conv.py 67.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from __future__ import print_function
15
from paddle.fluid.framework import _global_flags
16

17
import numpy as np
L
LielinJiang 已提交
18
from ...device import get_cudnn_version
19
from ...static import Variable
Z
zhiboniu 已提交
20
from ...fluid import dygraph_utils
21
from ...fluid.layers.utils import convert_to_list, _is_symmetric_padding
22
from ...fluid.data_feeder import check_variable_and_dtype
23
from ...framework import ParamAttr
24
from ...fluid.layer_helper import LayerHelper
W
wanghuancoder 已提交
25
from paddle import _C_ops
26 27 28
from ...tensor.manipulation import unsqueeze, squeeze
from ...tensor.math import add
from ...fluid.layers import nn
Z
zhiboniu 已提交
29 30 31 32 33
from paddle.device import is_compiled_with_cuda
from paddle.device import is_compiled_with_rocm
from paddle.device import is_compiled_with_npu
from paddle import in_dynamic_mode
from paddle import get_flags
34

35 36
__all__ = []

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
            padding = _exclude_padding_in_batch_and_channel(padding,
                                                            channel_last)
80
            if _is_symmetric_padding(padding, num_dims):
81 82 83 84
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
85 86
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
87 88 89 90
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
91
            padding = convert_to_list(padding, num_dims, 'padding')
92 93 94 95 96
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
97
        padding = convert_to_list(padding, num_dims, 'padding')
98 99 100 101
    if not all([p >= 0 for p in padding]):
        raise ValueError(
            "Invalid padding, all value should be larger than or equal to 0, but received: {}".
            format(padding))
102 103 104
    return padding, padding_algorithm


L
LielinJiang 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
def _conv_nd(x,
             weight,
             bias=None,
             stride=1,
             padding=0,
             padding_algorithm=None,
             dilation=1,
             groups=1,
             data_format="NCHW",
             channel_dim=1,
             op_type="conv2d",
             use_cudnn=True,
             use_mkldnn=False,
             name=None):

120
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
Z
zhiboniu 已提交
121
    if in_dynamic_mode():
L
LielinJiang 已提交
122 123 124 125 126
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn',
                 use_mkldnn, 'fuse_relu_before_depthwise_conv', False,
                 "padding_algorithm", padding_algorithm, "data_format",
                 data_format)
W
wanghuancoder 已提交
127
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format
        }
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 op_type)
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': channel_dim,
                       'use_mkldnn': use_mkldnn})
        else:
            out = pre_bias
    return out


W
whs 已提交
167 168 169 170 171 172 173 174 175
def conv1d(x,
           weight,
           bias=None,
           stride=1,
           padding=0,
           dilation=1,
           groups=1,
           data_format='NCL',
           name=None):
176
    r"""
W
whs 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
192
        Out = \sigma (W \ast X + b)
W
whs 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
219
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
220 221 222 223 224 225 226

    Args:
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type 
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
            the number of output channels, g is the number of groups, K is the kernel's size. 
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
227
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
228
            contain one integers, (stride_size). Default: 1.
229
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
230 231 232 233 234 235
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
236
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A tensor representing the conv1d, whose data type is the 
        same with input.

    Raises:
256
        ValueError: If the channel dimension of the input is less than or equal to zero.
W
whs 已提交
257 258
        ValueError: If `data_format` is not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
259
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
W
whs 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
L
LielinJiang 已提交
283
          
W
whs 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv1d(x_var, w_var)
          y_np = y_var.numpy()
          print(y_np)
          
          # [[[133. 238.]
          #   [160. 211.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
        raise ValueError("Attr(data_format) should be 'NCL' or 'NLC'. "
                         "Received Attr(data_format): {}.".format(data_format))

L
LielinJiang 已提交
303
    channel_last = (data_format == "NLC")
W
whs 已提交
304 305
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
306 307 308 309
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
W
whs 已提交
310 311 312
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
313
        raise ValueError("The channel dimension of the input({}) "
W
whs 已提交
314 315
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
316 317 318 319
    if groups <= 0:
        raise ValueError(
            "The groups of conv1d should be greater than 0. Received groups: {}".
            format(groups))
W
whs 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
333

