conv.py 72.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from __future__ import print_function
15

16
import numpy as np
L
LielinJiang 已提交
17
from ...device import get_cudnn_version
18
from ...static import Variable
Z
zhiboniu 已提交
19
from ...fluid import dygraph_utils
20
from ...fluid.layers.utils import convert_to_list, _is_symmetric_padding
21
from ...fluid.data_feeder import check_variable_and_dtype
22
from ...framework import ParamAttr
23
from ...fluid.layer_helper import LayerHelper
24 25 26
from ...tensor.manipulation import unsqueeze, squeeze
from ...tensor.math import add
from ...fluid.layers import nn
F
From00 已提交
27 28 29
from paddle import _C_ops
from paddle import get_flags
from paddle import in_dynamic_mode
Z
zhiboniu 已提交
30 31
from paddle.device import is_compiled_with_cuda
from paddle.device import is_compiled_with_npu
H
hong 已提交
32 33
from paddle import in_dynamic_mode
from paddle import get_flags
F
From00 已提交
34 35 36 37
from paddle.device import is_compiled_with_rocm
from paddle.fluid.framework import _global_flags
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
38

39 40
__all__ = []

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
82 83
            padding = _exclude_padding_in_batch_and_channel(
                padding, channel_last)
84
            if _is_symmetric_padding(padding, num_dims):
85 86 87 88
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
89 90
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
91 92 93 94
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
95
            padding = convert_to_list(padding, num_dims, 'padding')
96 97 98 99 100
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
101
        padding = convert_to_list(padding, num_dims, 'padding')
102 103
    if not all([p >= 0 for p in padding]):
        raise ValueError(
104 105
            "Invalid padding, all value should be larger than or equal to 0, but received: {}"
            .format(padding))
106 107 108
    return padding, padding_algorithm


L
LielinJiang 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def _conv_nd(x,
             weight,
             bias=None,
             stride=1,
             padding=0,
             padding_algorithm=None,
             dilation=1,
             groups=1,
             data_format="NCHW",
             channel_dim=1,
             op_type="conv2d",
             use_cudnn=True,
             use_mkldnn=False,
             name=None):

124
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
125
    if in_dygraph_mode() and op_type == "conv2d":
126 127 128 129
        pre_bias = _C_ops.final_state_conv2d(x, weight, stride, padding,
                                             padding_algorithm, groups,
                                             dilation, data_format, False, -1,
                                             False)
H
hong 已提交
130
        if bias is not None:
131 132
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
133 134 135 136
            if isinstance(x, tuple):
                x = x[0]
            if isinstance(bias, tuple):
                bias = bias[0]
C
Chen Weihang 已提交
137 138 139 140 141 142 143
            if len(bias.shape) < len(x.shape):
                tmp_bias = _C_ops.final_state_reshape(
                    bias, bias.shape +
                    [1 for i in range(len(x.shape) - channel_dim - 1)])
                return _C_ops.final_state_add(pre_bias, tmp_bias)
            else:
                return _C_ops.final_state_add(pre_bias, bias)
H
hong 已提交
144 145
        else:
            return pre_bias
146 147 148 149

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
        pre_bias = _C_ops.final_state_depthwise_conv2d(
            x, weight, stride, padding, padding_algorithm, groups, dilation,
150
            data_format, False, -1, False, False, use_cudnn)
151 152 153 154
        if bias is not None:
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
            tmp_bias = _C_ops.final_state_reshape(
155 156
                bias,
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)])
157 158 159 160 161
            return _C_ops.final_state_add(pre_bias, tmp_bias)
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
162 163 164 165
        pre_bias = _C_ops.final_state_conv3d(x, weight, stride, padding,
                                             padding_algorithm, groups,
                                             dilation, data_format, False, -1,
                                             False)
166 167 168 169
        if bias is not None:
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
            tmp_bias = _C_ops.final_state_reshape(
170 171
                bias,
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)])
172 173 174 175
            return _C_ops.final_state_add(pre_bias, tmp_bias)
        else:
            return pre_bias

