conv.py 69.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from __future__ import print_function
15

16
import numpy as np
L
LielinJiang 已提交
17
from ...device import get_cudnn_version
18
from ...static import Variable
Z
zhiboniu 已提交
19
from ...fluid import dygraph_utils
20
from ...fluid.layers.utils import convert_to_list, _is_symmetric_padding
21
from ...fluid.data_feeder import check_variable_and_dtype
22
from ...framework import ParamAttr
23
from ...fluid.layer_helper import LayerHelper
24 25 26
from ...tensor.manipulation import unsqueeze, squeeze
from ...tensor.math import add
from ...fluid.layers import nn
F
From00 已提交
27 28 29
from paddle import _C_ops
from paddle import get_flags
from paddle import in_dynamic_mode
Z
zhiboniu 已提交
30 31
from paddle.device import is_compiled_with_cuda
from paddle.device import is_compiled_with_npu
H
hong 已提交
32 33
from paddle import in_dynamic_mode
from paddle import get_flags
F
From00 已提交
34 35 36 37
from paddle.device import is_compiled_with_rocm
from paddle.fluid.framework import _global_flags
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
38

39 40
__all__ = []

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
            padding = _exclude_padding_in_batch_and_channel(padding,
                                                            channel_last)
84
            if _is_symmetric_padding(padding, num_dims):
85 86 87 88
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
89 90
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
91 92 93 94
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
95
            padding = convert_to_list(padding, num_dims, 'padding')
96 97 98 99 100
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
101
        padding = convert_to_list(padding, num_dims, 'padding')
102 103 104 105
    if not all([p >= 0 for p in padding]):
        raise ValueError(
            "Invalid padding, all value should be larger than or equal to 0, but received: {}".
            format(padding))
106 107 108
    return padding, padding_algorithm


L
LielinJiang 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def _conv_nd(x,
             weight,
             bias=None,
             stride=1,
             padding=0,
             padding_algorithm=None,
             dilation=1,
             groups=1,
             data_format="NCHW",
             channel_dim=1,
             op_type="conv2d",
             use_cudnn=True,
             use_mkldnn=False,
             name=None):

124
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
125 126 127 128 129
    if in_dygraph_mode() and op_type == "conv2d":
        pre_bias = _C_ops.final_state_conv2d(
            x, weight, stride, padding, padding_algorithm, groups, dilation,
            data_format, False, -1, False)
        if bias is not None:
130 131
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
C
Chen Weihang 已提交
132 133 134 135 136 137 138
            if len(bias.shape) < len(x.shape):
                tmp_bias = _C_ops.final_state_reshape(
                    bias, bias.shape +
                    [1 for i in range(len(x.shape) - channel_dim - 1)])
                return _C_ops.final_state_add(pre_bias, tmp_bias)
            else:
                return _C_ops.final_state_add(pre_bias, bias)
H
hong 已提交
139 140
        else:
            return pre_bias
Z
zhiboniu 已提交
141
    if in_dynamic_mode():
L
LielinJiang 已提交
142 143 144 145 146
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn',
                 use_mkldnn, 'fuse_relu_before_depthwise_conv', False,
                 "padding_algorithm", padding_algorithm, "data_format",
                 data_format)
W
wanghuancoder 已提交
147
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format
        }
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 op_type)
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': channel_dim,
                       'use_mkldnn': use_mkldnn})
        else:
            out = pre_bias
    return out


W
whs 已提交
187 188 189 190 191 192 193 194 195
def conv1d(x,
           weight,
           bias=None,
           stride=1,
           padding=0,
           dilation=1,
           groups=1,
           data_format='NCL',
           name=None):
196
    r"""
W
whs 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
212
        Out = \sigma (W \ast X + b)
W
whs 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
239
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
240 241 242 243 244 245 246

    Args:
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type 
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
            the number of output channels, g is the number of groups, K is the kernel's size. 
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
247
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
248
            contain one integers, (stride_size). Default: 1.
249
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
250 251 252 253 254 255
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
256
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A tensor representing the conv1d, whose data type is the 
        same with input.

