conv.py 67.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from __future__ import print_function
15
from paddle.fluid.framework import _global_flags
16

17
import numpy as np
L
LielinJiang 已提交
18
from ...device import get_cudnn_version
19 20
from ...fluid.framework import in_dygraph_mode
from ...static import Variable
21
from ...fluid import core, dygraph_utils, get_flags
22
from ...fluid.layers.utils import convert_to_list, _is_symmetric_padding
23
from ...fluid.data_feeder import check_variable_and_dtype
24
from ...framework import ParamAttr
25
from ...fluid.layer_helper import LayerHelper
W
wanghuancoder 已提交
26
from paddle import _C_ops
27 28 29
from ...tensor.manipulation import unsqueeze, squeeze
from ...tensor.math import add
from ...fluid.layers import nn
30

31 32
__all__ = []

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
            padding = _exclude_padding_in_batch_and_channel(padding,
                                                            channel_last)
76
            if _is_symmetric_padding(padding, num_dims):
77 78 79 80
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
81 82
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
83 84 85 86
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
87
            padding = convert_to_list(padding, num_dims, 'padding')
88 89 90 91 92
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
93
        padding = convert_to_list(padding, num_dims, 'padding')
94 95 96 97
    if not all([p >= 0 for p in padding]):
        raise ValueError(
            "Invalid padding, all value should be larger than or equal to 0, but received: {}".
            format(padding))
98 99 100
    return padding, padding_algorithm


L
LielinJiang 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
def _conv_nd(x,
             weight,
             bias=None,
             stride=1,
             padding=0,
             padding_algorithm=None,
             dilation=1,
             groups=1,
             data_format="NCHW",
             channel_dim=1,
             op_type="conv2d",
             use_cudnn=True,
             use_mkldnn=False,
             name=None):

116
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
L
LielinJiang 已提交
117 118 119 120 121 122
    if in_dygraph_mode():
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn',
                 use_mkldnn, 'fuse_relu_before_depthwise_conv', False,
                 "padding_algorithm", padding_algorithm, "data_format",
                 data_format)
W
wanghuancoder 已提交
123
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format
        }
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 op_type)
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': channel_dim,
                       'use_mkldnn': use_mkldnn})
        else:
            out = pre_bias
    return out


W
whs 已提交
163 164 165 166 167 168 169 170 171
def conv1d(x,
           weight,
           bias=None,
           stride=1,
           padding=0,
           dilation=1,
           groups=1,
           data_format='NCL',
           name=None):
172
    r"""
W
whs 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
188
        Out = \sigma (W \ast X + b)
W
whs 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
215
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
216 217 218 219 220 221 222

    Args:
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type 
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
            the number of output channels, g is the number of groups, K is the kernel's size. 
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
223
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
224
            contain one integers, (stride_size). Default: 1.
225
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
226 227 228 229 230 231
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
232
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A tensor representing the conv1d, whose data type is the 
        same with input.

    Raises:
252
        ValueError: If the channel dimension of the input is less than or equal to zero.
W
whs 已提交
253 254
        ValueError: If `data_format` is not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
255
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
W
whs 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
L
LielinJiang 已提交
279
          
W
whs 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv1d(x_var, w_var)
          y_np = y_var.numpy()
          print(y_np)
          
          # [[[133. 238.]
          #   [160. 211.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
        raise ValueError("Attr(data_format) should be 'NCL' or 'NLC'. "
                         "Received Attr(data_format): {}.".format(data_format))

L
LielinJiang 已提交
299
    channel_last = (data_format == "NLC")
W
whs 已提交
300 301
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
302 303 304 305
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
W
whs 已提交
306 307 308
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
309
        raise ValueError("The channel dimension of the input({}) "
W
whs 已提交
310 311
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
312 313 314 315
    if groups <= 0:
        raise ValueError(
            "The groups of conv1d should be greater than 0. Received groups: {}".
            format(groups))
W
whs 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
329

W
whs 已提交
330
    if len(padding) == 2:
331
        padding = [0] * 2 + padding
W
whs 已提交
332
    elif len(padding) == 1:
333
        padding = [0] + padding
W
whs 已提交
334 335
    else:
        raise ValueError(
336
            "The size of padding's dimension should be 1 or 2. But got padding={}".
W
whs 已提交
337
            format(padding))
338 339 340
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
341 342

    l_type = "conv2d"
343 344 345 346

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
    if (core.is_compiled_with_cuda() and num_channels == groups and
            num_channels != 1 and num_filters % num_channels == 0):
W
whs 已提交
347 348 349
        l_type = 'depthwise_conv2d'
        use_cudnn = False