Z
zhiboniu 已提交
176
    if in_dynamic_mode():
L
LielinJiang 已提交
177 178 179 180 181
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn',
                 use_mkldnn, 'fuse_relu_before_depthwise_conv', False,
                 "padding_algorithm", padding_algorithm, "data_format",
                 data_format)
W
wanghuancoder 已提交
182
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format
        }
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 op_type)
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
206 207 208 209
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
L
LielinJiang 已提交
210 211
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
212 213 214 215 216 217 218 219 220 221
            helper.append_op(type='elementwise_add',
                             inputs={
                                 'X': [pre_bias],
                                 'Y': [bias]
                             },
                             outputs={'Out': [out]},
                             attrs={
                                 'axis': channel_dim,
                                 'use_mkldnn': use_mkldnn
                             })
L
LielinJiang 已提交
222 223 224 225 226
        else:
            out = pre_bias
    return out


W
whs 已提交
227 228 229 230 231 232 233 234 235
def conv1d(x,
           weight,
           bias=None,
           stride=1,
           padding=0,
           dilation=1,
           groups=1,
           data_format='NCL',
           name=None):
236
    r"""
W
whs 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
252
        Out = \sigma (W \ast X + b)
W
whs 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
279
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
280 281 282 283 284 285 286

    Args:
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type 
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
            the number of output channels, g is the number of groups, K is the kernel's size. 
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
287
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
288
            contain one integers, (stride_size). Default: 1.
289
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
290 291 292 293 294 295
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
296
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A tensor representing the conv1d, whose data type is the 
        same with input.

    Raises:
316
        ValueError: If the channel dimension of the input is less than or equal to zero.
W
whs 已提交
317 318
        ValueError: If `data_format` is not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
319
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
W
whs 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
L
LielinJiang 已提交
343
          
W
whs 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv1d(x_var, w_var)
          y_np = y_var.numpy()
          print(y_np)
          
          # [[[133. 238.]
          #   [160. 211.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
        raise ValueError("Attr(data_format) should be 'NCL' or 'NLC'. "
                         "Received Attr(data_format): {}.".format(data_format))

L
LielinJiang 已提交
363
    channel_last = (data_format == "NLC")
W
whs 已提交
364 365
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
366 367 368 369
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
W
whs 已提交
370 371 372
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
373
        raise ValueError("The channel dimension of the input({}) "
W
whs 已提交
374 375
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
376 377
    if groups <= 0:
        raise ValueError(
378 379
            "The groups of conv1d should be greater than 0. Received groups: {}"
            .format(groups))
W
whs 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
393

W
whs 已提交
394
    if len(padding) == 2:
395
        padding = [0] * 2 + padding
W
whs 已提交
396
    elif len(padding) == 1:
397
        padding = [0] + padding
W
whs 已提交
398 399
    else:
        raise ValueError(
400 401
            "The size of padding's dimension should be 1 or 2. But got padding={}"
            .format(padding))
402 403 404
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
405 406

    l_type = "conv2d"
407 408

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
409 410
    if (is_compiled_with_cuda() and num_channels == groups and num_channels != 1
            and num_filters % num_channels == 0):
W
whs 已提交
411 412 413
        l_type = 'depthwise_conv2d'
        use_cudnn = False

414
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
415
    if is_compiled_with_npu():
416 417 418 419 420
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

421
    squeeze_aixs = -3 if channel_last else -2
422
    x = unsqueeze(x, axis=[squeeze_aixs])
423

424 425 426 427 428 429 430 431 432
    if in_dygraph_mode():
        l_type = "final_state_" + l_type
        out = getattr(_C_ops,
                      l_type)(x, weight, stride, padding, padding_algorithm,
                              groups, dilation, conv2d_data_format, False, -1,
                              False, False, use_cudnn)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
W
whs 已提交
433 434 435 436
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
                 'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
                 padding_algorithm, "data_format", conv2d_data_format)
W
wanghuancoder 已提交
437
        out = getattr(_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d')
        helper = LayerHelper(l_type, **locals())
456
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
457 458
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
459 460 461 462
        helper.append_op(type=l_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
W
whs 已提交
463 464
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
465
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
466 467 468
    return out


469
def conv2d(x,
470 471 472
           weight,
           bias=None,
           stride=1,
473
           padding=0,
474 475 476 477
           dilation=1,
           groups=1,
           data_format="NCHW",
           name=None):
478
    r"""
S
swtkiwi 已提交
479

