conv.py 70.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16 17 18
from paddle import _C_ops, _legacy_C_ops, get_flags, in_dynamic_mode
from paddle.device import (
    get_all_custom_device_type,
    is_compiled_with_cuda,
K
Kim Yann 已提交
19
    is_compiled_with_custom_device,
20 21
    is_compiled_with_rocm,
)
22
from paddle.fluid.framework import _global_flags, in_dygraph_mode
23
from paddle.tensor.manipulation import reshape
24
from paddle.tensor.math import _add_with_axis
25

26
from ...common_ops_import import Variable
L
LielinJiang 已提交
27
from ...device import get_cudnn_version
28 29
from ...fluid.data_feeder import check_dtype, check_variable_and_dtype
from ...fluid.layer_helper import LayerHelper
30 31 32
from ...framework import no_grad
from ...tensor.manipulation import squeeze, unsqueeze
from ...utils import (
33 34
    _contain_var,
    _convert_to_tensor_list,
35 36
    _is_symmetric_padding,
    convert_to_list,
37
)
38

39 40
__all__ = []

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
64 65 66 67
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".format(
                    padding
                )
            )
68 69 70 71 72 73 74 75 76 77 78 79 80 81
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
82 83
                    "is not supported.".format(padding)
                )
84
            padding_algorithm = "EXPLICIT"
85
            padding = _exclude_padding_in_batch_and_channel(
86 87
                padding, channel_last
            )
88
            if _is_symmetric_padding(padding, num_dims):
89 90 91 92
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
93 94
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
95 96 97 98
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
99
            padding = convert_to_list(padding, num_dims, 'padding')
100
        else:
101
            raise ValueError(f"In valid padding: {padding}")
102 103 104
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
105
        padding = convert_to_list(padding, num_dims, 'padding')
106 107
    if not all([p >= 0 for p in padding]):
        raise ValueError(
108 109 110 111
            "Invalid padding, all value should be larger than or equal to 0, but received: {}".format(
                padding
            )
        )
112 113 114
    return padding, padding_algorithm


115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
def _conv_nd(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    padding_algorithm=None,
    dilation=1,
    groups=1,
    data_format="NCHW",
    channel_dim=1,
    op_type="conv2d",
    use_cudnn=True,
    use_mkldnn=False,
    name=None,
):
L
LielinJiang 已提交
131

132
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
133
    if in_dygraph_mode() and op_type == "conv2d":
134 135 136 137 138 139 140
        pre_bias = _C_ops.conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            dilation,
141
            groups,
142 143
            data_format,
        )
H
hong 已提交
144
        if bias is not None:
W
wanghuancoder 已提交
145 146 147
            new_shape = [1] * len(x.shape)
            new_shape[channel_dim] = -1
            bias = bias.reshape(new_shape)
148
            # TODO(qili93): temporary for ascned npu performance to be removed along with npu_identity op
149
            if (
150
                _global_flags()['FLAGS_npu_storage_format']
151 152
                and 'npu' in get_all_custom_device_type()
            ):
153 154 155 156 157 158
                with no_grad():
                    bias_storage = _C_ops.npu_identity(
                        bias, 3
                    )  # ACL_FORMAT_NC1HWC0 = 3
                    bias_storage._share_underline_tensor_to(bias)
            return _C_ops.add(pre_bias, bias)
H
hong 已提交
159 160
        else:
            return pre_bias
161 162

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
163 164 165 166 167 168 169 170 171 172
        pre_bias = _C_ops.depthwise_conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
173
        if bias is not None:
W
wanghuancoder 已提交
174 175 176 177
            new_shape = [1] * len(x.shape)
            new_shape[channel_dim] = -1
            bias = bias.reshape(new_shape)
            return _C_ops.add(pre_bias, bias)
178 179 180 181
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
182 183 184 185 186 187 188 189 190 191
        pre_bias = _C_ops.conv3d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
192
        if bias is not None:
W
wanghuancoder 已提交
193 194 195 196
            new_shape = [1] * len(x.shape)
            new_shape[channel_dim] = -1
            bias = bias.reshape(new_shape)
            return _C_ops.add(pre_bias, bias)
197 198 199
        else:
            return pre_bias

