conv_mkldnn_op.cc 52.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaolil1 已提交
17
#include "paddle/fluid/framework/data_layout_transform.h"
X
xiaolil1 已提交
18 19
#include <unordered_map>
#include <map>
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

32 33 34 35 36 37 38 39 40 41
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

59
  size_t GetDstMemorySize() const {
60 61
    return conv_pd_->dst_primitive_desc().get_size();
  }
Z
Zhang, Guoming 已提交
62 63 64 65 66
  
  mkldnn::memory::format GetDstFormat() const {
    return static_cast<mkldnn::memory::format>(
        conv_pd_->dst_primitive_desc().desc().data.format);
  }
67

68
  size_t GetDiffWeightsMemorySize() const {
69 70 71
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

72
  size_t GetDiffSourceMemorySize() const {
73 74 75
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

76 77
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
78
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
79 80 81 82 83 84 85 86
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
87
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
103
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
104 105 106 107 108 109 110 111
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
112
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
113 114 115 116 117 118
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

Z
Zhang, Guoming 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }
  
134 135 136 137 138 139
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

140 141 142 143 144 145 146
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
147
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
148
    auto src_pd = conv_pd_->src_primitive_desc();
149
    auto user_pd = user_memory_p->get_primitive_desc();
150 151 152 153 154 155
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
156
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
157 158 159 160
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
161 162 163 164
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
165 166
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
167 168
  }

169 170
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
171
      std::vector<mkldnn::primitive>& pipeline,
X
xiaolil1 已提交
172
      bool is_persistent = false,
X
xiaolil1 已提交
173 174 175
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
176 177 178
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
179 180
                               "@bias_mem_p", pipeline, is_persistent,
                               is_INT8, scale_data, mask);
181 182
  }

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

274 275
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
276 277 278 279 280 281
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
282 283 284 285 286 287 288
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
289 290 291 292
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
293 294
};

295
template <typename T>
296
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
297 298 299 300
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
K
Krzysztof Binias 已提交
301 302
    const bool is_test = ctx.Attr<bool>("is_test");

303 304
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
305 306 307 308
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
309
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
310 311
    auto* output = ctx.Output<Tensor>("Output");

312 313 314 315
    auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
    auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
    auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
    auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;
X
xiaolil1 已提交
316 317

    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
X
xiaolil1 已提交
318
    bool is_multi_channel = (is_INT8 && scale_weights->memory_size() > 1) ? true : false;
319

320 321 322 323 324 325
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
326 327 328 329 330 331 332 333 334 335 336
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
337 338 339 340

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
341
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
342
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
Z
Zhang, Guoming 已提交
343
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
344 345
    int groups = ctx.Attr<int>("groups");

Z
Zhang, Guoming 已提交
346
    // TODO(tpatejko): add support for dilation
347 348 349 350 351
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
X
xiaolil1 已提交
352
    const float* filter_data = filter->data<float>();
353 354 355 356

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
357 358 359 360 361 362 363 364 365 366 367 368 369
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
370 371
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

X
xiaolil1 已提交
372 373 374 375 376
    // Get unique name for storing MKLDNN primitives
    const std::string key = ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";
X
xiaolil1 已提交
377
    static std::unordered_map<std::string, std::vector<std::vector<float>>> scale_map;
X
xiaolil1 已提交
378 379
    //scale_map.insert({key_conv_pd,{1.0f}});
    //scale_map[key_conv_pd]={0.1f};
380
    bool scale_reuse = true;
X
xiaolil1 已提交
381 382 383 384 385 386
    //auto scale_in_key = key + "@scale_in";
    //auto scale_weights_key = key + "@scale_weights";
    //auto scale_out_key = key + "@scale_out";
    //auto output_shift_scale_key = key + "@output_shift_scale";
    //auto sum_scale_key = key + "@sum_scale";
    //auto scale_in_eltwise_key = key + "@scale_in_eltwise";
X
xiaolil1 已提交
387 388 389
    std::vector<float> scale_in_data;
    std::vector<float> scale_out_data;
    std::vector<float> scale_weights_data;
X
xiaolil1 已提交
390
    std::vector<float> scale_in_eltwise_data = {1.0f};
X
xiaolil1 已提交
391
    std::vector<float> output_shift_scale;
X
xiaolil1 已提交
392
    std::vector<float> sum_scale = {1.0f};
X
xiaolil1 已提交
393 394 395
    std::vector<float> scale_bias_data = {1.0f};
    std::vector<std::vector<float>> none_scale = {{0.0f}};
    std::vector<std::vector<float>> scale_datas(7,{1.0f});
396