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

497
    ..  math::
498

499
        Out = \sigma (W \ast X + b)
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

524
        ..  math::
525

526 527
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
528 529

    Args:
530
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type 
531
            of input is float16 or float32 or float64.
532
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
533 534
            the number of output channels, g is the number of groups, kH is the filter's
            height, kW is the filter's width. 
535
        bias (Tensor, optional): The bias with shape [M,].
536 537
        stride (int|list|tuple): The stride size. It means the stride in convolution. 
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
538
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
539 540 541 542 543 544 545
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
546
            when `data_format` is `"NHWC"`, `padding` can be in the form
547 548
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
549 550
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height, 
551 552
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
553
        groups (int): The groups number of the Conv2D Layer. According to grouped
554 555 556 557 558 559 560 561 562 563 564 565 566
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
567
        A Tensor representing the conv2d result, whose data type is the same with input. 
568 569 570

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
571
        ValueError: If the channel dimension of the input is less than or equal to zero.
572
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
573
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
574 575 576 577 578 579 580 581 582 583
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

584
          import paddle
585 586
          import paddle.nn.functional as F

587 588
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
589 590 591 592

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

593 594 595 596 597 598 599 600 601 602
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
                         "Received Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
603 604 605 606
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
607
    num_channels = x.shape[channel_dim]
608 609
    num_filters = weight.shape[0]
    if num_channels < 0:
610
        raise ValueError("The channel dimension of the input({}) "
611
                         "should be defined. Received: {}.".format(
612
                             x.shape, num_channels))
613 614
    if groups <= 0:
        raise ValueError(
615 616
            "The groups of conv2d should be greater than 0. Received groups: {}"
            .format(groups))
617 618 619 620
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
621
            ", the groups is {}".format(num_channels, x.shape, groups))
622 623 624 625 626 627
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

628 629
    cudnn_version = get_cudnn_version()

630 631
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
632

633 634
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
635 636
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
637 638

    l_type = "conv2d"
639 640
    if (num_channels == groups and num_channels != 1
            and num_filters % num_channels == 0):
641
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
642
        if is_compiled_with_rocm():
643 644 645
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
646 647
    else:
        if in_dygraph_mode():
648 649 650 651
            pre_bias = _C_ops.final_state_conv2d(x, weight, stride, padding,
                                                 padding_algorithm, groups,
                                                 dilation, data_format, False,
                                                 -1, False)
H
hong 已提交
652 653 654 655 656 657 658
            if bias is not None:
                out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
                return out
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
659

660
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
661
    if is_compiled_with_npu():
662 663 664 665 666
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

667 668
    if (is_compiled_with_cuda() and get_flags("FLAGS_conv2d_disable_cudnn")
        ["FLAGS_conv2d_disable_cudnn"]):
669
        use_cudnn = False
670

L
LielinJiang 已提交
671 672 673
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, l_type,
                    use_cudnn, use_mkldnn, name)
674 675


676
def conv1d_transpose(x,
677 678 679 680 681 682 683 684 685 686
                     weight,
                     bias=None,
                     stride=1,
                     padding=0,
                     output_padding=0,
                     groups=1,
                     dilation=1,
                     output_size=None,
                     data_format="NCL",
                     name=None):
687
    r"""
688 689 690 691 692 693 694 695 696 697 698 699 700 701
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
702
        Out = \sigma (W \ast X + b)
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
738
          and :math:`L^\prime_{out} + stride`.
739 740 741 742 743 744 745 746 747

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
748
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
749 750 751 752 753 754 755
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
756
             If it is a list/tuple, it must contain one integer. Default: 0.
757 758 759 760 761 762 763
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
764
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
765 766
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
767
            tuple/list, it must contain one integer, `(feature_length)`. None if use
768
            filter_size(shape of weight), padding, and stride to calculate output_size.
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Raises:
        ValueError: If `data_format` is a string, but not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
786
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ValueError: If `output_padding` is greater than `stride`.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python



          import paddle
          import paddle.nn.functional as F
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2,]]]).astype(np.float32)
          # shape: (2, 1, 2)
W
whs 已提交
809
          w=np.array([[[7, 0]],
810 811 812
                      [[4, 2]]]).astype(np.float32)
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
813
          y_var = F.conv1d_transpose(x_var, w_var)
W
whs 已提交
814
          print(y_var)
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
          