Z
zhiboniu 已提交
200
    if in_dynamic_mode():
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            use_mkldnn,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            data_format,
        )
221
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
222
        if bias is not None:
223
            out = _add_with_axis(pre_bias, bias, axis=channel_dim)
L
LielinJiang 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
237
            "data_format": data_format,
L
LielinJiang 已提交
238
        }
239
        check_variable_and_dtype(
240
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], op_type
241
        )
L
LielinJiang 已提交
242 243 244 245
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
246 247 248
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
249 250
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
            x_shape = list(pre_bias.shape)
            y_shape = list(bias.shape)
            if channel_dim == -1 or len(x_shape) == len(y_shape):
                helper.append_op(
                    type='elementwise_add',
                    inputs={'X': [pre_bias], 'Y': [bias]},
                    outputs={'Out': [out]},
                    attrs={'axis': -1, 'use_mkldnn': use_mkldnn},
                )
            else:
                assert len(x_shape) > len(
                    y_shape
                ), 'The length of pre_bias must greater than the length of bias'
                padding = len(x_shape) - len(y_shape) - channel_dim
                bias = reshape(
                    bias, [1] * channel_dim + y_shape + [1] * padding
                )

                helper.append_op(
                    type='elementwise_add',
                    inputs={'X': [pre_bias], 'Y': [bias]},
                    outputs={'Out': [out]},
                    attrs={'axis': -1, 'use_mkldnn': use_mkldnn},
                )
L
LielinJiang 已提交
275 276 277 278 279
        else:
            out = pre_bias
    return out


280 281 282 283 284 285 286 287 288 289 290
def conv1d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format='NCL',
    name=None,
):
291
    r"""
W
whs 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
307
        Out = \sigma (W \ast X + b)
W
whs 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
334
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
335 336

    Args:
337
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type
W
whs 已提交
338 339
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
340
            the number of output channels, g is the number of groups, K is the kernel's size.
W
whs 已提交
341
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
342
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
343
            contain one integers, (stride_size). Default: 1.
344
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
345 346 347 348 349 350
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
351
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
352 353 354 355 356 357
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
358
        data_format (str, optional): Specify the data format of the input, and the data format of the output
W
whs 已提交
359 360 361
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
362 363
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
W
whs 已提交
364 365 366
           None by default.

    Returns:
367
        A tensor representing the conv1d, whose data type is the
W
whs 已提交
368 369 370 371 372 373 374
        same with input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
375

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
          x = paddle.to_tensor([[[4, 8, 1, 9],
                                 [7, 2, 0, 9],
                                 [6, 9, 2, 6]]], dtype="float32")
          w = paddle.to_tensor([[[9, 3, 4],
                                 [0, 0, 7],
                                 [2, 5, 6]],
                                [[0, 3, 4],
                                 [2, 9, 7],
                                 [5, 6, 8]]], dtype="float32")

          y = F.conv1d(x, w)
          print(y)
          # Tensor(shape=[1, 2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
          #        [[[133., 238.],
          #          [160., 211.]]])
W
whs 已提交
391 392 393 394 395 396 397 398
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
399 400 401 402
        raise ValueError(
            "Attr(data_format) should be 'NCL' or 'NLC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
W
whs 已提交
403

404
    channel_last = data_format == "NLC"
W
whs 已提交
405 406
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
407 408
    if len(x.shape) != 3:
        raise ValueError(
409 410 411 412
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
W
whs 已提交
413 414 415
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
416 417 418 419
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
420 421
    if groups <= 0:
        raise ValueError(
422 423 424 425
            "The groups of conv1d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
W
whs 已提交
426 427 428 429
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
430 431
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
W
whs 已提交
432 433 434 435
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
436 437
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
W
whs 已提交
438 439 440

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
441

W
whs 已提交
442
    if len(padding) == 2:
443
        padding = [0] * 2 + padding
W
whs 已提交
444
    elif len(padding) == 1:
445
        padding = [0] + padding
W
whs 已提交
446 447
    else:
        raise ValueError(
448 449 450 451
            "The size of padding's dimension should be 1 or 2. But got padding={}".format(
                padding
            )
        )
452 453 454
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
455 456

    l_type = "conv2d"
457 458

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
459 460 461 462 463 464
    if (
        is_compiled_with_cuda()
        and num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
W
whs 已提交
465 466 467
        l_type = 'depthwise_conv2d'
        use_cudnn = False

