conv.py 73.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from __future__ import print_function
15

16
import numpy as np
L
LielinJiang 已提交
17
from ...device import get_cudnn_version
18
from ...static import Variable
Z
zhiboniu 已提交
19
from ...fluid import dygraph_utils
20 21
from ...fluid.layers.utils import convert_to_list, _is_symmetric_padding, _contain_var, _convert_to_tensor_list
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
22
from ...framework import ParamAttr
23
from ...fluid.layer_helper import LayerHelper
24 25 26
from ...tensor.manipulation import unsqueeze, squeeze
from ...tensor.math import add
from ...fluid.layers import nn
27
from paddle import _C_ops, _legacy_C_ops
F
From00 已提交
28 29
from paddle import get_flags
from paddle import in_dynamic_mode
Z
zhiboniu 已提交
30 31
from paddle.device import is_compiled_with_cuda
from paddle.device import is_compiled_with_npu
H
hong 已提交
32 33
from paddle import in_dynamic_mode
from paddle import get_flags
F
From00 已提交
34 35 36 37
from paddle.device import is_compiled_with_rocm
from paddle.fluid.framework import _global_flags
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
38
from paddle.fluid.framework import _non_static_mode
39

40 41
__all__ = []

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
83 84
            padding = _exclude_padding_in_batch_and_channel(
                padding, channel_last)
85
            if _is_symmetric_padding(padding, num_dims):
86 87 88 89
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
90 91
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
92 93 94 95
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
96
            padding = convert_to_list(padding, num_dims, 'padding')
97 98 99 100 101
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
102
        padding = convert_to_list(padding, num_dims, 'padding')
103 104
    if not all([p >= 0 for p in padding]):
        raise ValueError(
105 106
            "Invalid padding, all value should be larger than or equal to 0, but received: {}"
            .format(padding))
107 108 109
    return padding, padding_algorithm


L
LielinJiang 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
def _conv_nd(x,
             weight,
             bias=None,
             stride=1,
             padding=0,
             padding_algorithm=None,
             dilation=1,
             groups=1,
             data_format="NCHW",
             channel_dim=1,
             op_type="conv2d",
             use_cudnn=True,
             use_mkldnn=False,
             name=None):

125
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
126
    if in_dygraph_mode() and op_type == "conv2d":
127 128 129
        pre_bias = _C_ops.conv2d(x, weight, stride, padding, padding_algorithm,
                                 groups, dilation, data_format, False, -1,
                                 False)
H
hong 已提交
130
        if bias is not None:
131 132
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
133 134
            if pre_bias.layout == "NHWC":
                channel_dim = 3  # last dim
135 136 137 138
            if isinstance(x, tuple):
                x = x[0]
            if isinstance(bias, tuple):
                bias = bias[0]
C
Chen Weihang 已提交
139
            if len(bias.shape) < len(x.shape):
140
                tmp_bias = _C_ops.reshape(
C
Chen Weihang 已提交
141 142
                    bias, bias.shape +
                    [1 for i in range(len(x.shape) - channel_dim - 1)])
143
                return _C_ops.add(pre_bias, tmp_bias)
C
Chen Weihang 已提交
144
            else:
145
                return _C_ops.add(pre_bias, bias)
H
hong 已提交
146 147
        else:
            return pre_bias
148 149

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
150 151 152 153
        pre_bias = _C_ops.depthwise_conv2d(x, weight, stride, padding,
                                           padding_algorithm, groups, dilation,
                                           data_format, False, -1, False, False,
                                           use_cudnn)
154 155 156
        if bias is not None:
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
157
            tmp_bias = _C_ops.reshape(
158 159
                bias,
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)])
160
            return _C_ops.add(pre_bias, tmp_bias)
161 162 163 164
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
165 166 167
        pre_bias = _C_ops.conv3d(x, weight, stride, padding, padding_algorithm,
                                 groups, dilation, data_format, False, -1,
                                 False)
168 169 170
        if bias is not None:
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
171
            tmp_bias = _C_ops.reshape(
172 173
                bias,
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)])
174
            return _C_ops.add(pre_bias, tmp_bias)
175 176 177
        else:
            return pre_bias