          # [[[60. 16. 99. 75.  4.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
                data_format))
    channel_last = (data_format == "NLC")
    channel_dim = -1 if channel_last else 1
831 832 833 834
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
835 836 837

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
838
        raise ValueError("The channel dimension of the input({}) "
839 840
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
841 842
    if groups <= 0:
        raise ValueError(
843 844
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
860
            "The size of padding's dimension should 1 or 2. But got padding={}".
861 862
            format(padding))

863 864
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
865 866 867 868

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
869 870 871 872
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
873
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
874 875 876 877 878 879 880
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
881 882
        output_padding = convert_to_list(output_padding, 1,
                                         'output_padding') + [0]
L
LielinJiang 已提交
883 884 885 886

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
887 888
            "But got output_padding={} and stride={}".format(
                output_padding[0], stride[0]))
889 890 891

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
892 893
    if (num_channels == groups and num_channels != 1 and num_filters == 1
            and not use_cudnn):
894 895 896 897 898 899
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

900 901
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
902

903 904 905 906 907 908 909 910 911
    if in_dygraph_mode():
        op_type = "final_state_" + op_type
        out = getattr(_C_ops,
                      op_type)(x, weight, stride, padding, output_padding,
                               output_size, padding_algorithm, groups, dilation,
                               conv2d_data_format)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
L
LielinJiang 已提交
912 913 914 915
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', conv2d_data_format)
W
wanghuancoder 已提交
916
        out = getattr(_C_ops, op_type)(x, weight, *attrs)
917 918 919 920 921
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
922
            'output_padding': output_padding,
923 924 925 926 927 928 929 930 931 932 933 934
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
935
        dtype = helper.input_dtype(input_param_name='x')
936 937
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
938 939 940 941
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
942 943 944
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

945
    out = squeeze(out, axis=[squeeze_axis])
946 947 948
    return out


949
def conv2d_transpose(x,
950 951 952
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
953 954 955
                     padding=0,
                     output_padding=0,
                     dilation=1,
956
                     groups=1,
L
LielinJiang 已提交
957
                     output_size=None,
958
                     data_format='NCHW',
959
                     name=None):
960
    r"""
S
swtkiwi 已提交
961

962 963 964 965 966 967 968 969 970 971 972
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
973
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
974 975 976

    For each input :math:`X`, the equation is:

977
    ..  math::
978

979
        Out = \sigma (W \ast X + b)
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

1004
        ..  math::
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
1018
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
1019 1020

    Args:
L
LielinJiang 已提交
1021
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
1022
            whose data type is float32 or float64.
L
LielinJiang 已提交
1023
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
1024 1025
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
1026 1027
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1028
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
L
LielinJiang 已提交
1029
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
1030 1031 1032 1033 1034
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or 
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or 
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1035
            and when `data_format` is `"NCHW"`, `padding` can be in the form 
1036
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1037
            when `data_format` is `"NHWC"`, `padding` can be in the form 
1038 1039
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1040 1041
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1042
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1043 1044 1045 1046 1047
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1048
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1049
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width). 
1050
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1051
        output_size(int|tuple|list, optional): The output image size. If output size is a
1052
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1053
            filter_size(shape of weight), padding, and stride to calculate output_size.
1054 1055 1056 1057 1058 1059 1060 1061 1062
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1063
        A Tensor representing the conv2d_transpose, whose
1064
        data type is the same with input and shape is (num_batches, channels, out_h, 
L
LielinJiang 已提交
1065 1066
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing 
        transposed convolution result.
1067 1068 1069 1070

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1071
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1072
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1073
        ValueError: If `output_size` and kernel_size are None at the same time.
1074 1075 1076 1077 1078 1079 1080 1081 1082
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1083 1084
          import paddle
          import paddle.nn.functional as F
1085

1086 1087
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1088

1089
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1090
          y_np = y_var.numpy()
1091