468
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
K
Kim Yann 已提交
469
    if is_compiled_with_custom_device('npu'):
470
        if num_channels == groups and num_channels == num_filters:
471 472 473 474
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

475
    squeeze_aixs = -3 if channel_last else -2
476
    x = unsqueeze(x, axis=[squeeze_aixs])
477

478
    if in_dygraph_mode():
479 480 481 482 483 484 485 486 487 488 489 490
        if l_type == 'conv2d':
            out = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
                groups,
                conv2d_data_format,
            )
        else:
491
            out = _C_ops.depthwise_conv2d(
492 493 494 495 496 497 498 499 500 501 502 503 504
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                groups,
                dilation,
                conv2d_data_format,
                False,
                -1,
                False,
                False,
            )
505
        if bias is not None:
506
            out = _add_with_axis(out, bias, axis=channel_dim)
W
whs 已提交
507 508 509 510 511 512 513 514 515 516 517
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
518
            "data_format": conv2d_data_format,
W
whs 已提交
519
        }
520 521 522
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d'
        )
W
whs 已提交
523
        helper = LayerHelper(l_type, **locals())
524
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
525 526
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
527 528 529
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
W
whs 已提交
530
        if bias is not None:
531
            out = _add_with_axis(out, bias, axis=channel_dim)
532
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
533 534 535
    return out


536 537 538 539 540 541 542 543 544 545 546
def conv2d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCHW",
    name=None,
):
547
    r"""
S
swtkiwi 已提交
548

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

566
    ..  math::
567

568
        Out = \sigma (W \ast X + b)
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

593
        ..  math::
594

595 596
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
597 598

    Args:
599
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
600
            of input is float16 or float32 or float64.
601
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
602
            the number of output channels, g is the number of groups, kH is the filter's
603
            height, kW is the filter's width.
604
        bias (Tensor, optional): The bias with shape [M,].
605
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution.
606
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
607
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
608
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
609 610 611
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
612 613
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
614
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
615
            when `data_format` is `"NHWC"`, `padding` can be in the form
616 617
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
618
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel
619 620
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
621
            Default: dilation = 1.
622
        groups (int, optional): The groups number of the Conv2D Layer. According to grouped
623 624 625 626
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
627
        data_format (str, optional): Specify the data format of the input, and the data format of the output
628 629 630
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
631 632
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
633 634 635
           None by default.

    Returns:
636
        A Tensor representing the conv2d result, whose data type is the same with input.
637 638 639 640

    Examples:
        .. code-block:: python

641
          import paddle
642 643
          import paddle.nn.functional as F

644 645
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
646 647 648

          y_var = F.conv2d(x_var, w_var)

649 650
          print(y_var.shape)
          # [2, 6, 6, 6]
651 652 653
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
654 655 656 657
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
658

659
    channel_last = data_format == "NHWC"
660
    channel_dim = -1 if channel_last else 1
661 662
    if len(x.shape) != 4:
        raise ValueError(
663 664 665 666
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
667
    num_channels = x.shape[channel_dim]
668 669
    num_filters = weight.shape[0]
    if num_channels < 0:
670 671 672 673
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
674 675
    if groups <= 0:
        raise ValueError(
676 677 678 679
            "The groups of conv2d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
680 681 682 683
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
684 685
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
686 687 688 689
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
690 691
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
692

693 694
    cudnn_version = get_cudnn_version()