    Raises:
276
        ValueError: If the channel dimension of the input is less than or equal to zero.
W
whs 已提交
277 278
        ValueError: If `data_format` is not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
279
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
W
whs 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
L
LielinJiang 已提交
303
          
W
whs 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv1d(x_var, w_var)
          y_np = y_var.numpy()
          print(y_np)
          
          # [[[133. 238.]
          #   [160. 211.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
        raise ValueError("Attr(data_format) should be 'NCL' or 'NLC'. "
                         "Received Attr(data_format): {}.".format(data_format))

L
LielinJiang 已提交
323
    channel_last = (data_format == "NLC")
W
whs 已提交
324 325
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
326 327 328 329
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
W
whs 已提交
330 331 332
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
333
        raise ValueError("The channel dimension of the input({}) "
W
whs 已提交
334 335
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
336 337 338 339
    if groups <= 0:
        raise ValueError(
            "The groups of conv1d should be greater than 0. Received groups: {}".
            format(groups))
W
whs 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
353

W
whs 已提交
354
    if len(padding) == 2:
355
        padding = [0] * 2 + padding
W
whs 已提交
356
    elif len(padding) == 1:
357
        padding = [0] + padding
W
whs 已提交
358 359
    else:
        raise ValueError(
360
            "The size of padding's dimension should be 1 or 2. But got padding={}".
W
whs 已提交
361
            format(padding))
362 363 364
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
365 366

    l_type = "conv2d"
367 368

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
Z
zhiboniu 已提交
369
    if (is_compiled_with_cuda() and num_channels == groups and
370
            num_channels != 1 and num_filters % num_channels == 0):
W
whs 已提交
371 372 373
        l_type = 'depthwise_conv2d'
        use_cudnn = False

374
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
375
    if is_compiled_with_npu():
376 377 378 379 380
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

381
    squeeze_aixs = -3 if channel_last else -2
382
    x = unsqueeze(x, axis=[squeeze_aixs])
383

Z
zhiboniu 已提交
384
    if in_dynamic_mode():
W
whs 已提交
385 386 387 388
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
                 'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
                 padding_algorithm, "data_format", conv2d_data_format)
W
wanghuancoder 已提交
389
        out = getattr(_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d')
        helper = LayerHelper(l_type, **locals())
408
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
409 410 411 412 413 414
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
415
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
416 417 418
    return out


419
def conv2d(x,
420 421 422
           weight,
           bias=None,
           stride=1,
423
           padding=0,
424 425 426 427
           dilation=1,
           groups=1,
           data_format="NCHW",
           name=None):
428
    r"""
S
swtkiwi 已提交
429

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

447
    ..  math::
448

449
        Out = \sigma (W \ast X + b)
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

474
        ..  math::
475

476 477
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
478 479

    Args:
480
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type 
481
            of input is float16 or float32 or float64.
482
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
483 484
            the number of output channels, g is the number of groups, kH is the filter's
            height, kW is the filter's width. 
485
        bias (Tensor, optional): The bias with shape [M,].
486 487
        stride (int|list|tuple): The stride size. It means the stride in convolution. 
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
488
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
489 490 491 492 493 494 495
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
496
            when `data_format` is `"NHWC"`, `padding` can be in the form
497 498
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
499 500
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height, 
501 502
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
503
        groups (int): The groups number of the Conv2D Layer. According to grouped
504 505 506 507 508 509 510 511 512 513 514 515 516
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
517
        A Tensor representing the conv2d result, whose data type is the same with input. 
518 519 520

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
521
        ValueError: If the channel dimension of the input is less than or equal to zero.
522
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
523
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
524 525 526 527 528 529 530 531 532 533
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