Z
zhiboniu 已提交
178
    if in_dynamic_mode():
L
LielinJiang 已提交
179 180 181 182 183
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn',
                 use_mkldnn, 'fuse_relu_before_depthwise_conv', False,
                 "padding_algorithm", padding_algorithm, "data_format",
                 data_format)
184
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format
        }
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 op_type)
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
208 209 210 211
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
L
LielinJiang 已提交
212 213
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
214 215 216 217 218 219 220 221 222 223
            helper.append_op(type='elementwise_add',
                             inputs={
                                 'X': [pre_bias],
                                 'Y': [bias]
                             },
                             outputs={'Out': [out]},
                             attrs={
                                 'axis': channel_dim,
                                 'use_mkldnn': use_mkldnn
                             })
L
LielinJiang 已提交
224 225 226 227 228
        else:
            out = pre_bias
    return out


W
whs 已提交
229 230 231 232 233 234 235 236 237
def conv1d(x,
           weight,
           bias=None,
           stride=1,
           padding=0,
           dilation=1,
           groups=1,
           data_format='NCL',
           name=None):
238
    r"""
W
whs 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
254
        Out = \sigma (W \ast X + b)
W
whs 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
281
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
282 283 284 285 286 287 288

    Args:
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type 
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
            the number of output channels, g is the number of groups, K is the kernel's size. 
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
289
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
290
            contain one integers, (stride_size). Default: 1.
291
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
292 293 294 295 296 297
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
298
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A tensor representing the conv1d, whose data type is the 
        same with input.

    Raises:
318
        ValueError: If the channel dimension of the input is less than or equal to zero.
W
whs 已提交
319 320
        ValueError: If `data_format` is not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
321
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
W
whs 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
L
LielinJiang 已提交
345
          
W
whs 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv1d(x_var, w_var)
          y_np = y_var.numpy()
          print(y_np)
          
          # [[[133. 238.]
          #   [160. 211.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
        raise ValueError("Attr(data_format) should be 'NCL' or 'NLC'. "
                         "Received Attr(data_format): {}.".format(data_format))

L
LielinJiang 已提交
365
    channel_last = (data_format == "NLC")
W
whs 已提交
366 367
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
368 369 370 371
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
W
whs 已提交
372 373 374
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
375
        raise ValueError("The channel dimension of the input({}) "
W
whs 已提交
376 377
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
378 379
    if groups <= 0:
        raise ValueError(
380 381
            "The groups of conv1d should be greater than 0. Received groups: {}"
            .format(groups))
W
whs 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
395

W
whs 已提交
396
    if len(padding) == 2:
397
        padding = [0] * 2 + padding
W
whs 已提交
398
    elif len(padding) == 1:
399
        padding = [0] + padding
W
whs 已提交
400 401
    else:
        raise ValueError(
402 403
            "The size of padding's dimension should be 1 or 2. But got padding={}"
            .format(padding))
404 405 406
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
407 408

    l_type = "conv2d"
409 410

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
411 412
    if (is_compiled_with_cuda() and num_channels == groups and num_channels != 1
            and num_filters % num_channels == 0):
W
whs 已提交
413 414 415
        l_type = 'depthwise_conv2d'
        use_cudnn = False

416
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
417
    if is_compiled_with_npu():
418 419 420 421 422
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

423
    squeeze_aixs = -3 if channel_last else -2
424
    x = unsqueeze(x, axis=[squeeze_aixs])
425

426 427 428 429 430 431 432 433
    if in_dygraph_mode():
        out = getattr(_C_ops,
                      l_type)(x, weight, stride, padding, padding_algorithm,
                              groups, dilation, conv2d_data_format, False, -1,
                              False, False, use_cudnn)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
W
whs 已提交
434 435 436 437
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
                 'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
                 padding_algorithm, "data_format", conv2d_data_format)
438
        out = getattr(_legacy_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d')
        helper = LayerHelper(l_type, **locals())
457
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
458 459
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
460 461 462 463
        helper.append_op(type=l_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
W
whs 已提交
464 465
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
466
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
467 468 469
    return out


470
def conv2d(x,
471 472 473
           weight,
           bias=None,
           stride=1,
474
           padding=0,
475 476 477 478
           dilation=1,
           groups=1,
           data_format="NCHW",
           name=None):
479
    r"""
S
swtkiwi 已提交
480