695 696 697 698 699
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
700

701 702
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
703 704
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
705 706

    l_type = "conv2d"
707 708 709 710 711
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
712
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
713
        if is_compiled_with_rocm():
714 715 716
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
717 718
    else:
        if in_dygraph_mode():
719 720 721 722 723 724 725
            pre_bias = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
726
                groups,
727 728
                data_format,
            )
H
hong 已提交
729
            if bias is not None:
730 731 732 733 734 735 736 737 738 739 740 741 742
                channel_dim = (
                    channel_dim + len(x.shape)
                    if channel_dim < 0
                    else channel_dim
                )
                if len(bias.shape) < len(x.shape):
                    bias = _C_ops.reshape(
                        bias,
                        [1 for i in range(channel_dim)]
                        + bias.shape
                        + [1 for i in range(len(x.shape) - channel_dim - 1)],
                    )
                # TODO(qili93): temporary for ascned npu performance to be removed along with npu_identity op
743
                if (
744
                    _global_flags()['FLAGS_npu_storage_format']
745 746
                    and 'npu' in get_all_custom_device_type()
                ):
747 748 749 750 751 752
                    with no_grad():
                        bias_storage = _C_ops.npu_identity(
                            bias, 3
                        )  # ACL_FORMAT_NC1HWC0 = 3
                        bias_storage._share_underline_tensor_to(bias)
                return _C_ops.add(pre_bias, bias)
H
hong 已提交
753 754 755 756
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
757

758
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
K
Kim Yann 已提交
759
    if is_compiled_with_custom_device('npu'):
760
        if num_channels == groups and num_channels == num_filters:
761 762 763 764
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

765 766 767 768 769 770
    if (
        is_compiled_with_cuda()
        and get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
771
        use_cudnn = False
772

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        l_type,
        use_cudnn,
        use_mkldnn,
        name,
    )


def conv1d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format="NCL",
    name=None,
):
804
    r"""
805 806 807 808 809 810 811 812 813 814 815 816 817 818
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
819
        Out = \sigma (W \ast X + b)
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

846
           L^\prime_{out} &= (L_{in} - 1) * stride - 2 * padding + dilation * (L_f - 1) + 1 \\
847 848 849 850 851 852 853 854
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
855
          and :math:`L^\prime_{out} + stride`.
856 857 858 859 860 861 862 863 864

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
865
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
866 867 868 869 870 871 872
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
873
             If it is a list/tuple, it must contain one integer. Default: 0.
874 875 876 877 878 879 880
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
881
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
882 883
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
884
            tuple/list, it must contain one integer, `(feature_length)`. None if use
885
            filter_size(shape of weight), padding, and stride to calculate output_size.
886
        data_format (str, optional): Specify the data format of the input, and the data format of the output
887 888 889
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
890 891
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
892 893 894 895 896 897 898 899 900 901 902 903 904
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
905

906
          # shape: (1, 2, 4)
907 908
          x = paddle.to_tensor([[[4, 0, 9, 7],
                                [8, 0, 9, 2,]]], dtype="float32")
909
          # shape: (2, 1, 2)
910 911 912 913 914 915 916
          w = paddle.to_tensor([[[7, 0]],
                                [[4, 2]]], dtype="float32")

          y = F.conv1d_transpose(x, w)
          print(y)
          # Tensor(shape=[1, 1, 5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
          #        [[[60., 16., 99., 75., 4. ]]])
917 918 919 920 921 922 923 924 925 926 927
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
928 929 930 931
                data_format
            )
        )
    channel_last = data_format == "NLC"
932
    channel_dim = -1 if channel_last else 1
933 934
    if len(x.shape) != 3:
        raise ValueError(
935 936 937 938
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
939 940 941

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
942 943 944 945
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
946 947
    if groups <= 0:
        raise ValueError(
948 949 950 951
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
952 953 954 955
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
956 957
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
958 959 960 961 962 963 964 965 966 967

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
968 969 970 971
            "The size of padding's dimension should 1 or 2. But got padding={}".format(
                padding
            )
        )
972

973 974
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
975 976 977 978

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
979
        if output_padding != 0:
980 981 982 983
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
984
        if isinstance(output_size, (list, tuple, int)):
985
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
986 987
        else:
            raise ValueError(
988 989
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
990 991 992 993

    if output_padding == 0:
        output_padding = []
    else:
994 995 996
        output_padding = convert_to_list(
            output_padding, 1, 'output_padding'
        ) + [0]
L
LielinJiang 已提交
997 998 999 1000

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
1001
            "But got output_padding={} and stride={}".format(
1002 1003 1004
                output_padding[0], stride[0]
            )
        )
1005