X
xiaolil1 已提交
397 398 399
//scale_in_data 0, scale_in_eltwise_data 1, scale_weights_data 2, scale_bias_data 3, scale_out_data 4, output_shift_scale 5, sum_scale 6

    if (is_INT8 && GetScaleMap(scale_map, key) == none_scale){
400
        scale_reuse = false;
X
xiaolil1 已提交
401 402
    } else{
        scale_datas = GetScaleMap(scale_map, key);
X
xiaolil1 已提交
403 404
    }
//std::cout<<"scale_reuse = "<<scale_reuse<<std::endl;
405
    if(is_INT8){
406
        if(!scale_reuse){
X
xiaolil1 已提交
407 408 409 410
//std::cout<<"load scale!!!!!!!!"<<std::endl;
            int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
            scale_in_data = {*(scale_in->data<float>())};
            scale_weights_data.resize(count);
X
xiaolil1 已提交
411
            #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
412 413 414 415
            for(int i=0; i<count; i++){
                scale_weights_data[i] =*(scale_weights->data<float>() + i);
            }
            scale_out_data = {*(scale_out->data<float>())};
416 417
            if(force_fp32_output) 
                scale_out_data[0] = 1.0;
X
xiaolil1 已提交
418
            output_shift_scale.resize(count);
X
xiaolil1 已提交
419
            #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
420 421 422 423 424 425 426 427 428
            for(int i=0; i<count; i++){
                if(scale_weights_data[i] == 0.0)
                    output_shift_scale[i] = scale_out_data[0];
                else 
                    output_shift_scale[i] = scale_out_data[0] / (scale_in_data[0] * scale_weights_data[i]);
            }
            if(fuse_residual_conn){
                scale_in_eltwise_data = {*(scale_in_eltwise->data<float>())};
                sum_scale[0] = scale_out_data[0] / scale_in_eltwise_data[0];
X
xiaolil1 已提交
429
                //SetScaleMap(scale_map, scale_in_eltwise_key, scale_in_eltwise_data);
X
xiaolil1 已提交
430 431 432
            }

            //scale reuse
X
xiaolil1 已提交
433 434 435 436 437 438 439 440 441 442 443
            scale_datas[0] = scale_in_data;
            scale_datas[1] = scale_in_eltwise_data;
            scale_datas[2] = scale_weights_data;
            scale_datas[4] = scale_out_data;
            scale_datas[5] = output_shift_scale;
            scale_datas[6] = sum_scale;
            //SetScaleMap(scale_map, key, scale_datas);
            //SetScaleMap(scale_map, scale_weights_key, scale_weights_data);
            //SetScaleMap(scale_map, scale_out_key, scale_out_data);
            //SetScaleMap(scale_map, output_shift_scale_key, output_shift_scale);
            //SetScaleMap(scale_map, sum_scale_key, sum_scale);
X
xiaolil1 已提交
444
        } else{
X
xiaolil1 已提交
445 446 447
            scale_in_data = scale_datas[0];
            scale_out_data = scale_datas[3];
            scale_weights_data = scale_datas[2];
X
xiaolil1 已提交
448
            if(fuse_residual_conn){
X
xiaolil1 已提交
449
                scale_in_eltwise_data = scale_datas[1];
X
xiaolil1 已提交
450
            }
X
xiaolil1 已提交
451 452
            output_shift_scale = scale_datas[5];
            sum_scale = scale_datas[6]; 
X
xiaolil1 已提交
453
            //printf("pause!!!");
X
xiaolil1 已提交
454
        }
X
xiaolil1 已提交
455

