uint8_t>(ctx.GetPlace());
    }

799
    output->set_layout(DataLayout::kMKLDNN);
800
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
801
  }
802

803
 private:
X
xiaolil1 已提交
804

X
xiaolil1 已提交
805 806
    void SetScaleMap(std::unordered_map<std::string, std::vector<std::vector<float>>> &scale_map,
                       const std::string& name, std::vector<std::vector<float>> scale_datas) const {
X
xiaolil1 已提交
807 808
      auto it = scale_map.find(name);
      if (it == scale_map.end()) {
X
xiaolil1 已提交
809
        scale_map[name] = scale_datas;  // create new blob
X
xiaolil1 已提交
810
      } else {
X
xiaolil1 已提交
811
        (*it).second = scale_datas;  // set data to existing blob
X
xiaolil1 已提交
812 813 814 815
      }
      return;
    }

X
xiaolil1 已提交
816
    std::vector<std::vector<float>> GetScaleMap(std::unordered_map<std::string, std::vector<std::vector<float>>> scale_map,
X
xiaolil1 已提交
817 818 819 820 821
         const std::string& name) const {
      auto it = scale_map.find(name);
      if (it != scale_map.end()) {
        return (*it).second;
      }
X
xiaolil1 已提交
822
      return {{0.0f}};
823 824
    }

X
xiaolil1 已提交
825 826
    void SetMdMap(std::unordered_map<std::string, std::vector<std::shared_ptr<mkldnn::memory::desc>>> &md_map,
                       const std::string& name, std::vector<std::shared_ptr<mkldnn::memory::desc>> mds) const {
827 828
      auto it = md_map.find(name);
      if (it == md_map.end()) {
X
xiaolil1 已提交
829
        md_map[name] = mds;  // create new blob
830
      } else {
X
xiaolil1 已提交
831
        (*it).second = mds;  // set data to existing blob
832 833 834 835
      }
      return;
    }

X
xiaolil1 已提交
836
    std::vector<std::shared_ptr<mkldnn::memory::desc>> GetMdMap(std::unordered_map<std::string, std::vector<std::shared_ptr<mkldnn::memory::desc>>> md_map,
837 838 839 840 841
         const std::string& name) const {
      auto it = md_map.find(name);
      if (it != md_map.end()) {
        return (*it).second;
      }
X
xiaolil1 已提交
842
      return {};
X
xiaolil1 已提交
843 844
    }

Z
Zhang, Guoming 已提交
845
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
X
xiaolil1 已提交
846
                          const std::vector<float> output_shift_scale, float sum_scale) const {
847 848
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
849
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
850 851 852 853
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
854
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
855
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
856
      if (fuse_residual_conn) {
857 858 859 860 861
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
862
        constexpr float placeholder = 1.0f; //beta
863 864 865 866 867
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
868
    }
869

X
xiaolil1 已提交
870
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
871 872 873 874

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
875
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
876 877
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
878
      conv_attr.set_output_scales(0, {1.0f});
X
xiaolil1 已提交
879
      if (fuse_residual_conn) {
880 881 882 883 884 885 886 887 888 889 890 891 892
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
893
    }
M
Michal Gallus 已提交
894

Z
Zhang, Guoming 已提交
895
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
896 897 898 899
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
900
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
901
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
902 903 904
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
905 906
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

907
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
908
          propagation, mkldnn::convolution_direct, src, weights,
909 910 911 912
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
913
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
914 915 916 917 918 919

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
920
    }
M
Michal Gallus 已提交
921

922
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
923 924 925 926
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
X
xiaolil1 已提交
927
                         const bool fuse_residual_conn, bool is_test) const{
928 929
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
X
xiaolil1 已提交
930 931 932
 
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;
 
933
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
934
          propagation, mkldnn::convolution_direct, src, weights,
935 936 937
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
938
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
939 940 941 942 943 944 945
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
946 947

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
948 949 950 951 952
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
953
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
954
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
955 956 957
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
958 959
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

960
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
961
          propagation, mkldnn::convolution_direct, src, weights,
962 963 964 965
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
966
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
967 968 969 970 971 972 973 974 975 976 977 978 979 980

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
X
xiaolil1 已提交
981
                         const bool fuse_residual_conn, bool is_test) const{
982 983 984
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
985 986
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

987
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
988
          propagation, mkldnn::convolution_direct, src, weights,
989 990 991
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
992
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
993 994 995 996 997 998 999 1000

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

1001 1002 1003
};

template <typename T>
1004
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
1005 1006 1007 1008 1009
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

1010 1011
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

1035 1036 1037 1038
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
1039 1040
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

1053
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
1054
    // as well as attributes of primitive to be created
1055 1056 1057 1058 1059 1060
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
1061
    std::vector<primitive> pipeline;
1062

1063 1064 1065 1066 1067 1068 1069
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
1070 1071 1072 1073 1074

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
1075 1076 1077 1078
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

1079
    auto src_md = platform::MKLDNNMemDesc(
1080
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1081
    auto diff_src_md = platform::MKLDNNMemDesc(
1082
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1083
    auto weights_md = platform::MKLDNNMemDesc(
1084
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1085
    auto diff_weights_md = platform::MKLDNNMemDesc(
1086
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1087
    auto diff_dst_md = platform::MKLDNNMemDesc(
1088
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1089

1090
    // Retrieve conv_pd from device context
1091 1092 1093
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
1094 1095 1096
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
1123 1124
    // create backward conv primitive for weights
    if (filter_grad) {
1125 1126
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1127

1128 1129 1130 1131
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1132
      const size_t size = handler.GetDiffWeightsMemorySize();
1133 1134
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);

1135 1136 1137 1138 1139 1140 1141 1142 1143
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
1144 1145

      filter_grad->set_layout(DataLayout::kMKLDNN);
1146
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
1147 1148 1149
    }

    if (input_grad) {
1150 1151 1152 1153 1154 1155 1156
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1157
      const size_t size = handler.GetDiffSourceMemorySize();
1158 1159
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);

1160 1161 1162 1163 1164 1165 1166
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
1167 1168

      input_grad->set_layout(DataLayout::kMKLDNN);
1169
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1170
    }
1171
    stream(stream::kind::eager).submit(pipeline).wait();
1172 1173 1174 1175 1176 1177 1178 1179 1180
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
1181 1182
                   ops::ConvMKLDNNOpKernel<float>,
                   ops::ConvMKLDNNOpKernel<uint8_t>);
1183 1184

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
1185
                   ops::ConvMKLDNNGradOpKernel<float>);