1006 1007 1008 1009 1010 1011 1012
    if len(weight.shape) != 3:
        raise ValueError(
            'Input weight should be 3D tensor, but received weight with the shape of {}'.format(
                weight.shape
            )
        )

1013 1014
    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1015 1016 1017 1018 1019 1020
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters == 1
        and not use_cudnn
    ):
1021 1022 1023 1024 1025 1026
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

1027 1028
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
1029

1030
    if in_dygraph_mode():
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
        out = getattr(_C_ops, op_type)(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            conv2d_data_format,
        )
1043
        if bias is not None:
1044
            out = _add_with_axis(out, bias, axis=channel_dim)
1045 1046 1047
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
1048
            'output_padding': output_padding,
1049 1050 1051 1052 1053 1054 1055
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1056
            'data_format': conv2d_data_format,
1057
        }
1058 1059 1060
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1061
        helper = LayerHelper(op_type, **locals())
1062
        dtype = helper.input_dtype(input_param_name='x')
1063 1064
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
1065 1066 1067
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1068
        if bias is not None:
1069
            out = _add_with_axis(out, bias, axis=channel_dim)
1070

1071
    out = squeeze(out, axis=[squeeze_axis])
1072 1073 1074
    return out


1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
def conv2d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    dilation=1,
    groups=1,
    output_size=None,
    data_format='NCHW',
    name=None,
):
1088
    r"""
S
swtkiwi 已提交
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1101
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
1102 1103 1104

    For each input :math:`X`, the equation is:

1105
    ..  math::
1106

1107
        Out = \sigma (W \ast X + b)
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

1132
        ..  math::
1133

1134 1135 1136
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\
1137 1138 1139
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
1140 1141
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d,
          when stride > 1, conv2d maps multiple input shape to the same output shape,
1142
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
1143 1144 1145
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
1146
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
1147 1148

    Args:
L
LielinJiang 已提交
1149
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
1150
            whose data type is float32 or float64.
L
LielinJiang 已提交
1151
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
1152 1153
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
1154
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
1155 1156
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
L
LielinJiang 已提交
1157
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
1158 1159
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
1160
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
1161
            it could be in three forms: `[pad_height, pad_width]` or
1162
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
1163
            and when `data_format` is `"NCHW"`, `padding` can be in the form
1164
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
1165
            when `data_format` is `"NHWC"`, `padding` can be in the form
1166 1167
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1168 1169
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1170
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1171 1172 1173 1174 1175
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1176 1177
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width).
1178
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1179
        output_size(int|tuple|list, optional): The output image size. If output size is a
1180
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1181
            filter_size(shape of weight), padding, and stride to calculate output_size.
1182
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1183 1184 1185
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1186 1187
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1188 1189 1190
           None by default.

    Returns:
1191
        A Tensor representing the conv2d_transpose, whose
1192 1193
        data type is the same with input and shape is (num_batches, channels, out_h,
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing
L
LielinJiang 已提交
1194
        transposed convolution result.
1195 1196 1197 1198

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1199 1200
          import paddle
          import paddle.nn.functional as F
1201

1202 1203
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1204

1205
          y_var = F.conv2d_transpose(x_var, w_var)
1206

1207 1208
          print(y_var.shape)
          # [2, 6, 10, 10]
1209 1210 1211 1212 1213 1214
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
1215 1216 1217 1218
                data_format
            )
        )
    channel_last = data_format == "NHWC"
1219
    channel_dim = -1 if channel_last else 1
1220 1221
    if len(x.shape) != 4:
        raise ValueError(
1222 1223 1224 1225
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
1226 1227 1228 1229 1230 1231
    if len(weight.shape) != 4:
        raise ValueError(
            "Input weight should be 4D tensor, but received weight with the shape of {}".format(
                weight.shape
            )
        )
L
LielinJiang 已提交
1232
    num_channels = x.shape[channel_dim]
1233
    if num_channels < 0:
1234 1235 1236 1237
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
1238 1239
    if groups <= 0:
        raise ValueError(
1240 1241 1242 1243
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1244 1245 1246 1247
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
1248 1249
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
L
LielinJiang 已提交
1250 1251 1252

    cudnn_version = get_cudnn_version()