W
whs 已提交
334
    if len(padding) == 2:
335
        padding = [0] * 2 + padding
W
whs 已提交
336
    elif len(padding) == 1:
337
        padding = [0] + padding
W
whs 已提交
338 339
    else:
        raise ValueError(
340
            "The size of padding's dimension should be 1 or 2. But got padding={}".
W
whs 已提交
341
            format(padding))
342 343 344
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
345 346

    l_type = "conv2d"
347 348

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
Z
zhiboniu 已提交
349
    if (is_compiled_with_cuda() and num_channels == groups and
350
            num_channels != 1 and num_filters % num_channels == 0):
W
whs 已提交
351 352 353
        l_type = 'depthwise_conv2d'
        use_cudnn = False

354
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
355
    if is_compiled_with_npu():
356 357 358 359 360
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

361
    squeeze_aixs = -3 if channel_last else -2
362
    x = unsqueeze(x, axis=[squeeze_aixs])
363

Z
zhiboniu 已提交
364
    if in_dynamic_mode():
W
whs 已提交
365 366 367 368
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
                 'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
                 padding_algorithm, "data_format", conv2d_data_format)
W
wanghuancoder 已提交
369
        out = getattr(_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d')
        helper = LayerHelper(l_type, **locals())
388
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
389 390 391 392 393 394
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
395
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
396 397 398
    return out


399
def conv2d(x,
400 401 402
           weight,
           bias=None,
           stride=1,
403
           padding=0,
404 405 406 407
           dilation=1,
           groups=1,
           data_format="NCHW",
           name=None):
408
    r"""
S
swtkiwi 已提交
409

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

427
    ..  math::
428

429
        Out = \sigma (W \ast X + b)
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

454
        ..  math::
455

456 457
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
458 459

    Args:
460
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type 
461
            of input is float16 or float32 or float64.
462
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
463 464
            the number of output channels, g is the number of groups, kH is the filter's
            height, kW is the filter's width. 
465
        bias (Tensor, optional): The bias with shape [M,].
466 467
        stride (int|list|tuple): The stride size. It means the stride in convolution. 
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
468
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
469 470 471 472 473 474 475
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
476
            when `data_format` is `"NHWC"`, `padding` can be in the form
477 478
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
479 480
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height, 
481 482
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
483
        groups (int): The groups number of the Conv2D Layer. According to grouped
484 485 486 487 488 489 490 491 492 493 494 495 496
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
497
        A Tensor representing the conv2d result, whose data type is the same with input. 
498 499 500

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
501
        ValueError: If the channel dimension of the input is less than or equal to zero.
502
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
503
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
504 505 506 507 508 509 510 511 512 513
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

514
          import paddle
515 516
          import paddle.nn.functional as F

517 518
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
519 520 521 522

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

523 524 525 526 527 528 529 530 531 532
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
                         "Received Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
533 534 535 536
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
537
    num_channels = x.shape[channel_dim]
538 539
    num_filters = weight.shape[0]
    if num_channels < 0:
540
        raise ValueError("The channel dimension of the input({}) "
541
                         "should be defined. Received: {}.".format(
542
                             x.shape, num_channels))
543 544 545 546
    if groups <= 0:
        raise ValueError(
            "The groups of conv2d should be greater than 0. Received groups: {}".
            format(groups))
547 548 549 550
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
551
            ", the groups is {}".format(num_channels, x.shape, groups))
552 553 554 555 556 557
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

558 559
    cudnn_version = get_cudnn_version()

Z
zhiboniu 已提交
560
    use_cudnn = True if (is_compiled_with_cuda() and
561 562
                         cudnn_version is not None) else False

563
    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
L
LielinJiang 已提交
564

565 566
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
567 568
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
569 570

    l_type = "conv2d"
L
LielinJiang 已提交
571 572
    if (num_channels == groups and num_channels != 1 and
            num_filters % num_channels == 0):
573
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
574
        if is_compiled_with_rocm():
575 576 577 578
            use_cudnn = True
        else:
            use_cudnn = False

579
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
580
    if is_compiled_with_npu():
581 582 583 584 585
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

Z
zhiboniu 已提交
586 587
    if (is_compiled_with_cuda() and get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"]):
588
        use_cudnn = False
589

L
LielinJiang 已提交
590 591 592
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, l_type,
                    use_cudnn, use_mkldnn, name)
593 594


595
def conv1d_transpose(x,
596 597 598 599 600 601 602 603 604 605
                     weight,
                     bias=None,
                     stride=1,
                     padding=0,
                     output_padding=0,
                     groups=1,
                     dilation=1,
                     output_size=None,
                     data_format="NCL",
                     name=None):
606
    r"""
607 608 609 610 611 612 613 614 615 616 617 618 619 620
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
621
        Out = \sigma (W \ast X + b)
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
657
          and :math:`L^\prime_{out} + stride`.
658 659 660 661 662 663 664 665 666