456 457
    }

X
xiaolil1 已提交
458
    static std::unordered_map<std::string, std::vector<std::shared_ptr<mkldnn::memory::desc>>> md_map;
459
    bool md_reuse = true;
X
xiaolil1 已提交
460 461 462 463
    std::vector<std::shared_ptr<mkldnn::memory::desc>> mds(8, nullptr);
    std::vector<std::shared_ptr<mkldnn::memory::desc>> none_mds = {};
    //auto user_src_md_key = key + "@user_src_md";
    if (GetMdMap(md_map, key) == none_mds){
464
        md_reuse = false;   //we suppose all mds are reused if the first md is in the map.
X
xiaolil1 已提交
465 466
    } else{
        mds = GetMdMap(md_map, key);
467
    }
X
xiaolil1 已提交
468
    //auto user_weights_md_key = key + "@user_weights_md";
469 470
    std::shared_ptr<mkldnn::memory::desc> user_src_md;
    std::shared_ptr<mkldnn::memory::desc> user_weights_md;
X
xiaolil1 已提交
471
    std::vector<primitive> pipeline;
472 473 474 475 476 477 478 479
//std::cout<<"md_reuse = "<<md_reuse<<std::endl;
    if(!md_reuse){
//std::cout<<"create md.......... "<<std::endl;
        user_src_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                {src_tz}, paddle::framework::ToMKLDNNDataType(input->type()), input->format())));
        user_weights_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                {weights_tz}, platform::MKLDNNGetDataType<float>(),
                (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw)));
X
xiaolil1 已提交
480 481 482 483 484

        mds[0] = user_src_md;
        mds[1] = user_weights_md;        
        //SetMdMap(md_map, user_src_md_key, user_src_md);
        //SetMdMap(md_map, user_weights_md_key, user_weights_md);
485
    } else{
X
xiaolil1 已提交
486 487 488 489
        user_src_md = mds[0];
        user_weights_md = mds[1];
        //user_src_md = GetMdMap(md_map, user_src_md_key);
        //user_weights_md = GetMdMap(md_map, user_weights_md_key);
490
    }
491 492 493 494 495

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
496
    std::string data_format = ctx.Attr<std::string>("data_format");
X
xiaolil1 已提交
497
    auto chosen_memory_format = 
498
        platform::data_format_to_memory_format(data_format);
499

X
xiaolil1 已提交
500 501
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    auto bias_tz = paddle::framework::vectorize2int(bias->dims());
502

X
xiaolil1 已提交
503 504 505 506
    //auto src_md_key = key + "@src_md";
    //auto weights_md_key = key + "@weights_md_key";
    //auto dst_md_key = key + "@dst_md_key";
    //auto bias_md_key = key + "@bias_md_key";
507 508 509 510
    std::shared_ptr<mkldnn::memory::desc> src_md;
    std::shared_ptr<mkldnn::memory::desc> weights_md;
    std::shared_ptr<mkldnn::memory::desc> dst_md;