350 351 352 353 354 355 356
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
    if core.is_compiled_with_npu():
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

357
    squeeze_aixs = -3 if channel_last else -2
358
    x = unsqueeze(x, axis=[squeeze_aixs])
359

W
whs 已提交
360 361 362 363 364
    if in_dygraph_mode():
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
                 'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
                 padding_algorithm, "data_format", conv2d_data_format)
W
wanghuancoder 已提交
365
        out = getattr(_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d')
        helper = LayerHelper(l_type, **locals())
384
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
385 386 387 388 389 390
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
391
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
392 393 394
    return out


395
def conv2d(x,
396 397 398
           weight,
           bias=None,
           stride=1,
399
           padding=0,
400 401 402 403
           dilation=1,
           groups=1,
           data_format="NCHW",
           name=None):
404
    r"""
S
swtkiwi 已提交
405

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

423
    ..  math::
424

425
        Out = \sigma (W \ast X + b)
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

450
        ..  math::
451

452 453
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
454 455

    Args:
456
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type 
457
            of input is float16 or float32 or float64.
458
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
459 460
            the number of output channels, g is the number of groups, kH is the filter's
            height, kW is the filter's width. 
461
        bias (Tensor, optional): The bias with shape [M,].
462 463
        stride (int|list|tuple): The stride size. It means the stride in convolution. 
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
464
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
465 466 467 468 469 470 471
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
472
            when `data_format` is `"NHWC"`, `padding` can be in the form
473 474
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
475 476
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height, 
477 478
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
479
        groups (int): The groups number of the Conv2D Layer. According to grouped
480 481 482 483 484 485 486 487 488 489 490 491 492
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
493
        A Tensor representing the conv2d result, whose data type is the same with input. 
494 495 496

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
497
        ValueError: If the channel dimension of the input is less than or equal to zero.
498
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
499
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
500 501 502 503 504 505 506 507 508 509
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

510
          import paddle
511 512
          import paddle.nn.functional as F

513 514
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
515 516 517 518

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

519 520 521 522 523 524 525 526 527 528
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
                         "Received Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
529 530 531 532
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
533
    num_channels = x.shape[channel_dim]
534 535
    num_filters = weight.shape[0]
    if num_channels < 0:
536
        raise ValueError("The channel dimension of the input({}) "
537
                         "should be defined. Received: {}.".format(
538
                             x.shape, num_channels))
539 540 541 542
    if groups <= 0:
        raise ValueError(
            "The groups of conv2d should be greater than 0. Received groups: {}".
            format(groups))
543 544 545 546
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
547
            ", the groups is {}".format(num_channels, x.shape, groups))
548 549 550 551 552 553
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

554 555 556 557 558
    cudnn_version = get_cudnn_version()

    use_cudnn = True if (core.is_compiled_with_cuda() and
                         cudnn_version is not None) else False

559
    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
L
LielinJiang 已提交
560

561 562
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
563 564
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
565 566

    l_type = "conv2d"
L
LielinJiang 已提交
567 568
    if (num_channels == groups and num_channels != 1 and
            num_filters % num_channels == 0):
569
        l_type = 'depthwise_conv2d'
570 571 572 573 574
        if core.is_compiled_with_rocm():
            use_cudnn = True
        else:
            use_cudnn = False

575 576 577 578 579 580 581
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
    if core.is_compiled_with_npu():
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

582 583
    if (core.is_compiled_with_cuda() and get_flags("FLAGS_conv2d_disable_cudnn")
        ["FLAGS_conv2d_disable_cudnn"]):
584
        use_cudnn = False
585

L
LielinJiang 已提交
586 587 588
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, l_type,
                    use_cudnn, use_mkldnn, name)
589 590


591
def conv1d_transpose(x,
592 593 594 595 596 597 598 599 600 601
                     weight,
                     bias=None,
                     stride=1,
                     padding=0,
                     output_padding=0,
                     groups=1,
                     dilation=1,
                     output_size=None,
                     data_format="NCL",
                     name=None):
602
    r"""
603 604 605 606 607 608 609 610 611 612 613 614 615 616
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
617
        Out = \sigma (W \ast X + b)
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
653
          and :math:`L^\prime_{out} + stride`.
654 655 656 657 658 659 660 661 662