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

498
    ..  math::
499

500
        Out = \sigma (W \ast X + b)
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

525
        ..  math::
526

527 528
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
529 530

    Args:
531
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type 
532
            of input is float16 or float32 or float64.
533
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
534 535
            the number of output channels, g is the number of groups, kH is the filter's
            height, kW is the filter's width. 
536
        bias (Tensor, optional): The bias with shape [M,].
537 538
        stride (int|list|tuple): The stride size. It means the stride in convolution. 
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
539
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
540 541 542 543 544 545 546
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
547
            when `data_format` is `"NHWC"`, `padding` can be in the form
548 549
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
550 551
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height, 
552 553
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
554
        groups (int): The groups number of the Conv2D Layer. According to grouped
555 556 557 558 559 560 561 562 563 564 565 566 567
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
568
        A Tensor representing the conv2d result, whose data type is the same with input. 
569 570 571

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
572
        ValueError: If the channel dimension of the input is less than or equal to zero.
573
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
574
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
575 576 577 578 579 580 581 582 583 584
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

585
          import paddle
586 587
          import paddle.nn.functional as F

588 589
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
590 591 592 593

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

594 595 596 597 598 599 600 601 602 603
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
                         "Received Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
604 605 606 607
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
608
    num_channels = x.shape[channel_dim]
609 610
    num_filters = weight.shape[0]
    if num_channels < 0:
611
        raise ValueError("The channel dimension of the input({}) "
612
                         "should be defined. Received: {}.".format(
613
                             x.shape, num_channels))
614 615
    if groups <= 0:
        raise ValueError(
616 617
            "The groups of conv2d should be greater than 0. Received groups: {}"
            .format(groups))
618 619 620 621
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
622
            ", the groups is {}".format(num_channels, x.shape, groups))
623 624 625 626 627 628
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

629 630
    cudnn_version = get_cudnn_version()

631 632
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
633

634 635
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
636 637
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
638 639

    l_type = "conv2d"
640 641
    if (num_channels == groups and num_channels != 1
            and num_filters % num_channels == 0):
642
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
643
        if is_compiled_with_rocm():
644 645 646
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
647 648
    else:
        if in_dygraph_mode():
649 650 651
            pre_bias = _C_ops.conv2d(x, weight, stride, padding,
                                     padding_algorithm, groups, dilation,
                                     data_format, False, -1, False)
H
hong 已提交
652 653 654 655 656 657 658
            if bias is not None:
                out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
                return out
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
659

660
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
661
    if is_compiled_with_npu():
662 663 664 665 666
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

667 668
    if (is_compiled_with_cuda() and get_flags("FLAGS_conv2d_disable_cudnn")
        ["FLAGS_conv2d_disable_cudnn"]):
669
        use_cudnn = False
670

L
LielinJiang 已提交
671 672 673
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, l_type,
                    use_cudnn, use_mkldnn, name)
674 675


676
def conv1d_transpose(x,
677 678 679 680 681 682 683 684 685 686
                     weight,
                     bias=None,
                     stride=1,
                     padding=0,
                     output_padding=0,
                     groups=1,
                     dilation=1,
                     output_size=None,
                     data_format="NCL",
                     name=None):
687
    r"""
688 689 690 691 692 693 694 695 696 697 698 699 700 701
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
702
        Out = \sigma (W \ast X + b)
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
738
          and :math:`L^\prime_{out} + stride`.
739 740 741 742 743 744 745 746 747

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
748
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
749 750 751 752 753 754 755
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
756
             If it is a list/tuple, it must contain one integer. Default: 0.
757 758 759 760 761 762 763
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
764
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
765 766
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
767
            tuple/list, it must contain one integer, `(feature_length)`. None if use
768
            filter_size(shape of weight), padding, and stride to calculate output_size.
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Raises:
        ValueError: If `data_format` is a string, but not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
786
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ValueError: If `output_padding` is greater than `stride`.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python



          import paddle
          import paddle.nn.functional as F
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2,]]]).astype(np.float32)
          # shape: (2, 1, 2)
W
whs 已提交
809
          w=np.array([[[7, 0]],
810 811 812
                      [[4, 2]]]).astype(np.float32)
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
813
          y_var = F.conv1d_transpose(x_var, w_var)
W
whs 已提交
814
          print(y_var)
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
          
          # [[[60. 16. 99. 75.  4.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
                data_format))
    channel_last = (data_format == "NLC")
    channel_dim = -1 if channel_last else 1
831 832 833 834
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
835 836 837