1253 1254 1255 1256 1257
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1258 1259 1260

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1261 1262
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1263

1264 1265 1266
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1267
        if output_padding != 0:
1268 1269 1270 1271
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
1272 1273 1274 1275 1276 1277
        if isinstance(output_size, (list, tuple)):
            if _contain_var(output_size):
                output_size = _convert_to_tensor_list(output_size)
            else:
                output_size = convert_to_list(output_size, 2, 'output_size')
        elif isinstance(output_size, int):
1278
            output_size = convert_to_list(output_size, 2, 'output_size')
1279
        elif isinstance(output_size, Variable):
1280 1281 1282 1283 1284 1285 1286 1287 1288
            check_dtype(
                output_size.dtype,
                'output_size',
                ['int32', 'int64'],
                'conv2d_transpose',
            )
            if len(output_size.shape) == 1 and (
                output_size.shape[0] == 1 or output_size.shape[0] == 2
            ):
1289 1290 1291 1292
                if output_size.shape[0] == 1:
                    output_size = [output_size, output_size]
            else:
                raise ValueError(
1293 1294
                    "output_size must contain one or two integers."
                )
L
LielinJiang 已提交
1295 1296
        else:
            raise ValueError(
1297 1298
                "output_size should be int or Tensor or list, tuple of ints or Tensor"
            )
L
LielinJiang 已提交
1299 1300 1301 1302

    if output_padding == 0:
        output_padding = []
    else:
1303
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1304 1305 1306

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1307
    if num_channels == groups and num_channels != 1 and num_filters == 1:
1308
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1309
        use_cudnn = False
1310

F
From00 已提交
1311
    if in_dygraph_mode():
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
        op = (
            _C_ops.conv2d_transpose
            if op_type == 'conv2d_transpose'
            else _C_ops.depthwise_conv2d_transpose
        )
        pre_bias = op(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
F
From00 已提交
1329
        if bias is not None:
1330
            return _add_with_axis(pre_bias, bias, axis=channel_dim)
F
From00 已提交
1331 1332
        else:
            return pre_bias
1333
    else:
L
LielinJiang 已提交
1334
        inputs = {'Input': [x], 'Filter': [weight]}
1335
        attrs = {
L
LielinJiang 已提交
1336
            'output_padding': output_padding,
1337 1338 1339 1340 1341 1342 1343
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1344
            'data_format': data_format,
1345
        }
1346
        check_variable_and_dtype(
1347 1348 1349 1350
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64'],
            'conv2d_transpose',
1351
        )
1352
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1353
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1354
        outputs = {"Output": [pre_bias]}
1355 1356 1357
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
1358

1359
        if bias is not None:
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
            out = helper.create_variable_for_type_inference(x.dtype)
            x_shape = list(pre_bias.shape)
            y_shape = list(bias.shape)
            if channel_dim == -1 or len(x_shape) == len(y_shape):
                helper.append_op(
                    type='elementwise_add',
                    inputs={'X': [pre_bias], 'Y': [bias]},
                    outputs={'Out': [out]},
                    attrs={'axis': -1, 'use_mkldnn': False},
                )
            else:
                assert len(x_shape) > len(
                    y_shape
                ), 'The length of pre_bias must greater than the length of bias'
                padding = len(x_shape) - len(y_shape) - channel_dim
                bias = reshape(
                    bias, [1] * channel_dim + y_shape + [1] * padding
                )
                helper.append_op(
                    type='elementwise_add',
                    inputs={'X': [pre_bias], 'Y': [bias]},
                    outputs={'Out': [out]},
                    attrs={'axis': -1, 'use_mkldnn': False},
                )
1384
        else:
L
LielinJiang 已提交
1385 1386
            out = pre_bias

1387 1388 1389
    return out


1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
def conv3d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCDHW",
    name=None,
):
1401
    r"""
S
swtkiwi 已提交
1402

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1414
    ..  math::
1415

1416
        Out = \sigma (W \ast X + b)
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1440
        ..  math::
1441

1442 1443 1444
            D_{out}&= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\
            H_{out}&= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\
            W_{out}&= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1
1445 1446

    Args:
1447
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data
1448
            type of input is float16 or float32 or float64.
1449
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1450 1451
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1452
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1453 1454
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
1455
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1456
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1457 1458 1459 1460
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1461
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1462
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1463
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1464 1465
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1466
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
1467
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1468
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1469
            Default: dilation = 1.
1470
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1471 1472 1473 1474
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
1475
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1476 1477 1478
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
1479 1480
        name(str|None, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1481 1482 1483
           None by default.