1092
          print(y_np.shape)
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
                data_format))
    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
1103 1104 1105 1106
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1107
    num_channels = x.shape[channel_dim]
1108
    if num_channels < 0:
1109
        raise ValueError("The channel dimension of the input({}) "
1110
                         "should be defined. Received: {}.".format(
L
LielinJiang 已提交
1111
                             x.shape, num_channels))
1112 1113
    if groups <= 0:
        raise ValueError(
1114 1115
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
1116 1117 1118 1119
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
L
LielinJiang 已提交
1120 1121 1122 1123
            ", the groups is {}".format(num_channels, x.shape, groups))

    cudnn_version = get_cudnn_version()

1124 1125
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1126 1127 1128

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1129 1130
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1131

1132 1133 1134
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1135 1136 1137 1138
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1139
            output_size = convert_to_list(output_size, 2, 'output_size')
L
LielinJiang 已提交
1140 1141 1142 1143 1144 1145 1146
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1147
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1148 1149 1150

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
1151
    if (num_channels == groups and num_channels != 1 and num_filters == 1):
1152
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1153
        use_cudnn = False
1154

F
From00 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
    if in_dygraph_mode():
        final_state_op = _C_ops.final_state_conv2d_transpose if op_type == 'conv2d_transpose' else _C_ops.final_state_depthwise_conv2d_transpose
        pre_bias = final_state_op(x, weight, stride, padding, output_padding,
                                  output_size, padding_algorithm, groups,
                                  dilation, data_format)
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1166 1167 1168 1169
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', data_format)
W
wanghuancoder 已提交
1170
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
1171
        if bias is not None:
L
LielinJiang 已提交
1172
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1173
        else:
L
LielinJiang 已提交
1174
            out = pre_bias
1175
    else:
L
LielinJiang 已提交
1176
        inputs = {'Input': [x], 'Filter': [weight]}
1177
        attrs = {
L
LielinJiang 已提交
1178
            'output_padding': output_padding,
1179 1180 1181 1182 1183 1184 1185 1186 1187
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        }
L
LielinJiang 已提交
1188
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1189 1190
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1191
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1192
        outputs = {"Output": [pre_bias]}
1193 1194 1195 1196
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
L
LielinJiang 已提交
1197

1198
        if bias is not None:
L
LielinJiang 已提交
1199
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1200
        else:
L
LielinJiang 已提交
1201 1202
            out = pre_bias

1203 1204 1205
    return out


1206
def conv3d(x,
1207 1208 1209
           weight,
           bias=None,
           stride=1,
1210
           padding=0,
1211 1212 1213 1214
           dilation=1,
           groups=1,
           data_format="NCDHW",
           name=None):
1215
    r"""
S
swtkiwi 已提交
1216

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1228
    ..  math::
1229

1230
        Out = \sigma (W \ast X + b)
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1254
        ..  math::
1255 1256 1257 1258 1259 1260

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1261
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
1262
            type of input is float16 or float32 or float64.
1263
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1264 1265
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1266
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1267
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a 
1268
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
1269
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1270
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
1271 1272 1273 1274
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1275
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1276
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1277
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1278 1279
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1280
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1281
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1282 1283
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
1284
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1285 1286 1287 1288 1289
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
1290 1291 1292 1293
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str|None, optional): For detailed information, please refer 
1294 1295 1296 1297
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1298
        A Tensor representing the conv3d, whose data type is 
1299 1300
        the same with input. If act is None, the tensor storing the 
        convolution result, and if act is not None, the tensor storing 
1301 1302 1303 1304 1305
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1306 1307
            import paddle
            import paddle.nn.functional as F
1308

1309 1310
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1311

1312 1313
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1314

1315
            print(y_np.shape)
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1326 1327 1328 1329
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
1330
    num_channels = x.shape[channel_dim]
1331 1332 1333
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1334
            "The channel dimension of the input({}) should be defined. "
1335
            "Received: {}.".format(x.shape, num_channels))
1336 1337
    if groups <= 0:
        raise ValueError(
1338 1339
            "The groups of conv3d should be greater than 0. Received groups: {}"
            .format(groups))
1340 1341 1342
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1343 1344
            "Received: number of channels({}), groups({}).".format(
                num_channels, groups))
1345 1346 1347
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1348 1349
            "Received: number of filters({}), groups({}).".format(
                num_filters, groups))
1350