X
xiaolil1 已提交
511
    if(is_INT8){
512 513 514 515
        if(!md_reuse){
            src_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                src_tz, memory::data_type::u8, chosen_memory_format)));
            weights_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
516
                weights_tz, memory::data_type::s8, chosen_memory_format)));
517 518 519 520 521 522 523
            auto dst_dt = fuse_relu? paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char))) : paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char)));
            if(fuse_residual_conn){
                auto residual = ctx.Input<Tensor>("ResidualData");
                auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
                if(dst_dt != residual_dt)
                    dst_dt = residual_dt;
            }
524
            if(force_fp32_output)
H
Haihao Shen 已提交
525
                dst_dt = paddle::framework::ToMKLDNNDataType(std::type_index(typeid(float)));
526
            dst_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format)));
X
xiaolil1 已提交
527 528 529 530 531 532
            mds[2] = src_md;
            mds[3] = weights_md;
            mds[4] = dst_md;
            //SetMdMap(md_map, src_md_key, src_md);
            //SetMdMap(md_map, weights_md_key, weights_md);
            //SetMdMap(md_map, dst_md_key, dst_md);
533
        } else{
X
xiaolil1 已提交
534 535 536 537 538 539
            src_md = mds[2];
            weights_md = mds[3];
            dst_md = mds[4];
            //src_md = GetMdMap(md_map, src_md_key);
            //weights_md = GetMdMap(md_map, weights_md_key);
            //dst_md = GetMdMap(md_map, dst_md_key);
540
        }
541

X
xiaolil1 已提交
542 543
        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
544 545 546 547
            std::shared_ptr<mkldnn::memory::desc> bias_md;
            if(!md_reuse){
                bias_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                    bias_tz, memory::data_type::s32, memory::format::x)));
X
xiaolil1 已提交
548 549
                mds[5] = bias_md;
                //SetMdMap(md_map, bias_md_key, bias_md);
550
            } else{
X
xiaolil1 已提交
551 552
                bias_md = mds[5];
                //bias_md = GetMdMap(md_map, bias_md_key);
553 554 555
            }
             
            conv_pd = ConvFwdPrimitiveDesc(*src_md, *weights_md, *bias_md, *dst_md,
X
xiaolil1 已提交
556
                                           strides, paddings, mkldnn_engine,
X
xiaolil1 已提交
557
                                           fuse_relu, fuse_residual_conn,
X
xiaolil1 已提交
558
                                           output_shift_scale, sum_scale[0], is_test);
X
xiaolil1 已提交
559
        } else {
X
xiaolil1 已提交
560
            conv_pd =
561
                ConvFwdPrimitiveDesc(*src_md, *weights_md, *dst_md, strides, paddings,
X
xiaolil1 已提交
562
                                     mkldnn_engine, fuse_relu, fuse_residual_conn,
X
xiaolil1 已提交
563
                                     output_shift_scale, sum_scale[0], is_test);
X
xiaolil1 已提交
564 565
        }
    } else{
566 567 568 569
        if(!md_reuse){
            src_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                src_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format)));
            weights_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
570
                weights_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format)));
571 572
            dst_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                dst_tz, platform::MKLDNNGetDataType<float>(), chosen_memory_format)));
X
xiaolil1 已提交
573 574 575 576 577 578
            mds[2] = src_md;
            mds[3] = weights_md;
            mds[4] = dst_md;
            //SetMdMap(md_map, src_md_key, src_md);
            //SetMdMap(md_map, weights_md_key, weights_md);
            //SetMdMap(md_map, dst_md_key, dst_md);
579
        } else{
X
xiaolil1 已提交
580 581 582 583 584 585
            src_md = mds[2];
            weights_md = mds[3];
            dst_md = mds[4];
            //src_md = GetMdMap(md_map, src_md_key);
            //weights_md = GetMdMap(md_map, weights_md_key);
            //dst_md = GetMdMap(md_map, dst_md_key);
586
        }
X
xiaolil1 已提交
587 588
        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
589 590 591 592
            std::shared_ptr<mkldnn::memory::desc> bias_md;
            if(!md_reuse){
                bias_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                    bias_tz, platform::MKLDNNGetDataType<float>(), memory::format::x)));
X
xiaolil1 已提交
593 594
                mds[5] = bias_md;
                //SetMdMap(md_map, bias_md_key, bias_md);
595
            } else{
X
xiaolil1 已提交
596 597
                bias_md = mds[5];
                //bias_md = GetMdMap(md_map, bias_md_key);
598 599 600 601
            }
            conv_pd = ConvFwdPrimitiveDesc(*src_md, *weights_md, *bias_md, *dst_md,
                                           strides, paddings, mkldnn_engine,
                                           fuse_relu, fuse_residual_conn, is_test);
X
xiaolil1 已提交
602
        } else {
603 604
            conv_pd =
                ConvFwdPrimitiveDesc(*src_md, *weights_md, *dst_md, strides, paddings,
X
xiaolil1 已提交
605
                                         mkldnn_engine, fuse_relu, fuse_residual_conn, is_test);
X
xiaolil1 已提交
606
        }
607
    }
608 609
    // Save conv_pd/src_memory/weights_memory for backward pass
    dev_ctx.SetBlob(key_conv_pd, conv_pd);
610