    Returns:
1484 1485 1486
        A Tensor representing the conv3d, whose data type is
        the same with input. If act is None, the tensor storing the
        convolution result, and if act is not None, the tensor storing
1487 1488 1489 1490 1491
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1492 1493
            import paddle
            import paddle.nn.functional as F
1494

1495 1496
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1497

1498
            y_var = F.conv3d(x_var, w_var)
1499

1500 1501
            print(y_var.shape)
            # [2, 6, 6, 6, 6]
1502 1503 1504 1505 1506
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1507 1508
            "Attr(data_format): {}.".format(data_format)
        )
1509

1510
    channel_last = data_format == "NDHWC"
1511
    channel_dim = -1 if channel_last else 1
1512 1513
    if len(x.shape) != 5:
        raise ValueError(
1514 1515 1516 1517
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
1518
    num_channels = x.shape[channel_dim]
1519 1520 1521
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1522
            "The channel dimension of the input({}) should be defined. "
1523 1524
            "Received: {}.".format(x.shape, num_channels)
        )
1525 1526
    if groups <= 0:
        raise ValueError(
1527 1528 1529 1530
            "The groups of conv3d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1531 1532 1533
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1534
            "Received: number of channels({}), groups({}).".format(
1535 1536 1537
                num_channels, groups
            )
        )
1538 1539 1540
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1541
            "Received: number of filters({}), groups({}).".format(
1542 1543 1544
                num_filters, groups
            )
        )
1545

1546
    cudnn_version = get_cudnn_version()
1547 1548 1549 1550 1551
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1552

1553
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1554 1555
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1556 1557
    op_type = "conv3d"

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        op_type,
        use_cudnn,
        False,
        name,
    )


def conv3d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format='NCDHW',
    name=None,
):
1589
    r"""
L
LielinJiang 已提交
1590
    The convolution3d transpose layer calculates the output based on the input,
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1601
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1602 1603 1604

    For each input :math:`X`, the equation is:

1605
    ..  math::
1606

1607
        Out = \sigma (W \ast X + b)
1608 1609 1610 1611

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
1612 1613
    * :math:`W`: Filter value, a Tensor with NCDHW format.
    * :math:`\ast`: Convolution operation.
1614
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
1615
    * :math:`\sigma`: Activation function.
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1632
        ..  math::
1633

1634 1635 1636 1637 1638
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\
1639 1640 1641
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
1642 1643 1644 1645 1646 1647 1648 1649 1650
        The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
        when stride > 1, conv3d maps multiple input shape to the same output shape,
        so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
        If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
        else, the :math:`D_{out}` of the output size must between :math:`D^\prime_{out}` and
        :math:`D^\prime_{out} + strides[0]`, the :math:`H_{out}` of the output size must
        between :math:`H^\prime_{out}` and :math:`H^\prime_{out} + strides[1]`, and the
        :math:`W_{out}` of the output size must between :math:`W^\prime_{out}` and
        :math:`W^\prime_{out} + strides[2]`.
1651 1652