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
667
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
668 669 670 671 672 673 674
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
675
             If it is a list/tuple, it must contain one integer. Default: 0.
676 677 678 679 680 681 682
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
683
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
684 685
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
686
            tuple/list, it must contain one integer, `(feature_length)`. None if use
687
            filter_size(shape of weight), padding, and stride to calculate output_size.
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Raises:
        ValueError: If `data_format` is a string, but not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
705
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ValueError: If `output_padding` is greater than `stride`.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python



          import paddle
          import paddle.nn.functional as F
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2,]]]).astype(np.float32)
          # shape: (2, 1, 2)
W
whs 已提交
728
          w=np.array([[[7, 0]],
729 730 731
                      [[4, 2]]]).astype(np.float32)
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
732
          y_var = F.conv1d_transpose(x_var, w_var)
W
whs 已提交
733
          print(y_var)
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
          
          # [[[60. 16. 99. 75.  4.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
                data_format))
    channel_last = (data_format == "NLC")
    channel_dim = -1 if channel_last else 1
750 751 752 753
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
754 755 756

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
757
        raise ValueError("The channel dimension of the input({}) "
758 759
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
760 761 762 763
    if groups <= 0:
        raise ValueError(
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}".
            format(groups))
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
779
            "The size of padding's dimension should 1 or 2. But got padding={}".
780 781
            format(padding))

782 783
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
784 785 786 787

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
788 789 790 791
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
792
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
793 794 795 796 797 798 799
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
800 801
        output_padding = convert_to_list(output_padding, 1,
                                         'output_padding') + [0]
L
LielinJiang 已提交
802 803 804 805 806 807

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
            "But got output_padding={} and stride={}".format(output_padding[0],
                                                             stride[0]))
808 809 810

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
811 812
    if (num_channels == groups and num_channels != 1 and num_filters == 1 and
            not use_cudnn):
813 814 815 816 817 818
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

819 820
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
821

Z
zhiboniu 已提交
822
    if in_dynamic_mode():
L
LielinJiang 已提交
823 824 825 826
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', conv2d_data_format)
W
wanghuancoder 已提交
827
        out = getattr(_C_ops, op_type)(x, weight, *attrs)
828 829 830 831 832
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
833
            'output_padding': output_padding,
834 835 836 837 838 839 840 841 842 843 844 845
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
846
        dtype = helper.input_dtype(input_param_name='x')
847 848 849 850 851 852 853
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

854
    out = squeeze(out, axis=[squeeze_axis])
855 856 857
    return out


858
def conv2d_transpose(x,
859 860 861
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
862 863 864
                     padding=0,
                     output_padding=0,
                     dilation=1,
865
                     groups=1,
L
LielinJiang 已提交
866
                     output_size=None,
867
                     data_format='NCHW',
868
                     name=None):
869
    r"""
S
swtkiwi 已提交
870

871 872 873 874 875 876 877 878 879 880 881
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
882
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
883 884 885

    For each input :math:`X`, the equation is:

886
    ..  math::
887

888
        Out = \sigma (W \ast X + b)
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

913
        ..  math::
914 915 916 917 918 919 920 921 922 923 924 925 926

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
927
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
928 929

    Args:
L
LielinJiang 已提交
930
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
931
            whose data type is float32 or float64.
L
LielinJiang 已提交
932
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
933 934
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
935 936
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
937
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
L
LielinJiang 已提交
938
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
939 940 941 942 943
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or 
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or 
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
944
            and when `data_format` is `"NCHW"`, `padding` can be in the form 
945
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
946
            when `data_format` is `"NHWC"`, `padding` can be in the form 
947 948
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
949 950
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
951
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
952 953 954 955 956
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
957
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
958
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width). 
959
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
960
        output_size(int|tuple|list, optional): The output image size. If output size is a
961
            tuple/list, it must contain two integers, (image_height, image_width). None if use
962
            filter_size(shape of weight), padding, and stride to calculate output_size.
963 964 965 966 967 968 969 970 971
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
972
        A Tensor representing the conv2d_transpose, whose
973
        data type is the same with input and shape is (num_batches, channels, out_h, 
L
LielinJiang 已提交
974 975
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing 
        transposed convolution result.
976 977 978 979

