conv.py 46.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from __future__ import print_function
15

L
LielinJiang 已提交
16
__all__ = ['conv2d', 'conv_transpose2d', 'conv3d', 'conv_transpose3d']
17

18
import numpy as np
L
LielinJiang 已提交
19
from ...device import get_cudnn_version
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
from ...fluid.framework import Variable, in_dygraph_mode
from ...fluid import core, dygraph_utils
from ...fluid.layers import nn, utils
from ...fluid.data_feeder import check_variable_and_dtype
from ...fluid.param_attr import ParamAttr
from ...fluid.layer_helper import LayerHelper


def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
            padding = _exclude_padding_in_batch_and_channel(padding,
                                                            channel_last)
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm


91
def conv2d(x,
92 93 94
           weight,
           bias=None,
           stride=1,
95
           padding=0,
96 97 98 99 100
           dilation=1,
           groups=1,
           data_format="NCHW",
           name=None):
    """
S
swtkiwi 已提交
101

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
152
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type 
153
            of input is float16 or float32 or float64.
154
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
155 156
            the number of output channels, g is the number of groups, kH is the filter's
            height, kW is the filter's width. 
157 158 159 160
        bias (Tensor, optional): The bias with shape [M,].
        stride (int|tuple): The stride size. It means the stride in convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a tuple, it must contain two integers, (dilation_height, 
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
189
        A Tensor representing the conv2d result, whose data type is the same with input. 
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

206
          import paddle
207 208 209 210 211 212
          import paddle.nn.functional as F
          import numpy as np

          x = np.random.randn(2, 3, 8, 8).astype(np.float32)
          w = np.random.randn(6, 3, 3, 3).astype(np.float32)

213 214 215 216 217 218 219
          paddle.disable_static()

          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

220 221 222 223 224 225 226 227 228 229 230
          print(y_np.shape)

          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
                         "Received Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
231
    num_channels = x.shape[channel_dim]
232 233 234 235
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError("The channel dimmention of the input({}) "
                         "should be defined. Received: {}.".format(
236
                             x.shape, num_channels))
237 238 239 240
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
241
            ", the groups is {}".format(num_channels, x.shape, groups))
242 243 244 245 246 247
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

248 249 250 251 252 253
    # use_cudnn = True if core.is_compiled_with_cuda() else False
    cudnn_version = get_cudnn_version()

    use_cudnn = True if (core.is_compiled_with_cuda() and
                         cudnn_version is not None) else False

254 255 256 257 258 259
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    l_type = "conv2d"
260
    if (num_channels == groups and num_filters % num_channels == 0):
261
        l_type = 'depthwise_conv2d'
262
        use_cudnn = False
263

264
    inputs = {'Input': [x], 'Filter': [weight]}
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
    attrs = {
        'strides': stride,
        'paddings': padding,
        'dilations': dilation,
        'groups': groups,
        'use_cudnn': use_cudnn,
        'use_mkldnn': False,
        'fuse_relu_before_depthwise_conv': False,
        "padding_algorithm": padding_algorithm,
        "data_format": data_format
    }

    if in_dygraph_mode():
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
                 'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
                 padding_algorithm, "data_format", data_format)
282
        pre_bias = getattr(core.ops, l_type)(x, weight, *attrs)
283
        if bias is not None:
284
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
285
        else:
286
            out = pre_bias
287
    else:
288
        inputs = {'Input': [x], 'Filter': [weight]}
289 290 291 292 293 294 295 296 297 298 299
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format
        }
300 301
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'conv2d')
302 303 304 305 306 307 308
        helper = LayerHelper(l_type, **locals())
        dtype = helper.input_dtype()
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
309
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
310
        else:
311 312
            out = pre_bias

313 314 315
    return out


L
LielinJiang 已提交
316
def conv_transpose2d(x,
317 318 319
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
320 321
                     padding=0,
                     output_padding=0,
322
                     groups=1,
L
LielinJiang 已提交
323
                     dilation=1,
324
                     data_format='NCHW',
L
LielinJiang 已提交
325
                     output_size=None,
326 327
                     name=None):
    """
S
swtkiwi 已提交
328

329 330 331 332 333 334 335 336 337 338 339
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
340
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.