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
838
        raise ValueError("The channel dimension of the input({}) "
839 840
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
841 842
    if groups <= 0:
        raise ValueError(
843 844
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
860
            "The size of padding's dimension should 1 or 2. But got padding={}".
861 862
            format(padding))

863 864
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
865 866 867 868

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
869 870 871 872
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
873
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
874 875 876 877 878 879 880
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
881 882
        output_padding = convert_to_list(output_padding, 1,
                                         'output_padding') + [0]
L
LielinJiang 已提交
883 884 885 886

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
887 888
            "But got output_padding={} and stride={}".format(
                output_padding[0], stride[0]))
889 890 891

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
892 893
    if (num_channels == groups and num_channels != 1 and num_filters == 1
            and not use_cudnn):
894 895 896 897 898 899
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

900 901
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
902

903 904 905 906 907 908 909 910
    if in_dygraph_mode():
        out = getattr(_C_ops,
                      op_type)(x, weight, stride, padding, output_padding,
                               output_size, padding_algorithm, groups, dilation,
                               conv2d_data_format)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
L
LielinJiang 已提交
911 912 913 914
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', conv2d_data_format)
915
        out = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
916 917 918 919 920
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
921
            'output_padding': output_padding,
922 923 924 925 926 927 928 929 930 931 932 933
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
934
        dtype = helper.input_dtype(input_param_name='x')
935 936
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
937 938 939 940
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
941 942 943
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

944
    out = squeeze(out, axis=[squeeze_axis])
945 946 947
    return out


948
def conv2d_transpose(x,
949 950 951
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
952 953 954
                     padding=0,
                     output_padding=0,
                     dilation=1,
955
                     groups=1,
L
LielinJiang 已提交
956
                     output_size=None,
957
                     data_format='NCHW',
958
                     name=None):
959
    r"""
S
swtkiwi 已提交
960

961 962 963 964 965 966 967 968 969 970 971
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
972
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
973 974 975

    For each input :math:`X`, the equation is:

976
    ..  math::
977

978
        Out = \sigma (W \ast X + b)
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

1003
        ..  math::
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
1017
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
1018 1019

    Args:
L
LielinJiang 已提交
1020
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
1021
            whose data type is float32 or float64.
L
LielinJiang 已提交
1022
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
1023 1024
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
1025 1026
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1027
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
L
LielinJiang 已提交
1028
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
1029 1030 1031 1032 1033
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or 
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or 
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1034
            and when `data_format` is `"NCHW"`, `padding` can be in the form 
1035
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1036
            when `data_format` is `"NHWC"`, `padding` can be in the form 
1037 1038
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1039 1040
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1041
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1042 1043 1044 1045 1046
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1047
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1048
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width). 
1049
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1050
        output_size(int|tuple|list, optional): The output image size. If output size is a
1051
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1052
            filter_size(shape of weight), padding, and stride to calculate output_size.
1053 1054 1055 1056 1057 1058 1059 1060 1061
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1062
        A Tensor representing the conv2d_transpose, whose
1063
        data type is the same with input and shape is (num_batches, channels, out_h, 
L
LielinJiang 已提交
1064 1065
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing 
        transposed convolution result.
1066 1067 1068 1069

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1070
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1071
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1072
        ValueError: If `output_size` and kernel_size are None at the same time.
1073 1074 1075 1076 1077 1078 1079 1080 1081
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1082 1083
          import paddle
          import paddle.nn.functional as F
1084

1085 1086
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1087

1088
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1089
          y_np = y_var.numpy()
1090

1091
          print(y_np.shape)
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
                data_format))
    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
1102 1103 1104 1105
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1106
    num_channels = x.shape[channel_dim]
1107
    if num_channels < 0:
1108
        raise ValueError("The channel dimension of the input({}) "
1109
                         "should be defined. Received: {}.".format(
L
LielinJiang 已提交
1110
                             x.shape, num_channels))
1111 1112
    if groups <= 0:
        raise ValueError(
1113 1114
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
1115 1116 1117 1118
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
L
LielinJiang 已提交
1119 1120 1121 1122
            ", the groups is {}".format(num_channels, x.shape, groups))

    cudnn_version = get_cudnn_version()

1123 1124
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1125 1126 1127

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1128 1129
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1130