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
663
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
664 665 666 667 668 669 670
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
671
             If it is a list/tuple, it must contain one integer. Default: 0.
672 673 674 675 676 677 678
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
679
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
680 681
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
682
            tuple/list, it must contain one integer, `(feature_length)`. None if use
683
            filter_size(shape of weight), padding, and stride to calculate output_size.
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Raises:
        ValueError: If `data_format` is a string, but not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
701
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ValueError: If `output_padding` is greater than `stride`.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python



          import paddle
          import paddle.nn.functional as F
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2,]]]).astype(np.float32)
          # shape: (2, 1, 2)
W
whs 已提交
724
          w=np.array([[[7, 0]],
725 726 727
                      [[4, 2]]]).astype(np.float32)
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
728
          y_var = F.conv1d_transpose(x_var, w_var)
W
whs 已提交
729
          print(y_var)
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
          
          # [[[60. 16. 99. 75.  4.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
                data_format))
    channel_last = (data_format == "NLC")
    channel_dim = -1 if channel_last else 1
746 747 748 749
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
750 751 752

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
753
        raise ValueError("The channel dimension of the input({}) "
754 755
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
756 757 758 759
    if groups <= 0:
        raise ValueError(
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}".
            format(groups))
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
775
            "The size of padding's dimension should 1 or 2. But got padding={}".
776 777
            format(padding))

778 779
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
780 781 782 783

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
784 785 786 787
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
788
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
789 790 791 792 793 794 795
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
796 797
        output_padding = convert_to_list(output_padding, 1,
                                         'output_padding') + [0]
L
LielinJiang 已提交
798 799 800 801 802 803

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
            "But got output_padding={} and stride={}".format(output_padding[0],
                                                             stride[0]))
804 805 806

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
807 808
    if (num_channels == groups and num_channels != 1 and num_filters == 1 and
            not use_cudnn):
809 810 811 812 813 814
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

815 816
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
817 818

    if in_dygraph_mode():
L
LielinJiang 已提交
819 820 821 822
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', conv2d_data_format)
W
wanghuancoder 已提交
823
        out = getattr(_C_ops, op_type)(x, weight, *attrs)
824 825 826 827 828
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
829
            'output_padding': output_padding,
830 831 832 833 834 835 836 837 838 839 840 841
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
842
        dtype = helper.input_dtype(input_param_name='x')
843 844 845 846 847 848 849
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

850
    out = squeeze(out, axis=[squeeze_axis])
851 852 853
    return out


854
def conv2d_transpose(x,
855 856 857
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
858 859 860
                     padding=0,
                     output_padding=0,
                     dilation=1,
861
                     groups=1,
L
LielinJiang 已提交
862
                     output_size=None,
863
                     data_format='NCHW',
864
                     name=None):
865
    r"""
S
swtkiwi 已提交
866

867 868 869 870 871 872 873 874 875 876 877
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
878
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
879 880 881

    For each input :math:`X`, the equation is:

882
    ..  math::
883

884
        Out = \sigma (W \ast X + b)
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

909
        ..  math::
910 911 912 913 914 915 916 917 918 919 920 921 922

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
923
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
924 925

    Args:
L
LielinJiang 已提交
926
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
927
            whose data type is float32 or float64.
L
LielinJiang 已提交
928
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
929 930
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
931 932
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
933
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
L
LielinJiang 已提交
934
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
935 936 937 938 939
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or 
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or 
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
940
            and when `data_format` is `"NCHW"`, `padding` can be in the form 
941
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
942
            when `data_format` is `"NHWC"`, `padding` can be in the form 
943 944
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
945 946
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
947
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
948 949 950 951 952
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
953
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
954
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width). 
955
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
956
        output_size(int|tuple|list, optional): The output image size. If output size is a
957
            tuple/list, it must contain two integers, (image_height, image_width). None if use
958
            filter_size(shape of weight), padding, and stride to calculate output_size.
959 960 961 962 963 964 965 966 967
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
968
        A Tensor representing the conv2d_transpose, whose
969
        data type is the same with input and shape is (num_batches, channels, out_h, 
L
LielinJiang 已提交
970 971
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing 
        transposed convolution result.
972 973 974 975