534
          import paddle
535 536
          import paddle.nn.functional as F

537 538
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
539 540 541 542

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

543 544 545 546 547 548 549 550 551 552
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
                         "Received Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
553 554 555 556
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
557
    num_channels = x.shape[channel_dim]
558 559
    num_filters = weight.shape[0]
    if num_channels < 0:
560
        raise ValueError("The channel dimension of the input({}) "
561
                         "should be defined. Received: {}.".format(
562
                             x.shape, num_channels))
563 564 565 566
    if groups <= 0:
        raise ValueError(
            "The groups of conv2d should be greater than 0. Received groups: {}".
            format(groups))
567 568 569 570
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
571
            ", the groups is {}".format(num_channels, x.shape, groups))
572 573 574 575 576 577
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

578 579
    cudnn_version = get_cudnn_version()

Z
zhiboniu 已提交
580
    use_cudnn = True if (is_compiled_with_cuda() and
581 582
                         cudnn_version is not None) else False

583 584
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
585 586
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
587 588

    l_type = "conv2d"
L
LielinJiang 已提交
589 590
    if (num_channels == groups and num_channels != 1 and
            num_filters % num_channels == 0):
591
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
592
        if is_compiled_with_rocm():
593 594 595
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
596 597 598 599 600 601 602 603 604 605 606 607
    else:
        if in_dygraph_mode():
            pre_bias = _C_ops.final_state_conv2d(
                x, weight, stride, padding, padding_algorithm, groups, dilation,
                data_format, False, -1, False)
            if bias is not None:
                out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
                return out
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
608

609
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
610
    if is_compiled_with_npu():
611 612 613 614 615
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

Z
zhiboniu 已提交
616 617
    if (is_compiled_with_cuda() and get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"]):
618
        use_cudnn = False
619

L
LielinJiang 已提交
620 621 622
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, l_type,
                    use_cudnn, use_mkldnn, name)
623 624


625
def conv1d_transpose(x,
626 627 628 629 630 631 632 633 634 635
                     weight,
                     bias=None,
                     stride=1,
                     padding=0,
                     output_padding=0,
                     groups=1,
                     dilation=1,
                     output_size=None,
                     data_format="NCL",
                     name=None):
636
    r"""
637 638 639 640 641 642 643 644 645 646 647 648 649 650
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
651
        Out = \sigma (W \ast X + b)
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
687
          and :math:`L^\prime_{out} + stride`.
688 689 690 691 692 693 694 695 696

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
697
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
698 699 700 701 702 703 704
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
705
             If it is a list/tuple, it must contain one integer. Default: 0.
706 707 708 709 710 711 712
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
713
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
714 715
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
716
            tuple/list, it must contain one integer, `(feature_length)`. None if use
717
            filter_size(shape of weight), padding, and stride to calculate output_size.
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Raises:
        ValueError: If `data_format` is a string, but not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
735
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ValueError: If `output_padding` is greater than `stride`.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python



          import paddle
          import paddle.nn.functional as F
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2,]]]).astype(np.float32)
          # shape: (2, 1, 2)
W
whs 已提交
758
          w=np.array([[[7, 0]],
759 760 761
                      [[4, 2]]]).astype(np.float32)
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
762
          y_var = F.conv1d_transpose(x_var, w_var)
W
whs 已提交
763
          print(y_var)
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
          
          # [[[60. 16. 99. 75.  4.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
                data_format))
    channel_last = (data_format == "NLC")
    channel_dim = -1 if channel_last else 1
780 781 782 783
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
784 785 786

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
787
        raise ValueError("The channel dimension of the input({}) "
788 789
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
790 791 792 793
    if groups <= 0:
        raise ValueError(
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}".
            format(groups))
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
809
            "The size of padding's dimension should 1 or 2. But got padding={}".
810 811
            format(padding))

812 813
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
814 815 816 817

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
818 819 820 821
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
822
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
823 824 825 826 827 828 829
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
830 831
        output_padding = convert_to_list(output_padding, 1,
                                         'output_padding') + [0]
L
LielinJiang 已提交
832 833 834 835 836 837