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
980
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
981
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
982
        ValueError: If `output_size` and kernel_size are None at the same time.
983 984 985 986 987 988 989 990 991
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
992 993
          import paddle
          import paddle.nn.functional as F
994

995 996
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
997

998
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
999
          y_np = y_var.numpy()
1000

1001
          print(y_np.shape)
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
                data_format))
    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
1012 1013 1014 1015
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1016
    num_channels = x.shape[channel_dim]
1017
    if num_channels < 0:
1018
        raise ValueError("The channel dimension of the input({}) "
1019
                         "should be defined. Received: {}.".format(
L
LielinJiang 已提交
1020
                             x.shape, num_channels))
1021 1022 1023 1024
    if groups <= 0:
        raise ValueError(
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}".
            format(groups))
1025 1026 1027 1028
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
L
LielinJiang 已提交
1029 1030 1031 1032
            ", the groups is {}".format(num_channels, x.shape, groups))

    cudnn_version = get_cudnn_version()

Z
zhiboniu 已提交
1033
    use_cudnn = True if (is_compiled_with_cuda() and
L
LielinJiang 已提交
1034
                         cudnn_version is not None) else False
1035 1036 1037

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1038 1039
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1040

1041 1042 1043
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1044 1045 1046 1047
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1048
            output_size = convert_to_list(output_size, 2, 'output_size')
L
LielinJiang 已提交
1049 1050 1051 1052 1053 1054 1055
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1056
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1057 1058 1059

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
1060
    if (num_channels == groups and num_channels != 1 and num_filters == 1):
1061
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1062
        use_cudnn = False
1063

Z
zhiboniu 已提交
1064
    if in_dynamic_mode():
L
LielinJiang 已提交
1065 1066 1067 1068
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', data_format)
W
wanghuancoder 已提交
1069
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
1070
        if bias is not None:
L
LielinJiang 已提交
1071
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1072
        else:
L
LielinJiang 已提交
1073
            out = pre_bias
1074
    else:
L
LielinJiang 已提交
1075
        inputs = {'Input': [x], 'Filter': [weight]}
1076
        attrs = {
L
LielinJiang 已提交
1077
            'output_padding': output_padding,
1078 1079 1080 1081 1082 1083 1084 1085 1086
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        }
L
LielinJiang 已提交
1087
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1088 1089
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1090
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1091 1092 1093
        outputs = {"Output": [pre_bias]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
L
LielinJiang 已提交
1094

1095
        if bias is not None:
L
LielinJiang 已提交
1096
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1097
        else:
L
LielinJiang 已提交
1098 1099
            out = pre_bias

1100 1101 1102
    return out


1103
def conv3d(x,
1104 1105 1106
           weight,
           bias=None,
           stride=1,
1107
           padding=0,
1108 1109 1110 1111
           dilation=1,
           groups=1,
           data_format="NCDHW",
           name=None):
1112
    r"""
S
swtkiwi 已提交
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1125
    ..  math::
1126

1127
        Out = \sigma (W \ast X + b)
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1151
        ..  math::
1152 1153 1154 1155 1156 1157

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1158
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
1159
            type of input is float16 or float32 or float64.
1160
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1161 1162
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1163
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1164 1165
        stride (int|list|tuple): The stride size. It means the stride in convolution. If stride is a 
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
1166
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1167 1168 1169 1170 1171
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1172
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1173
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1174
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1175 1176
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1177 1178
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1179 1180
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
1181
        groups (int): The groups number of the Conv3D Layer. According to grouped
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1195
        A Tensor representing the conv3d, whose data type is 
1196 1197
        the same with input. If act is None, the tensor storing the 
        convolution result, and if act is not None, the tensor storing 
1198 1199 1200 1201 1202
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1203 1204
            import paddle
            import paddle.nn.functional as F
1205

1206 1207
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1208

1209 1210
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1211

1212
            print(y_np.shape)
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1223 1224 1225 1226
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
1227
    num_channels = x.shape[channel_dim]
1228 1229 1230
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1231
            "The channel dimension of the input({}) should be defined. "
1232
            "Received: {}.".format(x.shape, num_channels))
1233 1234 1235 1236
    if groups <= 0:
        raise ValueError(
            "The groups of conv3d should be greater than 0. Received groups: {}".
            format(groups))
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
            "Received: number of channels({}), groups({}).".format(num_channels,
                                                                   groups))
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
            "Received: number of filters({}), groups({}).".format(num_filters,
                                                                  groups))