1351
    cudnn_version = get_cudnn_version()
1352 1353
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1354

1355
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1356 1357
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1358 1359
    op_type = "conv3d"

L
LielinJiang 已提交
1360 1361 1362
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, op_type,
                    use_cudnn, False, name)
1363 1364


1365
def conv3d_transpose(x,
1366 1367 1368
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
1369 1370
                     padding=0,
                     output_padding=0,
1371
                     groups=1,
L
LielinJiang 已提交
1372 1373
                     dilation=1,
                     output_size=None,
1374
                     data_format='NCDHW',
1375
                     name=None):
1376
    r"""
L
LielinJiang 已提交
1377
    The convolution3d transpose layer calculates the output based on the input,
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1388
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1389 1390 1391

    For each input :math:`X`, the equation is:

1392
    ..  math::
1393

1394
        Out = \sigma (W \ast X + b)
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1419
        ..  math::
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
1437
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1438 1439

    Args:
L
LielinJiang 已提交
1440
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
1441
            of input is float32 or float64.
L
LielinJiang 已提交
1442
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1443 1444
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1445 1446
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1447
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height, 
L
LielinJiang 已提交
1448 1449
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
1450 1451 1452 1453
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1454
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1455
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1456
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1457
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1458 1459
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1460 1461
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1462
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1463 1464 1465 1466 1467
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1468
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1469
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height, 
1470 1471
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
L
LielinJiang 已提交
1472
        output_size(int|list|tuple, optional): The output image size. If output size is a
1473
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1474
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1475 1476 1477 1478
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1479 1480 1481 1482 1483
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1484
        A Tensor representing the conv3d_transpose, whose data
1485 1486 1487 1488 1489 1490 1491 1492
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.

    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1493
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1494
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1495
        ValueError: If `output_size` and kernel_size are None at the same time.
1496 1497 1498 1499 1500 1501 1502 1503
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
       .. code-block:: python
L
LielinJiang 已提交
1504 1505
          
          import paddle
1506 1507
          import paddle.nn.functional as F

1508 1509
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1510

1511
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1512
          y_np = y_var.numpy()
1513

1514
          print(y_np.shape)
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1525 1526 1527 1528
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1529
    num_channels = x.shape[channel_dim]
1530 1531 1532
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1533
            "The channel dimension of the input({}) should be defined. "
L
LielinJiang 已提交
1534
            "Received: {}.".format(x.shape, num_channels))
1535 1536
    if groups <= 0:
        raise ValueError(
1537 1538
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
1539 1540 1541
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1542 1543
            "Received: number of channels({}), groups({}).".format(
                num_channels, groups))
1544 1545

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1546 1547
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1548 1549 1550
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1551 1552 1553 1554
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1555
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1556 1557 1558 1559 1560 1561 1562
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1563
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1564 1565 1566 1567

    cudnn_version = get_cudnn_version()

    #TODO(LielinJiang): whether to use cudnn according to the version of cudnn
1568 1569
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1570 1571 1572 1573

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
    if in_dygraph_mode():
        pre_bias = _C_ops.final_state_conv3d_transpose(
            x, weight, stride, padding, output_padding, output_size,
            padding_algorithm, groups, dilation, data_format_)
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1584 1585 1586 1587
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'paddings', padding, "padding_algorithm", padding_algorithm,
                 'strides', stride, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, "data_format", data_format_)
W
wanghuancoder 已提交
1588
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
1589
        if bias is not None:
L
LielinJiang 已提交
1590
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1591
        else:
L
LielinJiang 已提交
1592
            out = pre_bias
1593
    else:
L
LielinJiang 已提交
1594
        inputs = {'Input': [x], 'Filter': [weight]}
1595
        attrs = {
L
LielinJiang 已提交
1596
            'output_padding': output_padding,
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            "data_format": data_format_
        }
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1607 1608
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'conv3d')
1609

L
LielinJiang 已提交
1610
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1611 1612
        outputs = {"Output": [pre_bias]}

1613 1614 1615 1616
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
1617
        if bias is not None:
L
LielinJiang 已提交
1618
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1619
        else:
L
LielinJiang 已提交
1620
            out = pre_bias
1621 1622

    return out