    Args:
1653
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
1654
            of input is float32 or float64.
L
LielinJiang 已提交
1655
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1656
            where M is the number of filters (output channels), g is the number of groups,
1657
            kD, kH, kW are the filter's depth, height and width respectively.
1658 1659
        bias (Tensor, optional): The bias, a Tensor of shape [M, ]. Default: None.
        stride (int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
1660 1661
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
1662 1663
            Default: 1.
        padding (str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1664 1665 1666
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1667
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1668
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1669
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1670
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1671
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
1672 1673
            Default: 0.
        output_padding (int|list|tuple, optional): Additional size added to one side
L
LielinJiang 已提交
1674
            of each dimension in the output shape. Default: 0.
1675 1676 1677
        groups (int, optional): The groups number of the Conv3D transpose layer. Inspired by
            grouped convolution in `Alex Krizhevsky's Deep CNN paper <https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf>`_, in which
            when groups = 2, the first half of the filters is only connected to the
1678 1679
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
1680 1681
            Default: 1.
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
1682 1683
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1684 1685
            Default: 1.
        output_size (int|list|tuple, optional): The output image size. If output size is a
1686
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1687
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1688
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1689
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
1690 1691 1692 1693 1694
            When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
            Default: `"NCHW"`.
        name (str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set.
           Default: None.
1695 1696

    Returns:
1697
        A Tensor representing the conv3d_transpose, whose data
1698 1699 1700
        type is the same with input and shape is (num_batches, channels, out_d, out_h,
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
        variable storing the transposed convolution result, and if act is not None, the tensor
1701 1702 1703 1704
        variable storing transposed convolution and non-linearity activation result.

    Examples:
       .. code-block:: python
1705

L
LielinJiang 已提交
1706
          import paddle
1707 1708
          import paddle.nn.functional as F

1709 1710
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1711

1712
          y_var = F.conv3d_transpose(x_var, w_var)
1713

1714 1715
          print(y_var.shape)
          # [2, 6, 10, 10, 10]
1716 1717 1718 1719 1720
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1721 1722
            "Attr(data_format): {}.".format(data_format)
        )
1723

1724
    channel_last = data_format == "NDHWC"
1725
    channel_dim = -1 if channel_last else 1
1726 1727
    if len(x.shape) != 5:
        raise ValueError(
1728 1729 1730 1731
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
1732 1733 1734 1735 1736 1737
    if len(weight.shape) != 5:
        raise ValueError(
            "Input weight should be 5D tensor, but received weight with the shape of {}".format(
                weight.shape
            )
        )
L
LielinJiang 已提交
1738
    num_channels = x.shape[channel_dim]
1739 1740 1741
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1742
            "The channel dimension of the input({}) should be defined. "
1743 1744
            "Received: {}.".format(x.shape, num_channels)
        )
1745 1746
    if groups <= 0:
        raise ValueError(
1747 1748 1749 1750
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1751 1752 1753
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1754
            "Received: number of channels({}), groups({}).".format(
1755 1756 1757
                num_channels, groups
            )
        )
1758 1759

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1760 1761
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1762 1763 1764
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1765
        if output_padding != 0:
1766 1767 1768 1769
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
1770
        if isinstance(output_size, (list, tuple, int)):
1771
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1772 1773
        else:
            raise ValueError(
1774 1775
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
1776 1777 1778 1779

    if output_padding == 0:
        output_padding = []
    else:
1780
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1781 1782 1783

    cudnn_version = get_cudnn_version()

1784 1785 1786 1787 1788 1789
    # TODO(LielinJiang): whether to use cudnn according to the version of cudnn
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1790 1791 1792 1793

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1794
    if in_dygraph_mode():
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
        pre_bias = _C_ops.conv3d_transpose(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format_,
        )
F
From00 已提交
1807
        if bias is not None:
1808
            return _add_with_axis(pre_bias, bias, axis=channel_dim)
F
From00 已提交
1809 1810
        else:
            return pre_bias
1811
    else:
L
LielinJiang 已提交
1812
        inputs = {'Input': [x], 'Filter': [weight]}
1813
        attrs = {
L
LielinJiang 已提交
1814
            'output_padding': output_padding,
1815 1816 1817 1818 1819 1820 1821
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1822
            "data_format": data_format_,
1823 1824
        }
        helper = LayerHelper(op_type, **locals())
1825 1826 1827
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv3d'
        )
1828

L
LielinJiang 已提交
1829
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1830 1831
        outputs = {"Output": [pre_bias]}

1832 1833 1834
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1835
        if bias is not None:
1836
            out = _add_with_axis(pre_bias, bias, axis=channel_dim)
1837
        else:
L
LielinJiang 已提交
1838
            out = pre_bias
1839 1840

    return out