611
    ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
612

613 614
    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
615
        handler.AcquireSrcMemory(*user_src_md, to_void_cast<T>(input_data));
616
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
617
        *user_weights_md, to_void_cast<float>(filter_data));
Z
Zhang, Guoming 已提交
618

619 620
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
621
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
Z
Zhang, Guoming 已提交
622
        
X
xiaolil1 已提交
623
    std::shared_ptr<mkldnn::memory> weights_memory_p;
X
xiaolil1 已提交
624
    if(is_INT8){
625
        int mask_reorder = is_multi_channel? ((g!= 1) ? (1<<1)+(1<<0) : 1<<0) : 0;
X
xiaolil1 已提交
626
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
X
xiaolil1 已提交
627
            user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);
X
xiaolil1 已提交
628 629 630 631 632 633
    } else{
        weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
            user_weights_memory_p, pipeline, is_test);
    }

    std::shared_ptr<mkldnn::memory> dst_memory_p;
634
    bool need_s8_to_u8 = false;
X
xiaolil1 已提交
635
    //auto user_residual_md_key = key + "@user_residual_md";
636 637 638 639 640 641 642
    if(fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
              "Output and elementwise parameter need to have the "
              "same dimension sizes");
        auto residual_dt = paddle::framework::ToMKLDNNDataType(residual_param->type());
        if(residual_param->format() != handler.GetDstFormat()) {
643 644 645 646 647 648 649 650
            std::shared_ptr<mkldnn::memory::desc> user_residual_md;
            if(!md_reuse){
                auto residual_data_tz =
                    paddle::framework::vectorize2int(residual_param->dims());
                auto residual_data_type =
                    paddle::framework::ToMKLDNNDataType(residual_param->type());
                user_residual_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
                    residual_data_tz, residual_data_type, residual_param->format())));
X
xiaolil1 已提交
651 652
                mds[6] = user_residual_md;
                //SetMdMap(md_map, user_residual_md_key, user_residual_md);
653
            } else{
X
xiaolil1 已提交
654 655
                user_residual_md = mds[6];
                //user_residual_md = GetMdMap(md_map, user_residual_md_key);
656
            }
657
            if(is_INT8){
658 659 660 661
                PADDLE_ENFORCE(
                      force_fp32_output == false,
                      "Conv and sum does not support force_fp32_output");