1248
    cudnn_version = get_cudnn_version()
Z
zhiboniu 已提交
1249
    use_cudnn = True if (is_compiled_with_cuda() and
1250 1251
                         cudnn_version is not None) else False

1252
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1253 1254
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1255 1256
    op_type = "conv3d"

L
LielinJiang 已提交
1257 1258 1259
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, op_type,
                    use_cudnn, False, name)
1260 1261


1262
def conv3d_transpose(x,
1263 1264 1265
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
1266 1267
                     padding=0,
                     output_padding=0,
1268
                     groups=1,
L
LielinJiang 已提交
1269 1270
                     dilation=1,
                     output_size=None,
1271
                     data_format='NCDHW',
1272
                     name=None):
1273
    r"""
L
LielinJiang 已提交
1274
    The convolution3d transpose layer calculates the output based on the input,
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1285
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1286 1287 1288

    For each input :math:`X`, the equation is:

1289
    ..  math::
1290

1291
        Out = \sigma (W \ast X + b)
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1316
        ..  math::
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
1334
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1335 1336

    Args:
L
LielinJiang 已提交
1337
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
1338
            of input is float32 or float64.
L
LielinJiang 已提交
1339
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1340 1341
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1342 1343
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1344
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height, 
L
LielinJiang 已提交
1345 1346
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
1347 1348 1349 1350
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1351
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1352
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1353
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1354
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1355 1356
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1357 1358
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1359
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1360 1361 1362 1363 1364
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1365
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1366
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height, 
1367 1368
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
L
LielinJiang 已提交
1369
        output_size(int|list|tuple, optional): The output image size. If output size is a
1370
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1371
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1372 1373 1374 1375
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1376 1377 1378 1379 1380
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1381
        A Tensor representing the conv3d_transpose, whose data
1382 1383 1384 1385 1386 1387 1388 1389
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.

    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1390
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1391
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1392
        ValueError: If `output_size` and kernel_size are None at the same time.
1393 1394 1395 1396 1397 1398 1399 1400
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
       .. code-block:: python
L
LielinJiang 已提交
1401 1402
          
          import paddle
1403 1404
          import paddle.nn.functional as F

1405 1406
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1407

1408
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1409
          y_np = y_var.numpy()
1410

1411
          print(y_np.shape)
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1422 1423 1424 1425
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1426
    num_channels = x.shape[channel_dim]
1427 1428 1429
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1430
            "The channel dimension of the input({}) should be defined. "
L
LielinJiang 已提交
1431
            "Received: {}.".format(x.shape, num_channels))
1432 1433 1434 1435
    if groups <= 0:
        raise ValueError(
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}".
            format(groups))
1436 1437 1438 1439 1440 1441 1442
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
            "Received: number of channels({}), groups({}).".format(num_channels,
                                                                   groups))

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1443 1444
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1445 1446 1447
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1448 1449 1450 1451
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1452
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1453 1454 1455 1456 1457 1458 1459
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1460
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1461 1462 1463 1464

    cudnn_version = get_cudnn_version()

    #TODO(LielinJiang): whether to use cudnn according to the version of cudnn
Z
zhiboniu 已提交
1465
    use_cudnn = True if (is_compiled_with_cuda() and
L
LielinJiang 已提交
1466
                         cudnn_version is not None) else False
1467 1468 1469 1470

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

Z
zhiboniu 已提交
1471
    if in_dynamic_mode():
L
LielinJiang 已提交
1472 1473 1474 1475
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'paddings', padding, "padding_algorithm", padding_algorithm,
                 'strides', stride, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, "data_format", data_format_)
W
wanghuancoder 已提交
1476
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
1477
        if bias is not None:
L
LielinJiang 已提交
1478
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1479
        else:
L
LielinJiang 已提交
1480
            out = pre_bias
1481
    else:
L
LielinJiang 已提交
1482
        inputs = {'Input': [x], 'Filter': [weight]}
1483
        attrs = {
L
LielinJiang 已提交
1484
            'output_padding': output_padding,
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            "data_format": data_format_
        }
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1495 1496
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'conv3d')
1497

L
LielinJiang 已提交
1498
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1499 1500 1501 1502 1503
        outputs = {"Output": [pre_bias]}

        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
L
LielinJiang 已提交
1504
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1505
        else:
L
LielinJiang 已提交
1506
            out = pre_bias
1507 1508

    return out