    Args:
L
LielinJiang 已提交
389
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
390
            whose data type is float32 or float64.
L
LielinJiang 已提交
391
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
392 393
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
394 395 396 397
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
398 399 400 401 402 403 404 405 406 407 408
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in three forms:
             `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and
            when `data_format` is `'NCHW'`,
            `padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NHWC'`, `padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
409 410 411
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
412 413 414 415 416 417 418 419
            If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width). 
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
L
LielinJiang 已提交
420 421 422 423 424 425
        output_size(int|tuple|list, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_height, image_width). None if use
            filter_size, padding, and stride to calculate output_size.
            If output_size is specified, output_size and filter_size (weight)'s shape 
            should follow the formula above. Default: None. output_size and filter_size 
            should not be None at the same time.
426 427 428 429 430 431 432 433 434
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
L
LielinJiang 已提交
435
        A Tensor representing the conv_transpose2d, whose 
436
        data type is the same with input and shape is (num_batches, channels, out_h, 
L
LielinJiang 已提交
437 438
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing 
        transposed convolution result.
439 440 441 442 443 444

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
445
        ValueError: If `output_size` and kernel_size are None at the same time.
446 447 448 449 450 451 452 453 454 455
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python

          import numpy as np
L
LielinJiang 已提交
456 457
          import paddle
          import paddle.nn.functional as F
458 459 460 461

          x = np.random.randn(2, 3, 8, 8).astype(np.float32)
          w = np.random.randn(3, 6, 3, 3).astype(np.float32)

L
LielinJiang 已提交
462 463 464 465 466
          paddle.disable_static()
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv2d_transpose(x_var, w_var)
          y_np = y_var.numpy()
467 468 469 470 471 472 473 474 475 476 477 478
          print(y_np.shape)

          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
                data_format))
    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
L
LielinJiang 已提交
479
    num_channels = x.shape[channel_dim]
480 481 482
    if num_channels < 0:
        raise ValueError("The channel dimmention of the input({}) "
                         "should be defined. Received: {}.".format(
L
LielinJiang 已提交
483
                             x.shape, num_channels))
484 485 486 487
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
L
LielinJiang 已提交
488 489 490 491 492 493
            ", the groups is {}".format(num_channels, x.shape, groups))

    cudnn_version = get_cudnn_version()

    use_cudnn = True if (core.is_compiled_with_cuda() and
                         cudnn_version is not None) else False
494 495 496 497 498

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
499

500 501 502
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
            output_size = utils.convert_to_list(output_size, 2, 'output_size')
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
        output_padding = utils.convert_to_list(output_padding, 2,
                                               'output_padding')
517 518 519

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
520
    if (num_channels == groups and num_filters == 1):
521
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
522
        use_cudnn = False
523 524

    if in_dygraph_mode():
L
LielinJiang 已提交
525 526 527 528 529
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', data_format)
        pre_bias = getattr(core.ops, op_type)(x, weight, *attrs)
530
        if bias is not None:
L
LielinJiang 已提交
531
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
532
        else:
L
LielinJiang 已提交
533
            out = pre_bias
534
    else:
L
LielinJiang 已提交
535
        inputs = {'Input': [x], 'Filter': [weight]}
536
        attrs = {
L
LielinJiang 已提交
537
            'output_padding': output_padding,
538 539 540 541 542 543 544 545 546
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        }
L
LielinJiang 已提交
547
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
548 549
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
550
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
551 552 553
        outputs = {"Output": [pre_bias]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
L
LielinJiang 已提交
554

555
        if bias is not None:
L
LielinJiang 已提交
556
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
557
        else:
L
LielinJiang 已提交
558 559
            out = pre_bias

560 561 562
    return out


563
def conv3d(x,
564 565 566
           weight,
           bias=None,
           stride=1,
567
           padding=0,
568 569 570 571 572
           dilation=1,
           groups=1,
           data_format="NCDHW",
           name=None):
    """
S
swtkiwi 已提交
573

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
618
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
619 620 621 622
            type of input is float16 or float32 or float64.
        weight (Variable): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
623 624 625 626
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
        stride (int|tuple): The stride size. It means the stride in convolution. If stride is a 
            tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
        dilation (int|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
655
        A Tensor representing the conv3d, whose data type is 
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
        the same with input. If act is None, the tensor variable storing the 
        convolution result, and if act is not None, the tensor variable storing 
        convolution and non-linearity activation result.

    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

            from paddle import fluid
            import paddle.nn.functional as F
            import paddle.fluid.dygraph as dg
            import numpy as np

            x = np.random.randn(2, 3, 8, 8, 8).astype(np.float32)
            w = np.random.randn(6, 3, 3, 3, 3).astype(np.float32)

            place = fluid.CPUPlace()
            with dg.guard(place):
                x_var = dg.to_variable(x)
                w_var = dg.to_variable(w)
                y_var = F.conv3d(x_var, w_var, act="relu")
                y_np = y_var.numpy()
            print(y_np.shape)

            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
701
    num_channels = x.shape[channel_dim]
702 703 704 705
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input({}) should be defined. "
706
            "Received: {}.".format(x.shape, num_channels))
707 708 709 710 711 712 713 714 715 716 717
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
            "Received: number of channels({}), groups({}).".format(num_channels,
                                                                   groups))
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
            "Received: number of filters({}), groups({}).".format(num_filters,
                                                                  groups))

718 719 720 721
    cudnn_version = get_cudnn_version()
    use_cudnn = True if (core.is_compiled_with_cuda() and
                         cudnn_version is not None) else False