1131 1132 1133
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1134 1135 1136
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
1137 1138 1139 1140 1141 1142
        if isinstance(output_size, (list, tuple)):
            if _contain_var(output_size):
                output_size = _convert_to_tensor_list(output_size)
            else:
                output_size = convert_to_list(output_size, 2, 'output_size')
        elif isinstance(output_size, int):
1143
            output_size = convert_to_list(output_size, 2, 'output_size')
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
        elif isinstance(output_size, Variable):
            check_dtype(output_size.dtype, 'output_size', ['int32', 'int64'],
                        'conv2d_transpose')
            if len(output_size.shape) == 1 and (output_size.shape[0] == 1
                                                or output_size.shape[0] == 2):
                if output_size.shape[0] == 1:
                    output_size = [output_size, output_size]
            else:
                raise ValueError(
                    "output_size must contain one or two integers.")
L
LielinJiang 已提交
1154 1155
        else:
            raise ValueError(
1156 1157
                "output_size should be int or Tensor or list, tuple of ints or Tensor"
            )
L
LielinJiang 已提交
1158 1159 1160 1161

    if output_padding == 0:
        output_padding = []
    else:
1162
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1163 1164 1165

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
1166
    if (num_channels == groups and num_channels != 1 and num_filters == 1):
1167
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1168
        use_cudnn = False
1169

F
From00 已提交
1170
    if in_dygraph_mode():
1171 1172 1173
        op = _C_ops.conv2d_transpose if op_type == 'conv2d_transpose' else _C_ops.depthwise_conv2d_transpose
        pre_bias = op(x, weight, stride, padding, output_padding, output_size,
                      padding_algorithm, groups, dilation, data_format)
F
From00 已提交
1174 1175 1176 1177 1178 1179
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1180 1181 1182 1183
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', data_format)
1184
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1185
        if bias is not None:
L
LielinJiang 已提交
1186
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1187
        else:
L
LielinJiang 已提交
1188
            out = pre_bias
1189
    else:
L
LielinJiang 已提交
1190
        inputs = {'Input': [x], 'Filter': [weight]}
1191
        attrs = {
L
LielinJiang 已提交
1192
            'output_padding': output_padding,
1193 1194 1195 1196 1197 1198 1199 1200 1201
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        }
L
LielinJiang 已提交
1202
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1203 1204
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1205
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1206
        outputs = {"Output": [pre_bias]}
1207 1208 1209 1210
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
L
LielinJiang 已提交
1211

1212
        if bias is not None:
L
LielinJiang 已提交
1213
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1214
        else:
L
LielinJiang 已提交
1215 1216
            out = pre_bias

1217 1218 1219
    return out


1220
def conv3d(x,
1221 1222 1223
           weight,
           bias=None,
           stride=1,
1224
           padding=0,
1225 1226 1227 1228
           dilation=1,
           groups=1,
           data_format="NCDHW",
           name=None):
1229
    r"""
S
swtkiwi 已提交
1230

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1242
    ..  math::
1243

1244
        Out = \sigma (W \ast X + b)
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1268
        ..  math::
1269 1270 1271 1272 1273 1274

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1275
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
1276
            type of input is float16 or float32 or float64.
1277
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1278 1279
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1280
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1281
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a 
1282
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
1283
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1284
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
1285 1286 1287 1288
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1289
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1290
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1291
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1292 1293
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1294
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1295
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1296 1297
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
1298
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1299 1300 1301 1302 1303
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
1304 1305 1306 1307
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str|None, optional): For detailed information, please refer 
1308 1309 1310 1311
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1312
        A Tensor representing the conv3d, whose data type is 
1313 1314
        the same with input. If act is None, the tensor storing the 
        convolution result, and if act is not None, the tensor storing 
1315 1316 1317 1318 1319
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1320 1321
            import paddle
            import paddle.nn.functional as F
1322

1323 1324
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1325

1326 1327
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1328

1329
            print(y_np.shape)
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1340 1341 1342 1343
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
1344
    num_channels = x.shape[channel_dim]
1345 1346 1347
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1348
            "The channel dimension of the input({}) should be defined. "
1349
            "Received: {}.".format(x.shape, num_channels))
1350 1351
    if groups <= 0:
        raise ValueError(
1352 1353
            "The groups of conv3d should be greater than 0. Received groups: {}"
            .format(groups))
1354 1355 1356
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1357 1358
            "Received: number of channels({}), groups({}).".format(
                num_channels, groups))
1359 1360 1361
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1362 1363
            "Received: number of filters({}), groups({}).".format(
                num_filters, groups))
1364