662
                if(residual_dt == mkldnn::memory::data_type::u8){
663 664 665 666 667 668 669 670 671 672
                    auto residual_param_data = residual_param->data<uint8_t>();
                    auto user_residual_memory_p = handler.AcquireResidualDataMemory(
                        *user_residual_md, to_void_cast<uint8_t>(residual_param_data));
                    PADDLE_ENFORCE(
                          residual_param_data != nullptr,
                          "Provide data if you want MKLDNN conv+elementwise_add fusion");
                        uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
                        dst_memory_p =
                            handler.AcquireDstMemoryFromResidualDataMemory(
                                user_residual_memory_p, to_void_cast<uint8_t>(output_data), pipeline);
673
                } else{
674 675 676 677 678 679 680 681 682 683
                    auto residual_param_data = residual_param->data<int8_t>();
                    auto user_residual_memory_p = handler.AcquireResidualDataMemory(
                        *user_residual_md, to_void_cast<int8_t>(residual_param_data));
                    PADDLE_ENFORCE(
                          residual_param_data != nullptr,
                          "Provide data if you want MKLDNN conv+elementwise_add fusion");
                        int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
                        dst_memory_p =
                            handler.AcquireDstMemoryFromResidualDataMemory(
                                user_residual_memory_p, to_void_cast<int8_t>(output_data), pipeline);
684 685 686 687 688 689
                    if(fuse_relu)
                      need_s8_to_u8 = true;
                }
            } else{
                auto residual_param_data = residual_param->data<T>();
                auto user_residual_memory_p = handler.AcquireResidualDataMemory(
690
                    *user_residual_md, to_void_cast<T>(residual_param_data));
691 692 693 694 695 696 697 698
                PADDLE_ENFORCE(
                      residual_param_data != nullptr,
                      "Provide data if you want MKLDNN conv+elementwise_add fusion");
                 auto output_data =
                     output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
                 dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
                      user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
            }
X
xiaolil1 已提交
699
        } else {
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
             output->ShareDataWith(*residual_param);
             if(is_INT8){
                 if(residual_dt == mkldnn::memory::data_type::u8){
                     uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
                     dst_memory_p =
                         handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
                 } else{
                     int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
                     dst_memory_p =
                         handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
                     if(fuse_relu)
                       need_s8_to_u8 = true;
                 }
             } else{
                  auto output_data = output->mutable_data<T>(ctx.GetPlace());
                  dst_memory_p =
                      handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));               
             }
        }
    } else {
720
        if(is_INT8 && !force_fp32_output){
X
xiaolil1 已提交
721 722 723 724 725 726 727 728 729
          if(fuse_relu){
              uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
          } else{
              int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace(), handler.GetDstMemorySize());
              dst_memory_p =
                  handler.AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
          }
730 731 732 733 734
        } else{
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
X
xiaolil1 已提交
735
        }
X
xiaolil1 已提交
736
    }
737 738

    // create convolution op primitive
739
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
X
xiaolil1 已提交
740
    //auto scale_bias_key = key + "@scale_bias";
X
xiaolil1 已提交
741
    //auto user_bias_md_key = key + "@user_bias_md";
742
    if (bias) {
X
xiaolil1 已提交
743
      const float* bias_data = bias->data<float>();
744 745 746 747
      std::shared_ptr<mkldnn::memory::desc> user_bias_md;
      if(!md_reuse){
          user_bias_md.reset(new mkldnn::memory::desc(platform::MKLDNNMemDesc(
              {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x)));
X
xiaolil1 已提交
748 749
          mds[7] = user_bias_md;
          //SetMdMap(md_map, user_bias_md_key, user_bias_md);
750
      } else{
X
xiaolil1 已提交
751 752
          user_bias_md = mds[7];
          //user_bias_md = GetMdMap(md_map, user_bias_md_key);
753
      }
754
      auto user_bias_memory_p =
755
          handler.AcquireBiasMemory(*user_bias_md, to_void_cast<float>(bias_data));
X
xiaolil1 已提交
756
      std::shared_ptr<mkldnn::memory>  bias_memory_p;
X
xiaolil1 已提交
757
      if(is_INT8){
758
          int mask_reorder = is_multi_channel? 1<<0 : 1;
759
          if(!scale_reuse){
X
xiaolil1 已提交
760 761
              int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
              scale_bias_data.resize(count);
X
xiaolil1 已提交
762
              #pragma omp parallel for if (count > 1)
X
xiaolil1 已提交
763 764 765
              for(int i=0; i<count; i++){
                  scale_bias_data[i] = scale_in_data[0] * scale_weights_data[i];
              }
X
xiaolil1 已提交
766 767
              scale_datas[3] = scale_bias_data;
              //SetScaleMap(scale_map, scale_bias_key, scale_bias_data);
X
xiaolil1 已提交
768
          } else{
X
xiaolil1 已提交
769
              scale_bias_data = scale_datas[3];
X
xiaolil1 已提交
770
          }
X
xiaolil1 已提交
771
          bias_memory_p =
X
xiaolil1 已提交
772
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test, is_INT8, scale_bias_data, mask_reorder);
X
xiaolil1 已提交
773 774 775 776
      } else{
          bias_memory_p =
              handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      } 
777 778 779 780 781 782
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
783