722 723 724 725 726 727 728 729 730 731
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
    op_type = "conv3d"

    if in_dygraph_mode():
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
                 "padding_algorithm", padding_algorithm, "data_format",
                 data_format)
732
        pre_bias = getattr(core.ops, op_type)(x, weight, *attrs)
733
        if bias is not None:
734
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
735
        else:
736
            out = pre_bias
737
    else:
738
        inputs = {'Input': [x], 'Filter': [weight]}
739 740 741 742 743 744 745 746 747 748 749 750
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format
        }
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype()
751 752
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'conv3d')
753 754 755 756 757 758 759

        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}

        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
760
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
761
        else:
762
            out = pre_bias
763 764 765 766

    return out


L
LielinJiang 已提交
767
def conv_transpose3d(x,
768 769 770
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
771 772
                     padding=0,
                     output_padding=0,
773
                     groups=1,
L
LielinJiang 已提交
774
                     dilation=1,
775
                     data_format='NCDHW',
L
LielinJiang 已提交
776
                     output_size=None,
777 778
                     name=None):
    """
L
LielinJiang 已提交
779
    The convolution3d transpose layer calculates the output based on the input,
780 781 782 783 784 785 786 787 788 789
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
790
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

    Args:
L
LielinJiang 已提交
843
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
844
            of input is float32 or float64.
L
LielinJiang 已提交
845
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
846 847
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
848 849 850 851 852
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
853 854 855 856 857 858 859 860 861 862
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
863 864 865
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
866 867 868 869 870 871 872 873 874 875 876 877 878
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height, 
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
L
LielinJiang 已提交
879 880 881 882 883
        output_size(int|list|tuple, optional): The output image size. If output size is a
            tuple, it must contain three integers, (image_depth, image_height, image_width). This
            parameter only works when filter_size is None. If output_size and filter_size are 
            specified at the same time, They should follow the formula above. Default: None. 
            Output_size and filter_size should not be None at the same time.
884 885 886 887 888
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
L
LielinJiang 已提交
889
        A Tensor representing the conv_transpose3d, whose data 
890 891 892 893 894 895 896 897 898 899
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.

    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
900
        ValueError: If `output_size` and kernel_size are None at the same time.
901 902 903 904 905 906 907 908
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
       .. code-block:: python
L
LielinJiang 已提交
909 910
          
          import numpy as np
911

L
LielinJiang 已提交
912
          import paddle
913 914 915 916 917
          import paddle.nn.functional as F

          x = np.random.randn(2, 3, 8, 8, 8).astype(np.float32)
          w = np.random.randn(3, 6, 3, 3, 3).astype(np.float32)

L
LielinJiang 已提交
918 919 920 921 922 923
          paddle.disable_static()

          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv_transpose3d(x_var, w_var)
          y_np = y_var.numpy()
924 925 926 927 928 929 930 931 932 933 934 935
          print(y_np.shape)

          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
L
LielinJiang 已提交
936
    num_channels = x.shape[channel_dim]
937 938 939 940
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input({}) should be defined. "
L
LielinJiang 已提交
941
            "Received: {}.".format(x.shape, num_channels))
942 943 944 945 946 947 948 949 950 951 952 953
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
            "Received: number of channels({}), groups({}).".format(num_channels,
                                                                   groups))

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
            output_size = utils.convert_to_list(output_size, 3, 'output_size')
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
        output_padding = utils.convert_to_list(output_padding, 3,
                                               'output_padding')

    cudnn_version = get_cudnn_version()

    #TODO(LielinJiang): whether to use cudnn according to the version of cudnn
    use_cudnn = True if (core.is_compiled_with_cuda() and
                         cudnn_version is not None) else False
974 975 976 977 978

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

    if in_dygraph_mode():
L
LielinJiang 已提交
979 980 981 982 983
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'paddings', padding, "padding_algorithm", padding_algorithm,
                 'strides', stride, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, "data_format", data_format_)
        pre_bias = getattr(core.ops, op_type)(x, weight, *attrs)
984
        if bias is not None:
L
LielinJiang 已提交
985
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
986
        else:
L
LielinJiang 已提交
987
            out = pre_bias
988
    else:
L
LielinJiang 已提交
989
        inputs = {'Input': [x], 'Filter': [weight]}
990
        attrs = {
L
LielinJiang 已提交
991
            'output_padding': output_padding,
992 993 994 995 996 997 998 999 1000 1001
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            "data_format": data_format_
        }
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1002 1003
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'conv3d')
1004

L
LielinJiang 已提交
1005
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1006 1007 1008 1009 1010
        outputs = {"Output": [pre_bias]}

        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
L
LielinJiang 已提交
1011
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1012
        else:
L
LielinJiang 已提交
1013
            out = pre_bias
1014 1015

    return out