1365
    cudnn_version = get_cudnn_version()
1366 1367
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1368

1369
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1370 1371
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1372 1373
    op_type = "conv3d"

L
LielinJiang 已提交
1374 1375 1376
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, op_type,
                    use_cudnn, False, name)
1377 1378


1379
def conv3d_transpose(x,
1380 1381 1382
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
1383 1384
                     padding=0,
                     output_padding=0,
1385
                     groups=1,
L
LielinJiang 已提交
1386 1387
                     dilation=1,
                     output_size=None,
1388
                     data_format='NCDHW',
1389
                     name=None):
1390
    r"""
L
LielinJiang 已提交
1391
    The convolution3d transpose layer calculates the output based on the input,
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1402
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1403 1404 1405

    For each input :math:`X`, the equation is:

1406
    ..  math::
1407

1408
        Out = \sigma (W \ast X + b)
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1433
        ..  math::
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
1451
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1452 1453

    Args:
L
LielinJiang 已提交
1454
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
1455
            of input is float32 or float64.
L
LielinJiang 已提交
1456
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1457 1458
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1459 1460
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1461
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height, 
L
LielinJiang 已提交
1462 1463
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
1464 1465 1466 1467
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1468
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1469
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1470
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1471
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1472 1473
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1474 1475
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1476
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1477 1478 1479 1480 1481
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1482
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1483
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height, 
1484 1485
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
L
LielinJiang 已提交
1486
        output_size(int|list|tuple, optional): The output image size. If output size is a
1487
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1488
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1489 1490 1491 1492
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1493 1494 1495 1496 1497
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1498
        A Tensor representing the conv3d_transpose, whose data
1499 1500 1501 1502 1503 1504 1505 1506
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.

    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1507
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1508
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1509
        ValueError: If `output_size` and kernel_size are None at the same time.
1510 1511 1512 1513 1514 1515 1516 1517
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
       .. code-block:: python
L
LielinJiang 已提交
1518 1519
          
          import paddle
1520 1521
          import paddle.nn.functional as F

1522 1523
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1524

1525
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1526
          y_np = y_var.numpy()
1527

1528
          print(y_np.shape)
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1539 1540 1541 1542
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1543
    num_channels = x.shape[channel_dim]
1544 1545 1546
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1547
            "The channel dimension of the input({}) should be defined. "
L
LielinJiang 已提交
1548
            "Received: {}.".format(x.shape, num_channels))
1549 1550
    if groups <= 0:
        raise ValueError(
1551 1552
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
1553 1554 1555
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1556 1557
            "Received: number of channels({}), groups({}).".format(
                num_channels, groups))
1558 1559

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1560 1561
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1562 1563 1564
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1565 1566 1567 1568
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1569
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1570 1571 1572 1573 1574 1575 1576
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1577
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1578 1579 1580 1581

    cudnn_version = get_cudnn_version()

    #TODO(LielinJiang): whether to use cudnn according to the version of cudnn
1582 1583
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1584 1585 1586 1587

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1588
    if in_dygraph_mode():
1589 1590 1591 1592
        pre_bias = _C_ops.conv3d_transpose(x, weight, stride, padding,
                                           output_padding, output_size,
                                           padding_algorithm, groups, dilation,
                                           data_format_)
F
From00 已提交
1593 1594 1595 1596 1597 1598
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1599 1600 1601 1602
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'paddings', padding, "padding_algorithm", padding_algorithm,
                 'strides', stride, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, "data_format", data_format_)
1603
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1604
        if bias is not None:
L
LielinJiang 已提交
1605
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1606
        else:
L
LielinJiang 已提交
1607
            out = pre_bias
1608
    else:
L
LielinJiang 已提交
1609
        inputs = {'Input': [x], 'Filter': [weight]}
1610
        attrs = {
L
LielinJiang 已提交
1611
            'output_padding': output_padding,
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            "data_format": data_format_
        }
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1622 1623
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'conv3d')
1624

L
LielinJiang 已提交
1625
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1626 1627
        outputs = {"Output": [pre_bias]}

1628 1629 1630 1631
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
1632
        if bias is not None:
L
LielinJiang 已提交
1633
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1634
        else:
L
LielinJiang 已提交
1635
            out = pre_bias
1636 1637

    return out