X
xiaolil1 已提交
784
    SetScaleMap(scale_map, key, scale_datas);
X
xiaolil1 已提交
785
    SetMdMap(md_map, key, mds);
X
xiaolil1 已提交
786

787
    // push primitive to stream and wait until it's executed
788
    pipeline.push_back(*conv_p);
789 790
    stream(stream::kind::eager).submit(pipeline).wait();

H
Haihao Shen 已提交
791
    if(need_s8_to_u8 && !force_fp32_output){
792 793 794
        output->mutable_data<uint8_t>(ctx.GetPlace());
    }

795
    output->set_layout(DataLayout::kMKLDNN);
796
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
797
  }
798

799
 private:
X
xiaolil1 已提交
800

X
xiaolil1 已提交
801 802
    void SetScaleMap(std::unordered_map<std::string, std::vector<std::vector<float>>> &scale_map,
                       const std::string& name, std::vector<std::vector<float>> scale_datas) const {
X
xiaolil1 已提交
803 804
      auto it = scale_map.find(name);
      if (it == scale_map.end()) {
X
xiaolil1 已提交
805
        scale_map[name] = scale_datas;  // create new blob
X
xiaolil1 已提交
806
      } else {
X
xiaolil1 已提交
807
        (*it).second = scale_datas;  // set data to existing blob
X
xiaolil1 已提交
808 809 810 811
      }
      return;
    }

X
xiaolil1 已提交
812
    std::vector<std::vector<float>> GetScaleMap(std::unordered_map<std::string, std::vector<std::vector<float>>> scale_map,
X
xiaolil1 已提交
813 814 815 816 817
         const std::string& name) const {
      auto it = scale_map.find(name);
      if (it != scale_map.end()) {
        return (*it).second;
      }
X
xiaolil1 已提交
818
      return {{0.0f}};
819 820
    }

X
xiaolil1 已提交
821 822
    void SetMdMap(std::unordered_map<std::string, std::vector<std::shared_ptr<mkldnn::memory::desc>>> &md_map,
                       const std::string& name, std::vector<std::shared_ptr<mkldnn::memory::desc>> mds) const {
823 824
      auto it = md_map.find(name);
      if (it == md_map.end()) {
X
xiaolil1 已提交
825
        md_map[name] = mds;  // create new blob
826
      } else {
X
xiaolil1 已提交
827
        (*it).second = mds;  // set data to existing blob
828 829 830 831
      }
      return;
    }

X
xiaolil1 已提交
832
    std::vector<std::shared_ptr<mkldnn::memory::desc>> GetMdMap(std::unordered_map<std::string, std::vector<std::shared_ptr<mkldnn::memory::desc>>> md_map,
833 834 835 836 837
         const std::string& name) const {
      auto it = md_map.find(name);
      if (it != md_map.end()) {
        return (*it).second;
      }
X
xiaolil1 已提交
838
      return {};
X
xiaolil1 已提交
839 840
    }

Z
Zhang, Guoming 已提交
841
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
X
xiaolil1 已提交
842
                          const std::vector<float> output_shift_scale, float sum_scale) const {
843 844
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
845
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
846 847 848 849
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
850
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
851
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
852
      if (fuse_residual_conn) {
853 854 855 856 857
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
858
        constexpr float placeholder = 1.0f; //beta
859 860 861 862 863
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
864
    }
865