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
976
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
977
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
978
        ValueError: If `output_size` and kernel_size are None at the same time.
979 980 981 982 983 984 985 986 987
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
988 989
          import paddle
          import paddle.nn.functional as F
990

991 992
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
993

994
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
995
          y_np = y_var.numpy()
996

997
          print(y_np.shape)
998 999 1000 1001 1002 1003 1004 1005 1006 1007
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
                data_format))
    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
1008 1009 1010 1011
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1012
    num_channels = x.shape[channel_dim]
1013
    if num_channels < 0:
1014
        raise ValueError("The channel dimension of the input({}) "
1015
                         "should be defined. Received: {}.".format(
L
LielinJiang 已提交
1016
                             x.shape, num_channels))
1017 1018 1019 1020
    if groups <= 0:
        raise ValueError(
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}".
            format(groups))
1021 1022 1023 1024
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
L
LielinJiang 已提交
1025 1026 1027 1028 1029 1030
            ", the groups is {}".format(num_channels, x.shape, groups))

    cudnn_version = get_cudnn_version()

    use_cudnn = True if (core.is_compiled_with_cuda() and
                         cudnn_version is not None) else False
1031 1032 1033

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1034 1035
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1036

1037 1038 1039
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1040 1041 1042 1043
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1044
            output_size = convert_to_list(output_size, 2, 'output_size')
L
LielinJiang 已提交
1045 1046 1047 1048 1049 1050 1051
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1052
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1053 1054 1055

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
1056
    if (num_channels == groups and num_channels != 1 and num_filters == 1):
1057
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1058
        use_cudnn = False
1059 1060

    if in_dygraph_mode():
L
LielinJiang 已提交
1061 1062 1063 1064
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', data_format)
W
wanghuancoder 已提交
1065
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
1066
        if bias is not None:
L
LielinJiang 已提交
1067
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1068
        else:
L
LielinJiang 已提交
1069
            out = pre_bias
1070
    else:
L
LielinJiang 已提交
1071
        inputs = {'Input': [x], 'Filter': [weight]}
1072
        attrs = {
L
LielinJiang 已提交
1073
            'output_padding': output_padding,
1074 1075 1076 1077 1078 1079 1080 1081 1082
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        }
L
LielinJiang 已提交
1083
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1084 1085
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1086
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1087 1088 1089
        outputs = {"Output": [pre_bias]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
L
LielinJiang 已提交
1090

1091
        if bias is not None:
L
LielinJiang 已提交
1092
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1093
        else:
L
LielinJiang 已提交
1094 1095
            out = pre_bias

1096 1097 1098
    return out


1099
def conv3d(x,
1100 1101 1102
           weight,
           bias=None,
           stride=1,
1103
           padding=0,
1104 1105 1106 1107
           dilation=1,
           groups=1,
           data_format="NCDHW",
           name=None):
1108
    r"""
S
swtkiwi 已提交
1109

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1121
    ..  math::
1122

1123
        Out = \sigma (W \ast X + b)
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1147
        ..  math::
1148 1149 1150 1151 1152 1153

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1154
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
1155
            type of input is float16 or float32 or float64.
1156
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1157 1158
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1159
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1160 1161
        stride (int|list|tuple): The stride size. It means the stride in convolution. If stride is a 
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
1162
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1163 1164 1165 1166 1167
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1168
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1169
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1170
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1171 1172
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1173 1174
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1175 1176
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
1177
        groups (int): The groups number of the Conv3D Layer. According to grouped
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1191
        A Tensor representing the conv3d, whose data type is 
1192 1193
        the same with input. If act is None, the tensor storing the 
        convolution result, and if act is not None, the tensor storing 
1194 1195 1196 1197 1198
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1199 1200
            import paddle
            import paddle.nn.functional as F
1201

1202 1203
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1204

1205 1206
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1207

1208
            print(y_np.shape)
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1219 1220 1221 1222
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
1223
    num_channels = x.shape[channel_dim]
1224 1225 1226
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1227
            "The channel dimension of the input({}) should be defined. "
1228
            "Received: {}.".format(x.shape, num_channels))
1229 1230 1231 1232
    if groups <= 0:
        raise ValueError(
            "The groups of conv3d should be greater than 0. Received groups: {}".
            format(groups))
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
            "Received: number of channels({}), groups({}).".format(num_channels,
                                                                   groups))
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
            "Received: number of filters({}), groups({}).".format(num_filters,
                                                                  groups))