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
            "But got output_padding={} and stride={}".format(output_padding[0],
                                                             stride[0]))
838 839 840

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
841 842
    if (num_channels == groups and num_channels != 1 and num_filters == 1 and
            not use_cudnn):
843 844 845 846 847 848
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

849 850
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
851

Z
zhiboniu 已提交
852
    if in_dynamic_mode():
L
LielinJiang 已提交
853 854 855 856
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', conv2d_data_format)
W
wanghuancoder 已提交
857
        out = getattr(_C_ops, op_type)(x, weight, *attrs)
858 859 860 861 862
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
863
            'output_padding': output_padding,
864 865 866 867 868 869 870 871 872 873 874 875
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
876
        dtype = helper.input_dtype(input_param_name='x')
877 878 879 880 881 882 883
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

884
    out = squeeze(out, axis=[squeeze_axis])
885 886 887
    return out


888
def conv2d_transpose(x,
889 890 891
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
892 893 894
                     padding=0,
                     output_padding=0,
                     dilation=1,
895
                     groups=1,
L
LielinJiang 已提交
896
                     output_size=None,
897
                     data_format='NCHW',
898
                     name=None):
899
    r"""
S
swtkiwi 已提交
900

901 902 903 904 905 906 907 908 909 910 911
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
912
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
913 914 915

    For each input :math:`X`, the equation is:

916
    ..  math::
917

918
        Out = \sigma (W \ast X + b)
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

943
        ..  math::
944 945 946 947 948 949 950 951 952 953 954 955 956

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
957
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
958 959

    Args:
L
LielinJiang 已提交
960
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
961
            whose data type is float32 or float64.
L
LielinJiang 已提交
962
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
963 964
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
965 966
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
967
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
L
LielinJiang 已提交
968
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
969 970 971 972 973
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or 
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or 
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
974
            and when `data_format` is `"NCHW"`, `padding` can be in the form 
975
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
976
            when `data_format` is `"NHWC"`, `padding` can be in the form 
977 978
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
979 980
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
981
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
982 983 984 985 986
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
987
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
988
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width). 
989
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
990
        output_size(int|tuple|list, optional): The output image size. If output size is a
991
            tuple/list, it must contain two integers, (image_height, image_width). None if use
992
            filter_size(shape of weight), padding, and stride to calculate output_size.
993 994 995 996 997 998 999 1000 1001
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1002
        A Tensor representing the conv2d_transpose, whose
1003
        data type is the same with input and shape is (num_batches, channels, out_h, 
L
LielinJiang 已提交
1004 1005
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing 
        transposed convolution result.
1006 1007 1008 1009

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1010
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1011
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1012
        ValueError: If `output_size` and kernel_size are None at the same time.
1013 1014 1015 1016 1017 1018 1019 1020 1021
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1022 1023
          import paddle
          import paddle.nn.functional as F
1024

1025 1026
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1027

1028
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1029
          y_np = y_var.numpy()
1030

1031
          print(y_np.shape)
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
                data_format))
    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
1042 1043 1044 1045
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1046
    num_channels = x.shape[channel_dim]
1047
    if num_channels < 0:
1048
        raise ValueError("The channel dimension of the input({}) "
1049
                         "should be defined. Received: {}.".format(
L
LielinJiang 已提交
1050
                             x.shape, num_channels))
1051 1052 1053 1054
    if groups <= 0:
        raise ValueError(
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}".
            format(groups))
1055 1056 1057 1058
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
L
LielinJiang 已提交
1059 1060 1061 1062
            ", the groups is {}".format(num_channels, x.shape, groups))

    cudnn_version = get_cudnn_version()

Z
zhiboniu 已提交
1063
    use_cudnn = True if (is_compiled_with_cuda() and
L
LielinJiang 已提交
1064
                         cudnn_version is not None) else False
1065 1066 1067

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1068 1069
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1070