X
xiaolil1 已提交
866
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
867 868 869 870

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
871
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
872 873
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
874
      conv_attr.set_output_scales(0, {1.0f});
X
xiaolil1 已提交
875
      if (fuse_residual_conn) {
876 877 878 879 880 881 882 883 884 885 886 887 888
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
889
    }
M
Michal Gallus 已提交
890

Z
Zhang, Guoming 已提交
891
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
892 893 894 895
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
896
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
897
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
898 899 900
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
901 902
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

903
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
904
          propagation, mkldnn::convolution_direct, src, weights,
905 906 907 908
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
909
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
910 911 912 913 914 915

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
916
    }
M
Michal Gallus 已提交
917

918
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
919 920 921 922
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
X
xiaolil1 已提交
923
                         const bool fuse_residual_conn, bool is_test) const{
924 925
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
X
xiaolil1 已提交
926 927 928
 
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;
 
929
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
930
          propagation, mkldnn::convolution_direct, src, weights,
931 932 933
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
934
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
935 936 937 938 939 940 941
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
942 943

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
944 945 946 947 948
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
949
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
950
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
951 952 953
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
954 955
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

956
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
957
          propagation, mkldnn::convolution_direct, src, weights,
958 959 960 961
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
962
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
963 964 965 966 967 968 969 970 971 972 973 974 975 976

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
X
xiaolil1 已提交
977
                         const bool fuse_residual_conn, bool is_test) const{
978 979 980
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
981 982
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

983
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
984
          propagation, mkldnn::convolution_direct, src, weights,
985 986 987
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
988
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
989 990 991 992 993 994 995 996

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

997 998 999
};

template <typename T>
1000
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
1001 1002 1003 1004 1005
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

1006 1007
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

1031 1032 1033 1034
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
1035 1036
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

1049
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
1050
    // as well as attributes of primitive to be created
1051 1052 1053 1054 1055 1056
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
1057
    std::vector<primitive> pipeline;
1058

1059 1060 1061 1062 1063 1064 1065
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
1066 1067 1068 1069 1070

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
1071 1072 1073 1074
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

1075
    auto src_md = platform::MKLDNNMemDesc(
1076
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1077
    auto diff_src_md = platform::MKLDNNMemDesc(
1078
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1079
    auto weights_md = platform::MKLDNNMemDesc(
1080
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1081
    auto diff_weights_md = platform::MKLDNNMemDesc(
1082
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1083
    auto diff_dst_md = platform::MKLDNNMemDesc(
1084
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1085

1086
    // Retrieve conv_pd from device context
1087 1088 1089
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
1090 1091 1092
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
1119 1120
    // create backward conv primitive for weights
    if (filter_grad) {
1121 1122
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1123

1124 1125 1126 1127
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1128
      const size_t size = handler.GetDiffWeightsMemorySize();
1129 1130
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);

1131 1132 1133 1134 1135 1136 1137 1138 1139
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
1140 1141

      filter_grad->set_layout(DataLayout::kMKLDNN);
1142
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
1143 1144 1145
    }

    if (input_grad) {
1146 1147 1148 1149 1150 1151 1152
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1153
      const size_t size = handler.GetDiffSourceMemorySize();
1154 1155
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);

1156 1157 1158 1159 1160 1161 1162
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
1163 1164

      input_grad->set_layout(DataLayout::kMKLDNN);
1165
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1166
    }
1167
    stream(stream::kind::eager).submit(pipeline).wait();
1168 1169 1170 1171 1172 1173 1174 1175 1176
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
1177 1178
                   ops::ConvMKLDNNOpKernel<float>,
                   ops::ConvMKLDNNOpKernel<uint8_t>);
1179 1180

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
1181
                   ops::ConvMKLDNNGradOpKernel<float>);