1244 1245 1246 1247
    cudnn_version = get_cudnn_version()
    use_cudnn = True if (core.is_compiled_with_cuda() and
                         cudnn_version is not None) else False

1248
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1249 1250
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1251 1252
    op_type = "conv3d"

L
LielinJiang 已提交
1253 1254 1255
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, op_type,
                    use_cudnn, False, name)
1256 1257


1258
def conv3d_transpose(x,
1259 1260 1261
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
1262 1263
                     padding=0,
                     output_padding=0,
1264
                     groups=1,
L
LielinJiang 已提交
1265 1266
                     dilation=1,
                     output_size=None,
1267
                     data_format='NCDHW',
1268
                     name=None):
1269
    r"""
L
LielinJiang 已提交
1270
    The convolution3d transpose layer calculates the output based on the input,
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1281
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1282 1283 1284

    For each input :math:`X`, the equation is:

1285
    ..  math::
1286

1287
        Out = \sigma (W \ast X + b)
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1312
        ..  math::
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
1330
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1331 1332

    Args:
L
LielinJiang 已提交
1333
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
1334
            of input is float32 or float64.
L
LielinJiang 已提交
1335
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1336 1337
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1338 1339
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1340
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height, 
L
LielinJiang 已提交
1341 1342
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
1343 1344 1345 1346
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1347
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1348
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1349
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1350
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1351 1352
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1353 1354
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1355
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1356 1357 1358 1359 1360
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1361
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1362
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height, 
1363 1364
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
L
LielinJiang 已提交
1365
        output_size(int|list|tuple, optional): The output image size. If output size is a
1366
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1367
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1368 1369 1370 1371
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1372 1373 1374 1375 1376
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1377
        A Tensor representing the conv3d_transpose, whose data
1378 1379 1380 1381 1382 1383 1384 1385
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.

    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1386
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1387
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1388
        ValueError: If `output_size` and kernel_size are None at the same time.
1389 1390 1391 1392 1393 1394 1395 1396
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
       .. code-block:: python
L
LielinJiang 已提交
1397 1398
          
          import paddle
1399 1400
          import paddle.nn.functional as F

1401 1402
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1403

1404
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1405
          y_np = y_var.numpy()
1406

1407
          print(y_np.shape)
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1418 1419 1420 1421
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1422
    num_channels = x.shape[channel_dim]
1423 1424 1425
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1426
            "The channel dimension of the input({}) should be defined. "
L
LielinJiang 已提交
1427
            "Received: {}.".format(x.shape, num_channels))
1428 1429 1430 1431
    if groups <= 0:
        raise ValueError(
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}".
            format(groups))
1432 1433 1434 1435 1436 1437 1438
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
            "Received: number of channels({}), groups({}).".format(num_channels,
                                                                   groups))

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1439 1440
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1441 1442 1443
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1444 1445 1446 1447
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1448
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1449 1450 1451 1452 1453 1454 1455
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1456
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1457 1458 1459 1460 1461 1462

    cudnn_version = get_cudnn_version()

    #TODO(LielinJiang): whether to use cudnn according to the version of cudnn
    use_cudnn = True if (core.is_compiled_with_cuda() and
                         cudnn_version is not None) else False
1463 1464 1465 1466 1467

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

    if in_dygraph_mode():
L
LielinJiang 已提交
1468 1469 1470 1471
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'paddings', padding, "padding_algorithm", padding_algorithm,
                 'strides', stride, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, "data_format", data_format_)
W
wanghuancoder 已提交
1472
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
1473
        if bias is not None:
L
LielinJiang 已提交
1474
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1475
        else:
L
LielinJiang 已提交
1476
            out = pre_bias
1477
    else:
L
LielinJiang 已提交
1478
        inputs = {'Input': [x], 'Filter': [weight]}
1479
        attrs = {
L
LielinJiang 已提交
1480
            'output_padding': output_padding,
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            "data_format": data_format_
        }
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1491 1492
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'conv3d')
1493

L
LielinJiang 已提交
1494
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1495 1496 1497 1498 1499
        outputs = {"Output": [pre_bias]}

        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
L
LielinJiang 已提交
1500
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1501
        else:
L
LielinJiang 已提交
1502
            out = pre_bias
1503 1504

    return out