1071 1072 1073
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1074 1075 1076 1077
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1078
            output_size = convert_to_list(output_size, 2, 'output_size')
L
LielinJiang 已提交
1079 1080 1081 1082 1083 1084 1085
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1086
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1087 1088 1089

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
1090
    if (num_channels == groups and num_channels != 1 and num_filters == 1):
1091
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1092
        use_cudnn = False
1093

F
From00 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
    if in_dygraph_mode():
        final_state_op = _C_ops.final_state_conv2d_transpose if op_type == 'conv2d_transpose' else _C_ops.final_state_depthwise_conv2d_transpose
        pre_bias = final_state_op(x, weight, stride, padding, output_padding,
                                  output_size, padding_algorithm, groups,
                                  dilation, data_format)
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1105 1106 1107 1108
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', data_format)
W
wanghuancoder 已提交
1109
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
1110
        if bias is not None:
L
LielinJiang 已提交
1111
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1112
        else:
L
LielinJiang 已提交
1113
            out = pre_bias
1114
    else:
L
LielinJiang 已提交
1115
        inputs = {'Input': [x], 'Filter': [weight]}
1116
        attrs = {
L
LielinJiang 已提交
1117
            'output_padding': output_padding,
1118 1119 1120 1121 1122 1123 1124 1125 1126
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        }
L
LielinJiang 已提交
1127
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1128 1129
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1130
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1131 1132 1133
        outputs = {"Output": [pre_bias]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
L
LielinJiang 已提交
1134

1135
        if bias is not None:
L
LielinJiang 已提交
1136
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1137
        else:
L
LielinJiang 已提交
1138 1139
            out = pre_bias

1140 1141 1142
    return out


1143
def conv3d(x,
1144 1145 1146
           weight,
           bias=None,
           stride=1,
1147
           padding=0,
1148 1149 1150 1151
           dilation=1,
           groups=1,
           data_format="NCDHW",
           name=None):
1152
    r"""
S
swtkiwi 已提交
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1165
    ..  math::
1166

1167
        Out = \sigma (W \ast X + b)
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1191
        ..  math::
1192 1193 1194 1195 1196 1197

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1198
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
1199
            type of input is float16 or float32 or float64.
1200
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1201 1202
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1203
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1204 1205
        stride (int|list|tuple): The stride size. It means the stride in convolution. If stride is a 
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
1206
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1207 1208 1209 1210 1211
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1212
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1213
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1214
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1215 1216
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1217 1218
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1219 1220
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
1221
        groups (int): The groups number of the Conv3D Layer. According to grouped
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1235
        A Tensor representing the conv3d, whose data type is 
1236 1237
        the same with input. If act is None, the tensor storing the 
        convolution result, and if act is not None, the tensor storing 
1238 1239 1240 1241 1242
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1243 1244
            import paddle
            import paddle.nn.functional as F
1245

1246 1247
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1248

1249 1250
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1251

1252
            print(y_np.shape)
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1263 1264 1265 1266
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
1267
    num_channels = x.shape[channel_dim]
1268 1269 1270
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1271
            "The channel dimension of the input({}) should be defined. "
1272
            "Received: {}.".format(x.shape, num_channels))
1273 1274 1275 1276
    if groups <= 0:
        raise ValueError(
            "The groups of conv3d should be greater than 0. Received groups: {}".
            format(groups))
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
            "Received: number of channels({}), groups({}).".format(num_channels,
                                                                   groups))
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
            "Received: number of filters({}), groups({}).".format(num_filters,
                                                                  groups))

1288
    cudnn_version = get_cudnn_version()
Z
zhiboniu 已提交
1289
    use_cudnn = True if (is_compiled_with_cuda() and
1290 1291
                         cudnn_version is not None) else False

1292
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1293 1294
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1295 1296
    op_type = "conv3d"

L
LielinJiang 已提交
1297 1298 1299
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, op_type,
                    use_cudnn, False, name)
1300 1301


1302
def conv3d_transpose(x,
1303 1304 1305
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
1306 1307
                     padding=0,
                     output_padding=0,
1308
                     groups=1,
L
LielinJiang 已提交
1309 1310
                     dilation=1,
                     output_size=None,
1311
                     data_format='NCDHW',
1312
                     name=None):
1313
    r"""
L
LielinJiang 已提交
1314
    The convolution3d transpose layer calculates the output based on the input,
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1325
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1326 1327 1328

    For each input :math:`X`, the equation is:

1329
    ..  math::
1330

1331
        Out = \sigma (W \ast X + b)
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1356
        ..  math::
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
1374
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1375 1376

    Args:
L
LielinJiang 已提交
1377
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
1378
            of input is float32 or float64.
L
LielinJiang 已提交
1379
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1380 1381
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1382 1383
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1384
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height, 
L
LielinJiang 已提交
1385 1386
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
1387 1388 1389 1390
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1391
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1392
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1393
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1394
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1395 1396
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1397 1398
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1399
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1400 1401 1402 1403 1404
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1405
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1406
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height, 
1407 1408
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
L
LielinJiang 已提交
1409
        output_size(int|list|tuple, optional): The output image size. If output size is a
1410
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1411
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1412 1413 1414 1415
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1416 1417 1418 1419 1420
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1421
        A Tensor representing the conv3d_transpose, whose data
1422 1423 1424 1425 1426 1427 1428 1429
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.

    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1430
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1431
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1432
        ValueError: If `output_size` and kernel_size are None at the same time.
1433 1434 1435 1436 1437 1438 1439 1440
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
       .. code-block:: python
L
LielinJiang 已提交
1441 1442
          
          import paddle
1443 1444
          import paddle.nn.functional as F

1445 1446
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1447

1448
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1449
          y_np = y_var.numpy()
1450

1451
          print(y_np.shape)
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1462 1463 1464 1465
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1466
    num_channels = x.shape[channel_dim]
1467 1468 1469
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1470
            "The channel dimension of the input({}) should be defined. "
L
LielinJiang 已提交
1471
            "Received: {}.".format(x.shape, num_channels))
1472 1473 1474 1475
    if groups <= 0:
        raise ValueError(
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}".
            format(groups))
1476 1477 1478 1479 1480 1481 1482
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
            "Received: number of channels({}), groups({}).".format(num_channels,
                                                                   groups))

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1483 1484
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1485 1486 1487
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1488 1489 1490 1491
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1492
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1493 1494 1495 1496 1497 1498 1499
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1500
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1501 1502 1503 1504

    cudnn_version = get_cudnn_version()

    #TODO(LielinJiang): whether to use cudnn according to the version of cudnn
Z
zhiboniu 已提交
1505
    use_cudnn = True if (is_compiled_with_cuda() and
L
LielinJiang 已提交
1506
                         cudnn_version is not None) else False
1507 1508 1509 1510

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
    if in_dygraph_mode():
        pre_bias = _C_ops.final_state_conv3d_transpose(
            x, weight, stride, padding, output_padding, output_size,
            padding_algorithm, groups, dilation, data_format_)
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1521 1522 1523 1524
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'paddings', padding, "padding_algorithm", padding_algorithm,
                 'strides', stride, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, "data_format", data_format_)
W
wanghuancoder 已提交
1525
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
1526
        if bias is not None:
L
LielinJiang 已提交
1527
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1528
        else:
L
LielinJiang 已提交
1529
            out = pre_bias
1530
    else:
L
LielinJiang 已提交
1531
        inputs = {'Input': [x], 'Filter': [weight]}
1532
        attrs = {
L
LielinJiang 已提交
1533
            'output_padding': output_padding,
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            "data_format": data_format_
        }
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1544 1545
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'conv3d')
1546

L
LielinJiang 已提交
1547
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1548 1549 1550 1551 1552
        outputs = {"Output": [pre_bias]}

        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
L
LielinJiang 已提交
1553
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1554
        else:
L
LielinJiang 已提交
1555
            out = pre_bias
1556 1557

    return out